The Anonymous Widower

UK Govt Awards Almost GBP 33m To Innovative Energy Storage Projects

The title of this post is the same as that of this article on Renewables Now.

This is the first paragraph.

The UK government has awarded GBP 32.9 million (USD 39.7m/EUR 38.3m) in funding to five innovative energy storage projects under the second phase of its Longer Duration Energy Storage competition.

These are the projects.

StorTera

StorTera has secured GBP 5.02 million to create a prototype demonstrator of its single liquid flow battery (SLIQ) technology.

The company’s main product is the SLIQ Flow Battery, for which it gives the headline of Reliable, Economical Energy For 20 Years.

This is a description of the technology.

The revolutionary StorTera SLIQ single liquid flow battery offers a low cost, high performance energy storage system made with durable components and supported by our flexible and adaptable inverter and control system. The StorTera SLIQ battery brings the following benefits/advantages:

  • Low levelised cost of storage and capital cost
  • Long lifetime of up to 20 years (min. 7,500 cycles)
  • Long duration energy with the energy and power capacity easily and independently scalable
  • Safe with no cooling requirements and high flash point materials
  • Fully recyclable at the end of lifetime

This is said about costs – Using low cost materials and manufacturing techniques, we predict capital costs of approximately £120/kW and £75/kWh by 2022.

I feel there could be something about this technology, but we’ll only know, when the demonstrator is fully working.

Sunamp

Sunamp will get GBP 9.25 million to test its thermal storage system in 100 homes across the UK.

On their home page, Sunamp has a banner of World Leading Thermal Technologies, with this description underneath.

Sunamp designs and manufactures space-saving thermal storage that makes UK homes, buildings and vehicles more energy-efficient and sustainable, while reducing carbon emissions and optimising renewables.

They do appear to have sold something, which is always a useful thing to do.

This page on their web site,  describes their Thermino Thermal Storage For Domestic Hot Water, where this is said.

Thousands of Sunamp thermal batteries are already in homes across the UK storing heat from low-carbon energy sources and releasing it for mains-pressure hot water when needed.

Our Thermino batteries replace traditional hot water cylinders – direct (for grid electricity and solar PV) or indirect (for boilers and heat pumps).

They are up to four times smaller than the equivalent hot water tank because they are filled with our energy-dense phase change material, Plentigrade. This means that heat pump systems can be installed where otherwise they wouldn’t fit, for example.

The key seems to be this substance called Plentigrade!

This page on their web site describes Plentigrade.

Under a heading of Storing Energy As Heat And Releasing It When, And Where, It’s Needed, this is said.

Sunamp thermal batteries are energy-saving thermal stores containing Plentigrade: our high-performance phase change materials (PCMs) that deliver heating or cooling reliably, safely and efficiently.

Plentigrade, with its perpetual phase changing ability, is at the core of our products.

Our breakthrough technology was created in collaboration with the University of Edinburgh, ranked among the top 20 universities in the world, and the UK’s national synchrotron particle accelerator, Diamond Light Source. To find out more about the chemistry behind Plentigrade, read our blog.

Note.

  1. This product almost looks to be too good to be true.
  2. But I’ve checked and it doesn’t seem to have appeared on Watchdog.
  3. It’s yet another breakthrough, that has used the Diamond Light Source.
  4. How many other developments would happen with a Diamond 2 in the North, as I wrote about in Blackpool Needs A Diamond?

I have a feeling, that my house needs one of Sunamp’s thermal batteries.

University of Sheffield

The article says this about a grant to the University of Sheffield.

The University of Sheffield has been awarded GBP 2.6 million to develop a prototype modular thermal energy storage system designed to provide optimised, flexible storage of heat within homes.

There are several thermal batteries around for houses.

RheEnergise

The article says this about a grant to RheEnergise.

With a GBP-8.24-million grant, RheEnergise Ltd will build a demonstrator of its High-Density Hydro pumped energy storage system near Plymouth. The technology uses a fluid denser than water to generate electricity from gentle slopes.

I wrote about this in Plan For £8.25m Plymouth Energy Plant To Generate Power From Cream-Like Fluid.

EDF UK R&D

The article says this about a grant to EDF UK R&D.

The government is also backing with GBP 7.73 million an initiative of EDF UK R&D and its partners, the University of Bristol, Urenco and the UK Atomic Energy Authority (UKAEA), to develop a hydrogen storage demonstrator using depleted uranium at UKAEA’s Culham Science Centre in Abingdon, Oxfordshire.

I wrote about this in Innovative Hydrogen Energy Storage Project Secures Over £7 million In Funding.

Conclusion

They are a mixed bunch of ideas from around the UK, that I think will produce at least two good winners.

 

December 2, 2022 Posted by | Energy Storage, Hydrogen | , , , , , , , , , , , | 6 Comments

CIP Picks Stiesdal Floater For 100MW Scottish Offshore Wind Farm

The title of this post, is the same as that of this article on Offshore Engineering.

These two paragraphs introduce the project.

Copenhagen Infrastructure Partners (CIP) has selected Stiesdal Offshore’s TetraSub floating foundation structure for the 100MW Pentland Floating Offshore Wind Farm project, to be located off the coast of Dounreay, Caithness, Scotland.

The technology has been said to offer a lightweight and cost-effective floating solution, based on factory-made modules which are then assembled domestically in port to form a complete foundation.

Note.

  1. The TetraSub seems to have been designed for ease of manufacture.
  2. One if the aims appears to be to build a strong local supply chain.
  3. The TetraSub was designed with the help of Edinburgh University.
  4. The TetraSpar Demonstrator is in operation off the coast of Norway.
  5. This page on Mission Innovation describes the TetraSpar in detail.
  6. The TetraSpar foundation, owned by Shell, TEPCO RP, RWE, and Stiesdal.
  7. It can be deployed in water with a depth of up to 200 metres.
  8. Currently, they carry a 3.6 MW turbine.
  9. At that size, they’d need 27 or 28 turbines to create a 100 MW wind farm.

The home page of the Pentland Offshore Wind Farm gives more details.

This article on offshoreWIND.biz is entitled CIP And Hexicon To Halve Pentland Floating Wind Project Area.

  • The project area has been halved.
  • The number of turbines has been reduced from ten to seven.
  • Compact turbines will be used.
  • The project will be built in two phases, one turbine in 2025 and six in 2026.
  • Effectively, the first turbine will help to fund the second phase, which eases cash flow.

The changes show how the wind farm has changed during development due to local pressures and improved technology.

Conclusion

It does seem that the competition is growing in the field of floating wind turbines.

Given the quality of the research and backing for these floats and the fact they now have an order, I wouldn’t be surprised to see this technology be a success.

October 13, 2022 Posted by | Energy | , , , , , , , , | 2 Comments

Bombora Wraps Tank Trials Of Its Floating Hybrid Energy Platform

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the introductory paragraph.

Bombora Wave Power has completed tank testing of its floating foundation system suitable for the InSPIRE solution, which combines the mWave wave energy technology with a wind turbine onto a single floating offshore platform.

This second paragraph gives details of the power output of the hybrid energy platform.

The tank testing program at FloWave follows the pre-FEED phase of the InSPIRE project completed earlier in 2022, based on the integration of a 4MW mWave solution with a 10MW wind turbine on a single semi-submersible floating foundation system.

4 MW seems a worthwhile increase in power, that can probably be handled by the existing cables and substations.

 

August 16, 2022 Posted by | Energy | , , , , | Leave a comment

Energy3 – A Thermal Energy Storage System Providing Heating, Hot Water And Electricity

This article on Current News is entitled BEIS Unveils Nearly £7m Long Duration Energy Storage Funding.

One of the ideas, that has received funding is Energy3, which is an idea from the University of Edinburgh.

This is the introductory paragraph on the home page.

Renewable energy sourced from the sun, wind, waves, or tides is clean and secure. Unfortunately, the energy that can be extracted from renewables and the demand for it varies both temporally and spatially. To allow a household to be fully reliant on renewables or for grid operators to use a high proportion of renewable energy, storage is essential.

The University has developed a storage system based on heat, that is charged by using low-cost electricity. This heat can then be delivered during the day as heat, hot water and electricity.

Two sizes are available.

  • mUHTS – A small cubic metre size, which is ideal for the average house.
  • megaUHTS – A container sized  system, which is aimed at a business.

They can also build bigger systems to replace thermal power stations.

This is a very interesting concept and I can see other similar systems being developed, by companies all over the world.

February 24, 2022 Posted by | Energy, Energy Storage | , | Comments Off on Energy3 – A Thermal Energy Storage System Providing Heating, Hot Water And Electricity

Covid: Genes Hold Clues To Why Some People Get Severely Ill

The title of this post, is the same as that of this article on the BBC.

This is the opening paragraph.

Why some people with coronavirus have no symptoms and others get extremely ill is one of the pandemic’s biggest puzzles.

It is now less of a puzzle, thanks to research led by the University of Edinburgh.

These paragraphs explain the methodology.

Scientists looked at the DNA of patients in more than 200 intensive care units in UK hospitals.

They scanned each person’s genes, which contain the instructions for every biological process – including how to fight a virus.

Their genomes were then compared with the DNA of healthy people to pinpoint any genetic differences, and a number were found – the first in a gene called TYK2.

One of the other genes mentioned is IFNAR2, where this was said.

Variations in a gene called IFNAR2 were also identified in the intensive care patients.

IFNAR2 is linked to a potent anti-viral molecule called interferon, which helps to kick-start the immune system as soon as an infection is detected.

It’s thought that producing too little interferon can give the virus an early advantage, allowing it to quickly replicate, leading to more severe disease.

I know a bit about interferon and I must admit I’ve made a bit of profit on shares in Synairgen, which are linking interferon with an inhaler.

I then typed “coeliac disease and interferon” into Google and found this article on The Lancet, which is entitled Onset Of Coeliac Disease and Interferon Treatment.

My medical knowledge is very limited, but it does appear that if you are coeliac on a gluten-free diet, you don’t get any problems, with interferon.

The plot thickens!

Not for nothing, do some doctors coeliac disease, the Many-Headed Hydra.

December 12, 2020 Posted by | Health | , , , , , , | Leave a comment