The Anonymous Widower

No News On Hydrogen Trains For The Midland Main Line

In April 2019, I wrote Hydrogen Trains To Be Trialled On The Midland Main Line, which was based on an article on Railway Gazette that is entitled Bimode And Hydrogen Trains As Abellio Wins Next East Midlands Franchise.

I said this in my post.

Abellio will be taking over the franchise in August this year and although bi-mode trains were certain to be introduced in a couple of years, the trialling of hydrogen-powered trains is a surprise to me and possibly others.

This is all that is said in the article.

Abellio will also trial hydrogen fuel cell trains on the Midland Main Line.

It also says, that the new fleet will not be announced until the orders are finalised.

Nothing has been heard since about the hydrogen train trial for the Midland Main Line.

But there have been several related developments, that might have implications for the trial.

East Midlands Railway Has Ordered Hitachi Class 804 Trains For EMR InterCity Services

Class 804 trains are Hitachi’s latest offering, that are tailored for the Midland Main Line.

The trains will have a few differences to the current Class 800,/801/802 trains.

But will they be suitable for conversion to hydrogen power?

Consider.

  • The Hitachi trains have a comprehensivecomputer system, that looks at the train and sees what power sources are available and controls the train accordingly.
  • Trains have already been ordered in five, seven and nine-car lengths. I have read up to twelve-car trains are possible in normal operation. See Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?
  • Hydrogen train designs, with a useful range of several hundred miles between refuelling, seem to need a hydrogen tank, that takes up at least half of a twenty metre long carriage.
  • The Hitachi train design has pantographs on the driver cars and can support diesel generator units in the intermediate cars, as it does in current trains.
  • The Japanese are researching hydrogen trains.
  • The five-car Class 802 trains have 2,100 kW of installed generator power.

I think that Hitachi’s engineers can build another carriage, with the following characteristics.

  • It could be based on a Motor Standard car.
  • The passenger seats and interior would be removed or redesigned in a shorter space.
  • Powered bogies would be as required.
  • It would contain a hydrogen tank to give sufficient range.
  • Appropriately-sized batteries and fuel-cells would be inside or under the vehicle.
  • Regenerative braking would help to recharge the batteries.
  • There would probably be no diesel generator unit.

There would need to be a walkway through the car. Stadler have shown this works in the Class 755 train.

A Hydrogen Power car like this would convert a five-car bi-mode diesel-electric train into a six-car hydrogen-electric hybrid train. Or they might just replace one Motor Standard car with the Hydrogen Power Car to create a five-car hydrogen-electric hybrid train, if the longer train would cause problems in the short platforms at St. Pancras.

  • The computer system would need to recognise the Hydrogen Power Car and control it accordingly. It would probably be very Plug-and-Play.
  • The weight of the train could probably be reduced by removing all diesel generator units.
  • The passenger experience would be better without diesel power.
  • The range away from the wires would probably be several hundred miles.

The drivers and other staff would probably not need massive retraining.

What Do I Mean By Appropriately-Sized Batteries And Fuel Cells?

I can’t be sure,, but I suspect the following rules and estimates hold.

  • The batteries must be large enough to more than hold the kinetic energy of a full five-car train, running at the full speed of 140 mph.
  • I estimate that the kinetic energy of the train,will be around 200 kWh, so with a contingency, perhaps battery capacity of between 400-500 kWh would be needed.
  • Currently, a 500 kWh battery would weigh five tonnes, which is of a similar weight to one of the diesel generator units, that are no longer needed.
  • In How Much Power Is Needed To Run A Train At 125 mph?, I estimated that the all-electric Class 801 train, needs 3.42 kWh per vehicle mile to maintain 125 mph. This means that travelling at 125 mph for an hour would consume around 2,000 kWh or an output of 2,000 kW from the fuel cell for the hour.
  • Note that 1 kg of hydrogen contains 33.33 kWh of usable energy, so the hydrogen to power the train for an hour at 125 mph, will weigh around sixty kilograms.

From my past experience in doing chemical reaction calculations in pressure vessels, I think it makes the concept feasible. After all, it’s not that different to Alstom’s Breeze.

I would assume, that the train manufacturers can do a full calculation, to a much more accurate level.

Applying The Concept To Other Hitachi Trains

Once proven, the concept could be applied to a large number of Hitachi bi-mode trains. I suspect too, that it could be applied to all other Hitachi A-train designs, that are in service or on order, all over the world.

In the UK, this includes Class 385, Class 395 and Class 80x trains.

Bombardier Have Said That They’re Not Interested In Hydrogen Power

But Electrostars and Aventras have the same Plug-and-Play characteristic as the Hitachi train.

I wouldn’t be surprised to find that Bombardier have a Hydrogen Power Car design for an Aventra. All that it needs is an order.

They could also probably convert a five-car Class 377 train to effectively a four-car train, with a Hydrogen Power Car in the middle. This would be ideal for the Uckfield Branch and the Marshlink Lines. I suspect it could be done to meet the timescale imposed by the transfer of the Class 171 trains to East Midlands Railway.

There must be an optimal point, where converting an electric multiple unit, is more affordable to convert to hydrogen, than to add just batteries.

But then everybody has been dithering about the Uckfield and Marshlink trains, since I started this blog!

Stadler Have Shown That a Gangway Through A Power Car Is Acceptable To Passengers In The UK

Stadler’s Class 755 trains seem to be operating without any complaints about the gangway between the two halves of the train.

Stadler Have Two Orders For Hydrogen-Powered Trains

These posts describe them.

Stadler also have a substantial order for a fleet of battery Flirt Akku in Schleswig Holstein and they are heavily involved in providing the rolling stock for Merseyrail and the South Wales Metro, where battery-powered trains are part of the solution.

It looks to me, that Stadler have got the technology to satisfy the battery and hydrogen train market.

The Driver’s View Of Stadler

It’s happened to me twice now; in the Netherlands and in the UK.

  • Both drivers have talked about hydrogen and Stadler’s trains with the engine in the middle.
  • They like the concept of the engine.
  • The English driver couldn’t wait to get his hands on the train, when he finished his conversion.
  • Both brought up the subject of hydrogen first, which made me think, that Stadler are telling drivers about it.

Or does driving a hydrogen-powered vehicle as your day job, score Greta points in the pub or club after work?

Could The Hydrogen Train On The Midland Main Line Be A Stadler?

Greater Anglia and East Midlands Railway are both controlled by Abellio or Dutch Railways.

In The Dutch Plan For Hydrogen, I laid out what the Dutch are doing to create a hydrogen-based economy in the North of the country.

Stadler are going to provide hydrogen-powered for the plan.

In addition.

  • Greater Anglia have bought a lot of Class 755 trains.
  • A lot of Lincolnshire and Norfolk is similar to the North of the Netherlands; flat and windy.
  • One of these trains with a hydrogen PowerPack, could be an ideal train for demonstrating hydrogen on rural routes like Peterborough and Doncaster via Lincoln.

But the promise was on the Midland Main Line?

Conclusion

Hydrogen trains seem to be taking off!

Even if there’s been no news about the trial on the Midland Main Line.

 

January 12, 2020 - Posted by | Hydrogen, Transport | , , , , , , , , ,

3 Comments »

  1. I suspect that a hydrogen hybrid train might still need a small ICE auxiliary as a “backup” power in case of hydrogen/battery exhaustion if there is an extended stoppage or the train is “out of place” after a disruption., supporting the computers and passenger “amenities” (light, heat, vacuum flush toilets), maybe a larger backup to diesel to enable a “limp/crawl mode” over a short range to avoid needing to use “rescue trains” if the train is otherwise disabled.

    Maybe also backup or seasonal ICE localised diesel/kerosene carriage heaters to maximise range on hydrogen/battery (in small quantities, taking tankage into account, CNG/LPG/diesel/kerosene is more energy dense than hydrogen and easier to handle especially in exceptional circumstances). Using bio-diesel (recycled purified fryer oil), of course, if diesel is used.

    Comment by MilesT | January 14, 2020 | Reply

    • I thought about that. But we should remember Lindbergh! When asked if he wanted a navigator, he said he’d take the fuel.So I’d throw out all ICEs and fit a bigger battery.

      Interestingly, a driver told me that Aventras have a limp/crawl mode controlled by just two buttons. One moves the train forward at 5 mph and the other stops it.

      Comment by AnonW | January 14, 2020 | Reply

  2. The problem with increasing the tankage/battery storage to create “just in case” range is increasing the dead weight in normal operations, which makes the train less efficient, and also increases replenishment times. Needs careful analysis to see if a backup ICE is less dead weight than larger tanks/batteries.

    An alternative would be to create a flexible rescue truck (with rail riding capability and good offroad capability), to bring extra battery or ICE power to a train (in the back or towing a trailer) if needed.and “keep the lights on” or power the limp/crawl mode. The most extreme version of this would be a rescue tracked vehicle (land and or snow) which can tow a rescue sled power pack.

    The “extra weight for extra range” problem is something that is currently an issue in the very longest distance commercial airplanes, which expend more CO2 per passenger mile because of the dead weight of extra fuel (no plane to plane refuelling in the air). The current longest routes with current planes have reduced passenger /freight payload to squeeze a few hundred miles more. For the same reason, the recent ultra long range trial flights from Qantas (part of “Project Sunrise”) only had 50 people, vastly under-capacity for the plane, to reduce the weight, and I think also had temporary extra tanks in the freight hold. Qantas is awaiting the next generation of airplanes which are just a little more efficient to enable non-stop flights between Sydney and London/New York (current generation can do Perth-London but not enough to get across Australia to Sydney).

    Comment by MilesT | January 14, 2020 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.