The Anonymous Widower

Thoughts On Batteries On A Hitachi Intercity Tri-Mode Battery Train

This Hitachi infographic describes a Hitachi Intercity Tri-Mode Battery Train.

Hitachi are creating the first of these battery trains, by replacing one of the diesel power-packs in a Class 802 train with a battery-pack from Hyperdrive Innovation of Sunderland.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%, gives a few more details.

The Class 802 train has the following characteristics.

  • Five cars.
  • Three diesel power-packs, each with a power output of 700 kW.
  • 125 mph top speed on electricity.
  • I believe all intermediate cars are wired for diesel power-packs, so can all intermediate cars have a battery?

In How Much Power Is Needed To Run A Train At 125 Or 100 mph?, I estimated that the trains need the following amounts of energy to keep them at a constant speed.

  • Class 801 train – 125 mph 3.42 kWh per vehicle mile
  • Class 801 train – 100 mph 2.19 kWh per vehicle mile

The figures are my best estimates.

The Wikipedia entry for the Class 800 train, also gives the weight of the diesel power-pack and all its related gubbins.

The axle load of the train is given as 15 tonnes, but for a car without a diesel engine it is given as 13 tonnes.

As there are four axles to a car, I can deduce that the diesel power-pack and the gubbins, weigh around eight tonnes.

How much power would a one tonne battery hold?

This page on the Clean Energy institute at the University of Washington is entitled Lithium-Ion Battery.

This is a sentence from the page.

Compared to the other high-quality rechargeable battery technologies (nickel-cadmium or nickel-metal-hydride), Li-ion batteries have a number of advantages. They have one of the highest energy densities of any battery technology today (100-265 Wh/kg or 250-670 Wh/L).

Using these figures, a one-tonne battery would be between 100 and 265 kWh in capacity, depending on the energy density.

As it is likely that if the diesel power-pack replacement would probably leave things like fuel tanks and radiators behind, so that the diesel engines could be reinstalled, I would expect that a battery of around four tonnes would be fitted.

On the basis of the University of Washington’s figures a 400 kWh battery pack would certainly be feasible.

Using. the energy use at 100 mph of 2.19 kWh per vehicle mile, I can get the following ranges for different battery sizes.

  • 400 kWh battery – 36.53 miles
  • 500 kWh battery – 45.67 miles
  • 600 kWh battery – 54.80 miles
  • 800 kWh battery – 73.06 miles

As Lincoln and Newark are just 16.6 miles apart, it looks to me that a 500 or 600 kWh battery could be a good choice for that route, as it would leave enough hotel power for the turnround.

It should also handle shorter routes like these.

  • Newbury and Bedwyn – 13.3 miles.
  • Didcot and Oxford – 10.3 miles
  • Newark and Lincoln – 16.6 miles
  • Leeds and Harrogate – 18.3 miles
  • Northallerton and Middlesbrough – 20 miles
  • Hull and Temple Hirst Junction and Hull – 36.1 miles

Some routes like Temple Hirst Junction and Hull would need charging at the destination.

The Range Of A Five Car Train With Three Batteries

Suppose a Hitachi Intercity Tri-Mode Battery Train had three battery-packs and no diesel engines.

  • It would be based on Hitachi Intercity Tri-Mode Battery Train technology.
  • It would have two driver cars without batteries.
  • It would have three intermediate cars with 600 kWh batteries.
  • It would have 1800 kWh in the batteries.
  • The train would be optimised for 100 mph running.
  • My estimate says it would need 2.19 kWh per vehicle mile to cruise at 100 mph.

It could have a range of up to 164 miles.

If the batteries were only 500 kWh, the range would be 137 miles.

The Ultimate Battery Train

I think it would be possible to put together a nine car battery-electric train with a long range.

  • It would be based based on Hitachi Intercity Tri-Mode Battery Train technology, which would be applied to a Class 800 or Class 802 train.
  • It would have two driver cars without batteries.
  • It would have seven intermediate cars with 600 kWh batteries.
  • It would have a total battery capacity of 4200 kWh.
  • The train would be optimised for 100 mph running.
  • My estimate in How Much Power Is Needed To Run A Train At 125 Or 100 mph?, said it would need 2.19 kWh per vehicle mile to cruise at 100 mph.

That would give a range of over 200 miles.

If the batteries were only 500 kWh, the range would be 178 miles.

Aberdeen, Inverness, Penzance and Swansea here we come.

Can Hitachi Increase The Range Further?

There are various ways that the range can be improved.

  • More electrically-efficient on-board systems like air-conditioning.
  • A more aerodynamic nose.
  • Regenerative braking to the batteries.
  • Batteries with a higher energy density.
  • Better driver assistance software.

Note.

  1. Hitachi have already announced that the Class 810 trains for East Midlands Railway will have a new nose profile.
  2. Batteries are improving all the time.

I wouldn’t be surprised to see a ten percent improvement in range by 2030.

Conclusion

I was surprised at some of the results of my estimates.

But I do feel that Hitachi trains with 500-600 kWh batteries could bring a revolution to train travel in the UK.

Edinburgh And Aberdeen

Consider.

  • The gap in the electrification is 130 miles between Edinburgh Haymarket and Aberdeen.
  • There could be an intermediate charging station at Dundee.
  • Charging would be needed at Aberdeen.

I think Hitachi could design a train for this route.

Edinburgh And Inverness

Consider.

  • The gap in the electrification is 146 miles between Stirling and Inverness.
  • This could be shortened by 33 miles, if there were electrification between Stirling and Perth.
  • Charging would be needed at Inverness.

I think Hitachi could design a train for this route.

 

May 31, 2021 Posted by | Transport | , , , , , , , | 6 Comments

Plans For £100m Coventry To Nottingham Rail Link Announced

The title of this post, is the same as that of this article on the BBC.

This is the first two paragraphs.

A £100m scheme to reconnect three Midlands cities by rail could be running by 2025, subject to funding, according to a regional transport group.

Midlands Connect said it had completed a strategic business case for a direct link between Coventry, Leicester and Nottingham.

The article also says this about the route.

The group said there was a “strong case” for the project and it had narrowed it down to two – one which called at the Warwickshire town of Nuneaton and one which ran direct between the three cities.

In A Potential Leicester To Coventry Rail Link, which I wrote in February 2019, I talked about this link and came to the conclusion it was feasible.

But things have moved on in those two years and these are my updated thoughts.

Via Nuneaton Or Direct

This Google Map shows the rail layout to the South of Nuneaton station.

Note.

  1. The multi-track electrified railway running North-West and South-East is the Trent Valley section of the West Coast Main Line.
  2. Branching off to the South-West is the Coventry and Nuneaton Line.
  3. Branching off to the South-East is the line to Leicester.

Nuneaton station is off the map to the North on the West Coast Main Line.

Unfortunately, services to Coventry and Leamington Spa call in Platform 1 on the Western side of the station and services between Leicester and Birmingham call in platforms 6 and 7 on the Eastern side.

This probably rules out a clever solution, where perhaps an island platform, has Birmingham and Leicester services on one side and Coventry and Leicester services on the other.

This Google Map shows Nuneaton station.

Note.

  1. Platform 6 and 7 form the island platform on the North-East side of the station.
  2. Birmingham trains call in Platform 6.
  3. Leicester trains call in Platform 7.

The track layout for Platforms 6 and 7 appears comprehensive with crossovers allowing both platforms to be used for services to both cities.

This Google Map shows the crowded track layout to the South of the station.

The only possibility would appear to be a single track dive-under that connected Platform 6 and/or 7 to the Coventry and Nuneaton Line on the other side of the West Coast Main Line.

I feel that costs would rule it out.

I suspect that a direct solution cutting out Nuneaton might be possible.

This Google Map shows the three routes diverging to the South of Nuneaton station.

It might be possible to connect the Coventry and Leicester Lines, but the curve might be too tight.

The alternative could be to build a dive-under that would connect Platform 1 to the Leicester Line.

  • It would appear that it could be the easiest and most affordable option.
  • Trains would reverse in Nuneaton station.

It is certainly a tricky problem, but I do believe there is a simple cost-effective solution in there somewhere.

Nuneaton Parkway Station

This page on Coventry Live gives some information about the proposed Nuneaton Parkway station.

There is also a proposed station, to be called Nuneaton Parkway, situated off the A5 between Hinckley and Nuneaton.

This Google Map shows the area where the A5 crosses the Birmingham-Peterborough Line, that runs between Hinckley and Nuneaton..

This must surely be one of the best sites to build a new Parkway station in the UK.

  • The triangular site is a waste transfer station operated by Veolia Environmental Services UK.
  • It has a direct connection to the A5, which could be easily improved, with perhaps a roundabout.
  • Doing a crude estimate from the Google Map, I calculate that the site is about sixteen hectares, which is surely a good size for a Parkway station.
  • There’s even quite a lot of new housing within walking and cycling distance.

It would also appear that the station could be built on this site without major disruption to either road or rail traffic.

The Stations And Timing

This document on the Midlands Connect web site, gives their aims for the service.

  • Coventry and Leicester – 38 minutes from 54 minutes with one change.
  • Coventry and Loughborough – 50 minutes from 88 minutes with otwo changes.
  • Coventry and East Midlands Parkway – 56 minutes from 104 minutes with otwo changes.
  • Coventry and Nottingham – 70 minutes from 108 minutes with otwo changes.

The service would have a frequency of two trains per hour (tph).

If the train did the same station stops as the current services between Coventry and Leicester, it could stop at all or a selection of the following intermediate stations.

  • South Wigston
  • Narborough
  • Hinckley
  • Nuneaton
  • Bermuda Park
  • Bedworth
  • Coventry Arena

The total time would appear to be around fifty minutes, with 28 minutes for Leicester to Nuneaton and 22 minutes from Nuneaton to Coventry. Although the BBC article says that Coventry and Leicester would drop from the current 54 minutes to 38 minutes.

Currently services between Leicester and Birmingham New Street stations are run by CrossCountry.

  • One tph – Birmingham New Street and Cambridge or Stansted Airport
  • One tph – Birmingham New Street and Leicester

Note that not all intermediate stations receive a two tph service.

Would a two tph service between Leicester and Coventry enable all the stations on the route to have a two tph service?

The Current Leicester And Nottingham Service

Currently the following services run between Leicester and Nottingham.

  • 1 tph – EMR InterCity – Direct
  • 1 tph – EMR InterCity – Via Loughborough, East Midlands Parkway and Beeston
  • 1 tph – EMR Regional – Via Syston, Sileby, Barrow-upon-Soar, Loughborough, East Midlands Parkway, Attenborough and Beeston

Note.

  1. Timings vary between 23 and 49 minutes.
  2. Four tph between Leicester and Nottingham would be a Turn-Up-and-Go service that would attract passengers.
  3. The BBC article is indicating a Coventry and Nottingham time of 70 minutes, which would indicate a Leicester and Nottingham time of 32 minutes, which would appear to be in-line with the EMR Intercity service that stops at Loughborough, East Midlands Parkway and Beeston.

It looks to me that a fourth semi-fast service between Leicester and Nottingham would not be a bad idea.

But Midlands Connect are proposing two extra tph between Coventry and Nottingham.

A Coventry And Nottingham Service

Consider.

  • An two tph service would fit in well and give a Turn-Up-and-Go service between Leicester and Nottingham.
  • The Coventry and Nottingham time of 70 minutes indicates that the train would need to be to EMR InterCity standard.
  • If there is an allowance of twenty minutes at either end of the route, this would indicate a round trip of three hours.

This standard of service would need an operational fleet of six five-car Class 810 trains or similar for a frequency of two tph.

I very much feel that there should be electrification of the Midland Main Line between Leicester and either East Midlands Parkway or Derby.

This would mean that the Coventry and Nottingham route would break down as follows.

  • Coventry and Nuneaton – 19,2 miles – No electrification
  • Nuneaton and Leicester – 18.8 miles – No electrification
  • Leicester and East Midlands Parkway – 19.1 miles – Possible electrification
  • East Midlands Parkway and Nottingham – 8.4 miles – No electrification

Note that electrification is already available  at Coventry and Nuneaton.

The Coventry and Nottingham route would appear to be possible with battery-electric trains, after the route between Leicester and East Midlands Parkway is electrified.

An Improved Birmingham And Cambridge Service

If Nottingham and Coventry needs a fast two tph service stopping at the major towns and cities in between, surely Birmingham and Cambridge need a similar service.

  • It could call at Nuneaton, Leicester, Melton Mowbray, Oakham, Stamford, Peterborough, Ely and Cambridge North.
  • Some services could be extended to Stansted Airport.
  • It would have a frequency of two tph.

The Birmingham and Cambridge route would break down as follows.

  • Birmingham and Nuneaton – 21 miles – No electrification
  • Nuneaton and Leicester – 18.8 miles – No electrification
  • Leicester and Peterborough – 40 miles – No electrification
  • Peterborough and Ely – 30.5 miles – No electrification
  • Ely and Cambridge – 14.7 miles – Electrified.

Note that electrification is already available  at Birmingham, Nuneaton and Peterborough.

The Birmingham and Cambridge route would appear to be possible with battery-electric trains, if Leicester station were to be electrified.

Midland Connect’s Proposed Leeds and Bedford Service

I wrote about this service in Classic-Compatible High Speed Two Trains At East Midlands Hub Station.

It would run between Leeds and Bedford stations.

It would use the Midland Main Line between Bedford and East Midlands Hub stations.

It would use High Speed Two between East Midlands Hub and Leeds stations.

It would stop at Wellingborough, Kettering, Market Harborough, Leicester, Loughborough and East Midlands Hub stations.

  • The service frequency could be hourly, but two trains per hour (tph) would be better.
  • Leicester and Leeds would take 46 minutes.

Obviously, it wouldn’t run until the Eastern Leg of High Speed Two opens, but it could open up the possibility of Coventry and Leeds in under ninety minutes.

Driving takes over two hours via the M1.

Conclusion

This looks to be a very feasible and fast service.

It also illustrates how extending the electrification on the Midland Main Line can enable battery-electric trains to provide connecting services.

Enough electrification at Leicester and a few miles North of the station to fully charge passing trains would probably be all that is needed.

 

 

 

May 27, 2021 Posted by | Transport | , , , , , , , , | 2 Comments

Department Of Transport Claims London and Sheffield Times Could Be Cut By Thirty Minutes

In this article on the BBC, which is entitled Government Announce £401m Boost For Rail Services, this is said.

The funding announcement coincided with the completion of the first phase of the £1.5bn Midland Main Line Upgrade, which has supported the launch of East Midlands Railway’s (EMR) first electric services on the route between Corby in Northamptonshire and London St Pancras.

The project will see journey times between Sheffield and London cut by up to 30 minutes, the DfT said.

So how feasible is the claim of a thirty minute cut in London and Sheffield timings?

On Monday, the 07:30 train from London to Sheffield, covered the 164.7 miles in two hours and twelve minutes at an average speed of 74.9 mph.

If that train had done the trip in one hour and forty-two minutes, that would have been an average speed of 96.9 mph.

By the time, the new Class 810 trains arrive in a couple of years, they will be able to use the new electrification to Market Harborough, when on Monday the 82.8 miles without a stop, was covered in an hour, at an average speed of 82.8 mph.

These new trains are 125 mph electric trains under the wires and they will have two separate fast lines on which to run.

Example time savings at various average speeds to Market Harborough are as follows.

  • 100 mph – 10 minutes saving.
  • 110 mph – 14.8 minutes saving.
  • 125 mph – 20.3 minutes saving
  • 130 mph – 21.8 minutes saving
  • 140 mph – 24.6 minutes saving

Note.

  1. The faster the average, the greater the time saving.
  2. Faster than 125 mph would only be possible with full in-cab digital signalling, which is currently being installed on the East Coast Main Line.
  3. I have been to Leicester in an InterCity 125, which was running at 125 mph most of the way.

But it does look like the new Class 810 trains will be able to save around twenty minutes to Sheffield, by making full use of the electrification between London and Market Harborough.

They would need to save just ten minutes between Market Harborough and Sheffield.

The Monday Train covered the 81.9 miles between Market Harborough and Sheffield in one hour and twelve minutes, which is an average speed of 68.3 mph.

To obtain the saving of ten minutes, it would need to do the journey in one hour and two minutes, which would be an average speed of 79.3 mph.

Given that the new Class 810 trains are designed to cruise at 125 mph on diesel, I don’t think this is an impossible objective.

What Will Be The Ultimate Time Between London and Sheffield On The Midland Main Line?

I believe that the following two sections of the Midland Main Line can be easily electrified.

  • Between Leicester and Derby without the problem of the bridge at the South end of Leicester station, which would be so disruptive.
  • Clay Cross North Junction and Sheffield which will be electrified for High Speed Two. I doubt Derby and Clay Cross Junction will be electrified as it’s a World Heritage Site.

On my Monday train, the following are times North of Leicester.

  • Leicester and Derby is 29.3 miles, which is covered in 32 minutes at an average speed of 55 mph, which includes five stops. Raise this to 110 mph and the journey time is just 16 minutes or a saving of 16 minutes.
  • Derby and Clay Cross North Junction is 21.8 miles, which is covered in 13 minutes at an average speed of 100 mph. By averaging 120 mph, there would be a saving of 2.1 minutes.
  • Cross North Junction and Sheffield is 15.5 miles, which is covered in 16 minutes at an average speed of 58.2 mph.

Note.

  1. Savings would come between Leicester and Derby because of 125 mph linespeed and faster stops because of electrification.
  2. I believe that Hitachi battery-electric trains could sustain 125 mph on battery alone between Derby and Clay Cross North Junction, if they entered the section without electrification at full speed with full batteries. Now that is what I call a battery-electric train!
  3. There must be a minute or two to be saved on an electrified section into Sheffield with the stop at Chesterfield.

Add up all the savings and I feel that an hour and a half is possible between London and Sheffield.

And what time is High Speed Two claiming? One hour and twenty-seven minutes!

Could A Battery-Electric Train Cruise At 125 mph?

This may seem a silly idea, but then trains don’t care where they get their electricity from.

On the 21.8 miles between Derby and Clay Cross North, a sizeable proportion of energy will be used to accelerate the train up to the linespeed for the electrified section.

When the train enters the section without electrification, it will have two sources of energy.

  • The electricity in the full batteries.
  • The kinetic energy in the train at the required speed.

As the train runs through the section air and rolling resistance will tend to slow the train and electricity from the battery will be used to maintain speed.

In How Much Power Is Needed To Run A Train At 125 mph?. I estimated that for a Class 801 train to maintain 125 mph needs 3.42 kWh per vehicle mile.

A simple sum of 21.8 * 5 * 3.42 gives an energy need of 372.8 kWh to run between Derby and Clay Cross North Junction.

I’m sure than Hitachi can fit a 400 kWh battery in a five-car Class 810 train.

Would a slightly larger battery and in-cab signalling allow battery-electric trains to run at 140 mph? If the track allowed it, I don’t see why not!

Conclusion

I believe the Department of Transport’s statement of saving thirty minutes between London and Sheffield is feasible.

But so is a time of an hour-and-a half, which will give High Speed Two a run for its money!

 

May 26, 2021 Posted by | Transport | , , , , , , | 14 Comments

A Trip To Corby

I took these pictures on a trip to Corby this morning.

These are my thoughts.

Trains To And From Corby

I got a Class 222 train to Corby and an eight-car Class 360 train back.

Brent Cross West Station

There was a lot of constructruction activity at the new Brent Cross West station.

Luton Airport Parkway Station

The extensions to Luton Airport Parkway station look to be comprehensive, with several escalators.

The Luton DART connection to Luton Airport appears to be under test, so should open in 2022.

But will there be any air passengers to use it?

I last used it in 2008, when I went to see England play in Belarus.

Electrification North Of Bedford

The electrification North of Bedford station is obviously complete on the slow lines, but on the fast lines, as the pictures show, the gantries are all erected, but there are still wires to be installed.

But as the Class 810 trains won’t be in service until 2023, there’s still a bit of time.

The gantries certainly look sturdy, as this picture shows.

They’re certainly built for 125 mph, but as the Class 810 trains will be capable of 140 mph with full digital in-cab signalling, I would hope that the electrification has been installed to that standard. Or at least to a standard, that can be easily upgraded!

Corby Station

Corby station has been finished to a single-platform station, which is able to accept a twelve-car Class 360 train.

This should be adequate for the current half-hourly service, as a single platform can handle a least four trains per hour (tph) and several around the country regularly do.

Both tracks through the station are electrified and I suspect with a second platform bridge, both could be used by electric trains to create a two-platform station.

But there would appear to be no need at the moment.

Even, if it were to be decided to extend one tph to Oakham and Melton Mowbray stations, this could probably be accommodated on the single-platform.

Network Rail seem to have already installed a crossover South of Corby station, so that trains can use the single platform.

Serving Oakham And Melton Mowbray

I discussed this extension in detail in Abellio’s Plans For London And Melton Mowbray Via Corby And Oakham.

In the related post, I said this.

This page on the Department for Transport web site is an interactive map of the Abellio’s promises for East Midlands Railway.

These are mentioned for services to Oakham and Melton Mowbray.

    • After electrification of the Corby route there will continue to be direct service each way between London and Oakham and Melton Mowbray once each weekday, via Corby.
    • This will be operated with brand new 125mph trains when these are introduced from April 2022.

This seems to be a very acceptable minimum position.

When my Class 222 train arrived in Corby at 1154, it waited a couple of minutes then took off to the North.

I then took the next train to London, which was an eight-car Class 360 train which formed the 1211 service back to St. Pancras.

Meanwhile the Class 222 train, that I’d arrived on did a reverse in the Corby North Run Around Loop finally arriving back in Corby at 1345. The train had taken one hour and forty-nine minutes to return to Corby.

It might be just coincidence, but are East Midlands Railway doing timing tests to see if services can be extended to Oakham And Melton Mowbray?

It should be noted that service times North of Corby are as follows.

  • Corby and Oakham – 19 mins – 14.3 miles
  • Corby and Melton Mowbray – 31 mins – 25.7 miles
  • Melton Mowbray and Leicester – 17 mins – 12.8 miles (estimate) – CrossCountry service

My logic goes like this.

  • It looks to me that it would not be unreasonable that a Class 222 train could run between Corby and Leicester in forty-eight minutes.
  • Double that and you get one hour and thirty eight minutes, for a journey from Corby to Leicester and back.
  • Subtract that time from the one hour and forty-nine minutes that my train took to reverse and there is eleven minutes for a turnback at Leicester station.
  • Eleven minutes would certainly be long enough to tidy a train and for the crew to change ends.

I also believe that the 35.8 miles would be possible for a Class 810 train fitted with one or more battery power-packs instead of a similar number of the four diesel engines.

So are East Midlands Railway doing tests to find the most efficient way to serve Oakham And Melton Mowbray?

On The Corby Branch

I travelled North on a Class 222 diesel train and South on an electric Class 360 train.

On the Corby branch, I was monitoring the train speed on an app on my phone and both trains travelled at around 90 mph for most of the way.

There were sections at up to 100 mph and the track was generally smooth.

I was left with the impression, that trains might be able to go faster on the branch.

Average speeds for the 2.5 miles of the branch were as follows according to these timings from realtimetrains.

  • Class 222 train – Arriving – 5.25 mins – 28.6 mph
  • Class 222 train – Leaving – 5 mins – 30 mph
  • Class 360 train – Arriving – 7.5 mins – 20 mph
  • Class 360 train – Leaving – 5 mins – 30 mph

It doesn’t appear that there are much difference in the timings, although it might be said, that the electric approach is more cautious.

The Class 360 Trains

The Class 360 trains have not been refurbished yet although as my pictures show, some have been given a new livery.

In Are Class 360 Trains Suitable For St. Pancras And Corby?, I said this about the train refurbishment.

This page on the Department for Transport web site is an interactive map of the Abellio’s promises for East Midlands Railway.

These features are mentioned for Midland Main Line services to Corby.

    • Increased capacity
    • Twelve-car trains in the Peak.
    • More reliable service
    • Improved comfort
    • Passenger information system
    • Free on-board Wi-Fi
    • At-seat power sockets
    • USB points
    • Air conditioning
    • Tables at all seats
    • Increased luggage space
    • On-board cycle storage

What more could passengers want?

It certainly hasn’t happened in full.

I did ask a steward, when the new interiors will be installed and he said they were running late because of the pandemic.

Performance Of The Class 360 Trains

I used my app to follow the speed of the Class 360 train, that brought me back to London.

  • The train hit a maximum speed of about 105 mph.
  • The train arrived in London a minute late.

I feel that as the drivers get used to their new charges, they will match the timetable.

Conclusion

I have a feeling that in a couple of years, these trains will fulfil Abellio’s promises.

May 19, 2021 Posted by | Transport | , , , , , , , , , , , , , | Leave a comment

Could Trains From The North Connect To High Speed One At St. Pancras?

I was casually flying my virtual helicopter over the throat of St. Pancras International station, when I took a few pictures.

This Google Map shows the Northern ends of the platforms and the tracks leading in.

Note.

  1. Platforms 1-4 to the West with darker tracks handle the East Midlands Railway services.
  2. Platforms 5-10 in the centre with lighter tracks formed of three shorter islands handle the Eurostar services.
  3. Platforms 11-13 to the East with longer platforms handle the Southeastern HighSpeed services.

This Google Map shows the East Midlands Railway platforms.

Note.

  1. There are two island platforms; 1-2 and 3-4.
  2. The four platforms are served by two tracks, that connect to the fast lines of the Midland Main Line.
  3. The platforms will be able to handle a pair of Class 810 trains, which will be 240 metres long.
  4. Will the two trains per hour (tph) using Class 360 trains between London and Corby always use the same platform at St. Prancras station?

This Google Map shows the Eurostar platforms.

Note.

There are three island platforms; 5-6, 7-8 and 9-10.

The two island platforms in the West are for East Midlands Railway services.

The two longer island platforms in the East are for Southeastern HighSpeed services.

The six platforms connect to two fast lines, that are shared with the Southeastern services.

This Google Map shows the lines proceeding to the North.

Note.

  1. There are four sets of tracks.
  2. The two light-coloured tracks on the left are for Thameslink or sidings.
  3. The next two dark-coloured tracks are the two tracks of the Midland Main Line.
  4. The next set of tracks are those connecting to the six Eurostar platforms.
  5. The two tracks on the right are those connecting to the Southeastern Highspeed platforms.
  6. There are crossovers between the Eurostar and Southeastern Highspeed tracks to allow efficient operation of the trains going to and from the twin tracks of High Speed One.

This Google Map shows where the Midland Main Line and High Speed One divide.

Note.

The two dark-coloured tracks of the Midland Main Line running North.

There appear to be four  tracks running North East towards High Speed One.

Between the two sets of tracks two further tracks lead to the North.

The track closest to the Midland Main Line joins to the slow lines of the Midland Main Line.

The other one connects to the North London Line.

This Google Map shows the connecting lines to the High Speed One tunnel.

Note the tunnel portal is in the North-East corner of the map.

  1. It looks to me that the following connections are possible.
  2. St. Pancras station Eurostar platforms and Midland Main Line.
  3. St. Pancras station Eurostar platforms and North London Line to the West.
  4. High Speed One and North London Line to the West.

These connections are in addition to those connections needed to run scheduled services.

They would enable trains to take the following routes.

  • St. Pancras station Eurostar platforms and Midland Main Line.
  • St. Pancras station Eurostar platforms and the West Coast Main Line via North London Line
  • High Speed One and the West Coast Main Line via North London Line
  • St. Pancras station Eurostar platforms and the Great Western Main Line via North London Line
  • High Speed One and the Great Western Main Line via North London Line

I suspect most of the times, that these routes are used it is for engineering purposes or behaps dragging a failed train out of St. Pancras.

But the track layout would seem to allow the following.

Direct electric freight and passenger services between High Speed One and Birmingham, Cardiff, Glasgow, Liverpool and Manchester.

Direct electric passenger services between High Speed One and Sheffield and Leeds, with a reverse at St. Pancras, after the Midland Main Line were to be fully electrified.

Was this by design for Eurostar or was it just what Network Rail ended up with?

A Modern Regional Eurostar Service

These are my thoughts on a modern Regional Eurostar service.

Rolling Stock

High Speed Two is coming and this year, the company will order some of the rolling stock.

There will be fifty-four trains

The trains will be Classic-Compatible for running on the West Coast Main Line.

They will be 200 metres long and be able to run in pairs.

They will be able to operate at 225 mph.

The operating speed of High Speed One is 186 mph.

I can see no reason why trains of this type, couldn’t run between St. Pancras and many destinations in Europe.

North Of England And The Continent

Could this be the service pattern?

  • One train could start in the North West and another in the North East.
  • Both trains would proceed to St. Pancras picking up passengers en route.
  • At St. Pancras the two trains would join together.
  • The driver could then position themselves in the front cab and take High Speed One, through the Channel Tunnel.

The train could even split at Calais to serve two different Continental destinations.

Going North, the spitting and joining would be reversed.

What Infrastructure Would Be Needed?

I suspect the following will be needed.

  • The West Coast Main Line and the Midland Main Line would need in-cab digital ERTMS signalling.
  • Full electrification of the Midland Main Line would probably be necessary, as I don’t think the tunnel allows diesel trains to pass through.
  • Some platform lengthening might be needed.

It would not be an expensive scheme.

What Timings Would Be Possible?

Using current timings you get the following times.

  • Leeds and Paris – Five hours
  • Leeds and Brussels – Four hours forty minutes
  • Manchester and Paris – Five hours
  • Manchester and Brussels – For hours forty minutes
  • Newcastle and Paris – Six hours
  • Newcastle and Brussels – Five hours thirty minutes

Note, that the times are best estimates and include a long stop of several minutes at St. Pancras.

Could Sleeper Service Be Run?

I don’t see why not!

Conclusion

It looks like it may be possible to run regional services to Europe, where pairs of train split and join at St. Pancras.

 

 

 

St

April 20, 2021 Posted by | Transport | , , , , , , , , , , , | 7 Comments

Thoughts On Faster Trains On Thameslink

The Class 700 trains used by Thameslink only have an operating speed of 100 mph.

I do wonder, if that is a fast enough operating speed for all Thameslink routes.

Sharing The Midland Main Line With 125 mph Trains

A couple of years ago, I travelled back into St. Pancras with a group of East Midlands drivers in a Class 222 train.

They told me several things about the route including that the bridge at the South of Leicester station would be difficult to electrify, as it was low and the track couldn’t be lowered as one of Leicester’s main sewers was under the tracks at the bridge. Perhaps, this is one place, where discontinuous electrification could be used on the Midland Main Line.

They also told me, that sometimes the Thameslink trains were a nuisance, as because of their 100 mph operating speed, the 125 mph Class 222 trains had to slow to 100 mph.

Upgrading Of The Midland Main Line South Of Bedford

The electrification of the Midland Main Line South of Bedford is being updated, so that it is suitable for 125 mph running.

An Analysis Of Services On The Midland Main Line South Of Bedford

The current Class 222 trains are capable of 125 mph and will be replaced by Class 810 trains capable of the same speed on both diesel and electricity.

Currently, a Class 222 train is capable of doing the following on a typical non-stop run between St. Pancras and Leicester.

  • Covering the 30 miles between St. Albans and Bedford in 17 minutes at an average speed of 106 mph.
  • Covering the 50.3 miles between Bedford and Leicester in 30 minutes at an average speed of 100.6 mph.
  • Maintaining 125 mph for long stretches of the route, once the trains is North of London commuter traffic at St. Albans

I can estimate the timings on the 79.2 miles between Leicester and St. Albans, by assuming the train runs at a constant speed.

  • 100 mph – 47.5 minutes
  • 110 mph – 43.2 minutes
  • 125 mph – 38 minutes
  • 140 mph – 34 minutes

Note.

  1. I have done the calculation for 140 mph, as that is the maximum operating speed of the Class 810 train with full in-cab digital signalling.
  2. Trains have been running at 125 mph for a couple of decades on the Midland Main Line.
  3. To get a St. Pancras and Leicester time add another 14 minutes, which is the current time between St. Pancras and St. Albans of a Class 222 train.
  4. Some Off Peak trains are timed at 62-63 minutes between St. Pancras and Leicester.
  5. A time of under an hour between St. Pancras and Leicester might be possible and the Marketing Department would like it.
  6. As Thameslink trains between Bedford and St. Albans stop regularly, they are on the slow lines of the four-track railway, to the North of St. Albans.
  7. South of St. Albans, Thameslink trains often run on the fast lines.

I can expect that East Midlands Railway will want to be running their new Class 810 trains as far as far South as they can at 125 mph, to speed up their services. When the signalling allows it, they’ll want to run at 140 mph.

So they won’t want to see Thameslink’s slow trains on the fast lines.

  • But if you look at the Thameslink trains that do run on the fast lines between St. Albans and St. Pancras, they appear to be the four trains per hour (tph) that run to and from Bedford.
  • Of these trains, two tph terminate at Brighton and two tph terminate at Gatwick Airport.
  • The average speed of a Class 222 train between St. Albans and St. Pancras assuming 14 minutes for the 19.7 miles is 84.4 mph.

So it looks to me that a 100 mph Thameslink train could be able to get away without slowing the East Midland Railway expresses.

But then that is not surprising, as for many years, the Class 222 trains worked happily with 100 mph Class 319 trains.

Is There Scope For Extra And Faster Services Into St. Pancras?

I have only done a simple calculation, but I do wonder if there is scope for the following.

  • Increasing the frequency of trains for both Thameslink and East Midlands Railway.
  • Saving a few minutes on East Midlands Railway services.

Consider.

  • The new Class 810 electric trains will probably have better acceleration and deceleration than the current Class 222 diesel trains, when working using electric power.
  • East Midlands Railway is introducing Class 360 trains that were built as 100 mph trains by Siemens, who are now upgrading them to 110 mph trains.
  • Can Siemens do the same for the Class 700 trains and create a sub-fleet capable of 110 mph running?
  • All trains will be running under full in-cab digital signalling with a large degree of automatic train control.

I feel that if the Class 700 trains had the extra speed, they would make the planning of services South of St. Albans easier and allow the Class 810 trains to both run faster and provide more services.

Sharing The East Coast Main Line With 125 mph Trains

The following Thameslink services run up the East Coast Main Line past Stevenage.

  • Cambridge And Brighton – Two tph – Stops at Royston, Ashwell and Morden (1 tph), Baldock, Letchworth Garden City, Hitchin, Stevenage, Finsbury Park, London St Pancras International, Farringdon, City Thameslink, London Blackfriars, London Bridge, East Croydon, Gatwick Airport, Three Bridges, Balcombe, Haywards Heath and Burgess Hill
  • Cambridge and Kings Cross – Two tph – Stops at Foxton, Shepreth, Meldreth, Royston, Ashwell and Morden, Baldock, Letchworth Garden City, Hitchin, Stevenage, Knebworth, Welwyn North, Welwyn Garden City, Hatfield, Potters Bar and Finsbury Park
  • Peterborough and Horsham – Two tph – Stops at Huntingdon, St Neots, Sandy, Biggleswade, Arlesey, Hitchin, Stevenage, Finsbury Park, London St Pancras International, Farringdon, City Thameslink, London Blackfriars, London Bridge, East Croydon, Coulsdon South, Merstham, Redhill, Horley, Gatwick Airport, Three Bridges, Crawley, Ifield, Faygate (limited) and Littlehaven

Note.

  1. Services are generally run by Class 700 trains, although lately the Kings Cross service seems to use Class 387 trains, which have a maximum speed of 110 mph and a more comfortable interior with tables.
  2. It is intended that the Cambridge and Kings Cross service will be extended to Maidstone East by 2021.

In addition there are two Cambridge Express and Fen Line services.

  • Kings Cross and Ely – One tph – Stops at Cambridge and Cambridge North.
  • Kings Cross and King’s Lynn – One tph – Stops at Cambridge, Cambridge North, Waterbeach, Ely, Littleport, Downham Market and Watlington

Note.

  1. These services are generally run by Class 387 trains.
  2. Cambridge and King’s Cross is timetabled at around fifty minutes.

Adding all of this together means that slower services on the East Coast Main Line are comprised of the following in both directions.

  • Three tph – 110 mph – Class 387 trains
  • Four tph – 100 mph – Class 700 trains

These seven trains will have to be fitted in with the 125 mph trains running services on the East Coast Main Line, for LNER, Grand Central, Hull Trains and East Coast Trains.

There are also the following problems.

  • All trains must navigate the double-track section of the East Coast Main Line over the Digswell Viaduct and through Welwyn North station.
  • The King’s Cross and Cambridge service stops in Welwyn North station.
  • Full in-cab digital signalling is being installed on the East Coast Main Line, which could increase the speed of the expresses through the double-track section.

Could the introduction of the Class 387 trains on the Cambridge and King’s Cross service have been made, as it easier to fit in all the services if this one is run by a 110 mph train?

However, the full in-cab digital signalling with a degree of automatic train control could be the solution to this bottleneck on the East Coast Main Line.

  • Trains could be controlled automatically and with great precision between perhaps Hatfield and Stevenage.
  • Some expresses might be slowed to create gaps for the Cambridge and Peterborough services.
  • The Hertford Loop Line is also getting full in-cab digital signalling, so will some services be sent that way?

In Call For ETCS On King’s Lynn Route, I talked about a proposal to improve services on the Fen Line. This was my first three paragraphs.

The title of this post, is the same as that on an article in Edition 849 of Rail Magazine.

The article is based on this document on the Fen Line Users Aoociation web site, which is entitled Joint Response To Draft East Coast Main Line Route Study.

In addition to ETCS, which could improve capacity on the East Coast Main Line, they would also like to see journey time reductions using trains capable of running at 125 mph or faster on the King’s Lynn to Kings Cross route.

My scheduling experience tells me that a better solution will be found, if all resources are similar.

Hence the proposal to run 125 mph trains between King’s Cross and King’s Lynn and probably Ely as well, could be a very good and logical idea.

If the Class 700 trains were increased in speed to 110 mph, the trains through the double-track section of the East Coast Main Line would be.

  • One tph – 110 mph – Class 387 trains
  • Four tph – 110 mph – Class 700 trains
  • Two tph – 125 mph – New trains

Note.

  1. This would probably be an easier mix of trains to digest with the high speed services, through the double-track section.
  2. I like the idea of extending the Ely service to Norwich to give Thetford, Attleborough and Wymondham an improved service to London, Cambridge and Norwich.

The new trains would probably be a version of Hitachi’s Regional Battery Train.

  • It would need to be capable of 125 mph on the East Coast Main Line.
  • If the Ely service were to be extended to Norwich, this section would be on battery power.

There are certainly a lot of possibilities.

But as with on the Midland Main Line, it looks like for efficient operation, the operating speed of the Class 700 trains on the route needs to be increased to at least 110 mph.

Could Faster Class 700 trains Improve Services To Brighton?

These are the Thameslink services that serve Bedford, Cambridge and Peterborough, that I believe could be run more efficiently with trains capable of at running at speeds of at least 110 mph.

  • Bedford and Brighton – Two tph
  • Bedford and Gatwick Airport – Two tph
  • Cambridge and Brighton – Two tph
  • Cambridge and Maidstone East – Two tph
  • Peterborough and Horsham – Two tph

Note.

  1. I have assumed that the Cambridge and King’s Cross service has been extended to Maidstone East as planned.
  2. Eight tph serve Gatwick Airport.
  3. Four tph serve Brighton.

The Gatwick Express services have a frequency of two tph between London Victoria and Brighton calling at Gatwick Airport is already run by 110 mph Class 387 trains.

It would appear that if the Bedford, Cambridge and Peterborough were run by uprated 110 mph Class 700 trains, then this would mean that more 110 mph trains would be running to Gatwick and Brighton and this must surely improve the service to the South Coast.

But it’s not quite as simple as that, as the Cambridge and Maidstone East services will be run by eight-car trains and all the other services by twelve-car trains.

Conclusion

There would appear to be advantages in uprating some or possibly all of the Class 700 trains, so that they can run at 110 mph, as it will increase capacity on the Brighton Main Line, East Coast Main Line and Midland Main Line.

 

 

April 6, 2021 Posted by | Transport | , , , , , , , , , , , , , , , , , , | Leave a comment

Hitachi Targets Next Year For Testing Of Tri-Mode IET

The title of this post, is the same as that of this article on Rail Magazine.

This is the first two paragraphs.

Testing of a five-car Hitachi Class 802/0 tri-mode unit will begin in 2022, and the train could be in traffic the following year.

It is expected that the train will save more than 20% of fuel on Great Western Railway’s London Paddington-Penzance route.

This is the Hitachi infographic, which gives the train’s specification.

I have a few thoughts and questions.

Will The Batteries Be Charged At Penzance?

Consider.

  • It is probably not a good test of customer reaction to the Intercity Tri-Mode Battery Train, if it doesn’t work on batteries in stations through Cornwall.
  • Every one of the eight stops in Cornwall will need an amount of battery power.
  • London trains seem to take at least half-an-hour to turn round at Penzance.
  • London trains seem to take around 7-13 minutes for the stop at Plymouth.

So I think, that batteries will probably need to be charged at Penzance and possibly Plymouth, to achieve the required battery running,

There is already sufficient time in the timetable.

A charging facility in Penzance station would be a good test of Hitachi’s method to charge the trains.

Will Hyperdrive Innovation’s Battery Pack Be A Simulated Diesel Engine?

At the age of sixteen, for a vacation job, I worked in the Electronics Laboratory at Enfield Rolling Mills.

It was the early sixties and one of their tasks was at the time replacing electronic valve-based automation systems with new transistor-based systems.

The new equipment had to be compatible to that which it replaced, but as some were installed in dozens of places around the works, they had to be able to be plug-compatible, so that they could be quickly changed. Occasionally, the new ones suffered infant-mortality and the old equipment could just be plugged back in, if there wasn’t a spare of the new equipment.

So will Hyperdrive Innovation’s battery-packs have the same characteristics as the diesel engines that they replace?

  • Same instantaneous and continuous power output.
  • Both would fit the same mountings under the train.
  • Same control and electrical power connections.
  • Compatibility with the trains control computer.

I think they will as it will give several advantages.

  • The changeover between diesel engine and battery pack could be designed as a simple overnight operation.
  • Operators can mix-and-match the number of diesel engines and battery-packs to a given route.
  • As the lithium-ion cells making up the battery pack improve, battery capacity and performance can be increased.
  • If the computer, is well-programmed, it could reduce diesel usage and carbon-emissions.
  • Driver conversion from a standard train to one equipped with batteries, would surely be simplified.

As with the diesel engines, all battery packs could be substantially the same across all of Hitachi’s Class 80x trains.

How Many Trains Can Eventually Be Converted?

Great Western Railway have twenty-two Class 802/0 trains.

  • They are five-cars.
  • They have three diesel engines in cars 2, 3 and 4.
  • They have a capacity of 326 passengers.
  • They have an operating speed of 125 mph on electrification.
  • They will have an operating speed of 140 mph on electrification with in-cab ERTMS digital signalling.
  • They have an operating speed of 110 mph on diesel.
  • They can swap between electric and diesel mode at line speed.

Great Western Railway also have these trains that are similar.

  • 14 – nine-car Class 802/1 trains
  • 36 – five-car Class 800/0 trains
  • 21 – nine-car Class 800/3 trains

Note.

  1. The nine-car trains have five diesel engines in cars 2,3, 5, 7 and 8
  2. All diesel engines are similar, but those in Class 802 trains are more powerful, than those in Class 800 trains.

This is a total of 93 trains with 349 diesel engines.

In addition, there are these similar trains in service or on order with other operators.

Note.

  1. Class 801 trains have one diesel engine for emergency power.
  2. Class 803 trains have no diesel engines, but they do have a battery for emergency power.
  3. Class 805 trains have an unspecified number of diesel engines. I will assume three.
  4. Class 807 trains have no batteries or diesel engines.
  5. Class 810 trains have four diesel engines.

This is a total  of 150 trains with 395 diesel engines.

The Rail Magazine finishes with this paragraph.

Hitachi believes that projected improvements in battery technology, particularly in power output and charge, could enable diesel engines to be incrementally replaced on long-distance trains.

Could this mean that most diesel engines on these Hitachi trains are replaced by batteries?

Five-Car Class 800 And Class 802 Trains

These trains are mainly regularly used to serve destinations like Bedwyn, Cheltenham, Chester, Harrogate, Huddersfield, Hull, Lincoln, Oxford and Shrewsbury, which are perhaps up to fifty miles beyond the main line electrification.

  • They have three diesel engines, which are used when there is no electrification.
  • I can see many other destinations, being added to those reached by the Hitachi trains, that will need similar trains.

I suspect a lot of these destinations can be served by five-car Class 800 and Class 802 trains, where a number of the diesel engines are replaced by batteries.

Each operator would add a number of batteries suitable for their routes.

There are around 150 five-car bi-mode Hitachi trains in various fleets in the UK.

LNER’s Nine-Car Class 800 Trains

These are mainly used on routes between London and the North of Scotland.

In LNER Seeks 10 More Bi-Modes, I suggested that to run a zero-carbon service to Inverness and Aberdeen, LNER might acquire rakes of carriages hauled by zero-carbon hydrogen electric locomotives.

  • Hydrogen power would only be used North of the current electrification.
  • Scotland is looking to have plenty of hydrogen in a couple of years.
  • No electrification would be needed to be erected in the Highlands.
  • InterCity 225 trains have shown for forty years, that locomotive-hauled trains can handle Scottish services.
  • I also felt that the trains could be based on a classic-compatible design for High Speed Two.

This order could be ideal for Talgo to build in their new factory at Longannet in Fife.

LNER’s nine-car Class 800 trains could be converted to all-electric Class 801 trains and/or moved to another operator.

There is also the possibility to fit these trains with a number of battery packs to replace some of their five engines.

If the planned twenty percent fuel savings can be obtained, that would be a major improvement on these long routes.

LNER’s Class 801 Trains

These trains are are all-electric, but they do have a diesel engine for emergencies.

Will this be replaced by a battery pack to do the same job?

  • Battery packs are probably cheaper to service.
  • Battery packs don’t need diesel fuel.
  • Battery packs can handle regenerative braking and may save electricity.

The installation surely wouldn’t need too much test running, as a lot of testing will have been done in Class 800 and Class 802 trains.

East Coast Trains’ Class 803 Trains

These trains have a slightly different powertrain to the Class 801 trains. Wikipedia says this about the powertrain.

Unlike the Class 801, another non-bi-mode AT300 variant which despite being designed only for electrified routes carries a diesel engine per unit for emergency use, the new units will not be fitted with any, and so would not be able to propel themselves in the event of a power failure. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies would face a failure.

The trains are in the process of being built, so I suspect batteries can be easily fitted.

Could it be, that all five-car trains are identical body-shells, already wired to be able to fit any possible form of power? Hitachi have been talking about fitting batteries to their trains since at least April 2019, when I wrote, Hitachi Plans To Run ScotRail Class 385 EMUs Beyond The Wires.

  • I suspect that Hitachi will use a similar Hyperdrive Innovation design of battery in these trains, as they are proposing for the Intercity Tri-Mode Battery Train.
  • If all trains fitted with diesel engines, use similar MTU units, would it not be sensible to only use one design of battery pack?
  • I suspect, that as the battery on a Class 803 train, will be mainly for emergency use, I wouldn’t be surprised to see that these trains could be the first to run in the UK, with a battery.
  • The trains would also be simpler, as they are only battery-electric and not tri-mode. This would make the software easier to develop and test.

If all trains used the same battery pack design, then all features of the pack, would be available to all trains to which it was fitted.

Avanti West Coast’s Class 805 Trains

In Hitachi Trains For Avanti, which was based on an article with the same time in the January 2020 Edition of Modern Railways, I gave this quote from the magazine article.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

Note.

  1. Hitachi use diesel engines with different ratings in Class 800 and Class 802 trains, so can probably choose something suitable.
  2. The Class 805 trains are scheduled to be in service by 2022.
  3. As they are five-cars like some Class 800 and Class 802 trains will they have the same basic structure and a powertrain with three diesel engines in cars 2, 3 and 4?

I think shares a basic structure and powertrain will be very likely, as there isn’t enough time to develop a new train.

I can see that as Hitachi and Great Western Railway learn more about the performance of the battery-equipped Class 802 trains on the London and Penzance route, that batteries could be added to Avanti West Coast’s Class 805 trains. After all London Euston and North Wales and London Paddington and Cornwall are routes with similar characteristics.

  • Both routes have a high speed electrified section out of London.
  • They have a long section without electrification.
  • Operating speeds on diesel are both less than 100 mph, with sections where they could be as low as 75 mph.
  • The Cornish route has fifteen stops and the Welsh route has seven, so using batteries in stations will be a welcome innovation for passengers and those living near the railway.

As the order for the Avanti West Coast trains was placed, whilst Hitachi were probably designing their battery electric upgrade to the Class 800 and Class 802 trains, I can see batteries in the Class 805 trains becoming an early reality.

In Hitachi Trains For Avanti, I also said this.

Does the improvement in powertrain efficiency with smaller engines running the train at slower speeds help to explain this statement from the Modern Railways article?

Significant emissions reduction are promised from the elimination of diesel operation on electrified sections as currently seen with the Voyagers, with an expected reduction in CO2 emissions across the franchise of around two-thirds.

That is a large reduction, which is why I feel, that efficiency and batteries must play a part.

Note.

  1. The extract says that they are expected savings not an objective for some years in the future.
  2. I have not done any calculations on how it might be achieved, as I have no data on things like engine size and expected battery capacity.
  3. Hitachi are aiming for 20 % fuel and carbon savings on London Paddington and Cornwall services.
  4. Avanti West Coast will probably only be running Class 805 trains to Chester, Shrewsbury and North Wales.
  5. The maximum speed on any of the routes without electrification is only 90 mph. Will less powerful engines be used to cut carbon emissions?

As Chester is 21 miles, Gobowen is 46 miles, Shrewsbury is 29.6 miles and Wrexham General is 33 miles from electrification, could these trains have been designed with two diesel engines and a battery pack, so that they can reach their destinations using a lot less diesel.

I may be wrong, but it looks to me, that to achieve the expected reduction in CO2 emissions, the trains will need some radical improvements over those currently in service.

Avanti West Coast’s Class 807 Trains

In the January 2020 Edition of Modern Railways, is an article, which is entitled Hitachi Trains For Avanti.

This is said about the ten all-electric Class 807 trains for Birmingham, Blackpool and Liverpool services.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It may go against Hitachi’s original design philosophy, but not carrying excess weight around, must improve train performance, because of better acceleration.

I believe that these trains have been designed to be able to go between London Euston and Liverpool Lime Street stations in under two hours.

I show how in Will Avanti West Coast’s New Trains Be Able To Achieve London Euston and Liverpool Lime Street In Two Hours?

Consider.

  • Current London Euston and Liverpool Lime Street timings are two hours and thirteen or fourteen minutes.
  • I believe that the Class 807 trains could perhaps be five minutes under two hours, with a frequency of two trains per hour (tph)
  • I have calculated in the linked post, that only nine trains would be needed.
  • The service could have dedicated platforms at London Euston and Liverpool Lime Street.
  • For comparison, High Speed Two is promising one hour and thirty-four minutes.

This service would be a Marketing Manager’s dream.

I can certainly see why they won’t need any diesel engines or battery packs.

East Midland Railway’s Class 810 Trains

The Class 810 trains are described like this in their Wikipedia entry.

The Class 810 is an evolution of the Class 802s with a revised nose profile and facelifted end headlight clusters, giving the units a slightly different appearance. Additionally, there will be four diesel engines per five-carriage train (versus three on the 800s and 802s), and the carriages will be 2 metres (6.6 ft) shorter.

In addition, the following information has been published about the trains.

  • The trains are expected to be capable of 125 mph on diesel.
  • Is this speed, the reason for the fourth engine?
  • It is planned that the trains will enter service in 2023.

I also suspect, that like the Class 800, Class 802 and Class 805 trains, that diesel engines will be able to be replaced with battery packs.

Significant Dates And A Possible Updating Route For Hitachi Class 80x Trains

I can put together a timeline of when trains are operational.

  • 2021 – Class 803 trains enter service.
  • 2022 – Testing of prototype Intercity Tri-Mode Battery Train
  • 2022 – Class 805 trains enter service.
  • 2022 – Class 807 trains enter service.
  • 2023 – First production Intercity Tri-Mode Battery Train enters service.
  • 2023 – Class 810 trains enter service.

Note.

  1. It would appear to me, that Hitachi are just turning out trains in a well-ordered stream from Newton Aycliffe.
  2. As testing of the prototype Intercity Tri-Mode Battery Train proceeds, Hitachi and the operators will learn how, if batteries can replace some or even all of the diesel engines, the trains will have an improved performance.
  3. From about 2023, Hitachi will be able to design tri-mode trains to fit a customer’s requirements.
  4. Could the powertrain specification of the Class 810 trains change, in view of what is shown by the testing of the prototype Intercity Tri-Mode Battery Train?
  5. In parallel, Hyperdrive Innovation will be building the battery packs needed for the conversion.

Batteries could be fitted to the trains in three ways,

  • They could be incorporated into new trains on the production line.
  • Batteries could be fitted in the depots, during a major service.
  • Trains could be returned to Newton Aycliffe for battery fitment.

Over a period of years as many trains as needed could be fitted with batteries.

Conclusion

I believe there is a plan in there somewhere, which will convert many of Hitachi’s fleets of trains into tri-mode trains with increased performance, greater efficiency and less pollution and carbon emissions.

 

 

January 8, 2021 Posted by | Transport | , , , , , , , | 3 Comments

Possible Destinations For An Intercity Tri-Mode Battery Train

Currently, the following routes are run or are planned to be run by Hitachi’s Class 800, 802, 805 and 810 trains, where most of the route is electrified and sections do not have any electrification.

  • Avanti West Coast – Euston and Chester – 21 miles
  • Avanti West Coast – Euston and Shewsbury – 29.6 miles
  • Avanti West Coast – Euston and Wrexham General – 33 miles
  • Grand Central – Kings Cross and Sunderland – 47 miles
  • GWR – Paddington and Bedwyn – 13.3 miles
  • GWR – Paddington and Bristol Temple Meads- 24.5 miles
  • GWR – Paddington and Cheltenham – 43.3 miles
  • GWR – Paddington and Great Malvern – 76 miles
  • GWR – Paddington and Oxford – 10.4 miles
  • GWR – Paddington and Penzance – 252 miles
  • GWR – Paddington and Swansea – 45.7 miles
  • Hull Trains – Kings Cross and Hull – 36 miles
  • LNER – Kings Cross and Harrogate – 18.5 miles
  • LNER – Kings Cross and Huddersfield – 17 miles
  • LNER – Kings Cross and Hull – 36 miles
  • LNER – Kings Cross and Lincoln – 16.5 miles
  • LNER – Kings Cross and Middlesbrough – 21 miles
  • LNER – Kings Cross and Sunderland – 47 miles

Note.

  1. The distance is the length of line on the route without electrification.
  2. Five of these routes are under twenty miles
  3. Many of these routes have very few stops on the section without electrification.

I suspect that Avanti West Coast, Grand Central, GWR and LNER have plans for other destinations.

A Battery Electric Train With A Range of 56 Miles

Hitachi’s Regional Battery Train is deescribed in this infographic.

The battery range is given as 90 kilometres or 56 miles.

This battery range would mean that of the fifteen destinations I proposed, the following could could be achieved on a full battery.

  • Chester
  • Shewsbury
  • Wrexham General
  • Bedwyn
  • Bristol Temple Meads
  • Cheltenham
  • Oxford
  • Swansea
  • Hull
  • Harrogate
  • Huddersfield
  • Lincoln
  • Middlesbrough

Of these a return trip could probably be achieved without charging to Chester, Shrewsbury, Bedwyn, Bristol Temple Meads, Oxford, Harrogate, Huddersfield, Lincoln and Middlesbrough.

  • 86.7 % of destinations could be reached, if the train started with a full battery
  • 60 % of destinations could be reached on an out and back basis, without charging at the destination.

Only just over a quarter of the routes would need, the trains to be charged at the destination.

Conclusion

It looks to me, that Hitachi have done some analysis to determine the best battery size. But that is obviously to be expected.

 

 

 

December 30, 2020 Posted by | Transport | , , , , , , , , , | Leave a comment

Thoughts On Batteries In East Midland Railway’s Class 810 Trains

Since Hitachi announced the Regional Battery Train in July 2020, which I wrote about in Hyperdrive Innovation And Hitachi Rail To Develop Battery Tech For Trains, I suspect things have moved on.

This is Hitachi’s infographic for the Regional Battery Train.

Note.

  1. The train has a range of 90 km/56 miles on battery power.
  2. Speed is given at between 144 kph/90 mph and 162 kph/100 mph
  3. The performance using electrification is not given, but it is probably the same as similar trains, such as Class 801 or Class 385 trains.
  4. Hitachi has identified its fleets of 275 trains as potential early recipients.

It is also not stated how many of the three diesel engines in a Class 800 or Class 802 trains will be replaced by batteries.

I suspect if the batteries can be easily changed for diesel engines, operators will be able to swap diesel engines and battery packs according to the routes.

Batteries In Class 803 Trains

I first wrote about the Class 803 trains for East Coast Trains in Trains Ordered For 2021 Launch Of ‘High-Quality, Low Fare’ London – Edinburgh Service, which I posted in March 2019.

This sentence from Wikipedia, describes a big difference between Class 803 and Class 801 trains.

Unlike the Class 801, another non-bi-mode AT300 variant which despite being designed only for electrified routes carries a diesel engine per unit for emergency use, the new units will not be fitted with any, and so would not be able to propel themselves in the event of a power failure. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies would face a failure.

Nothing is said about how the battery is charged. It will probably be charged from the overhead power, when it is working.

The Intercity Tri-Mode Battery Train

Hitachi announced the Intercity Tri-Mode Battery Train in this press release in December 2020.

This is Hitachi’s infographic for the Intercity Tri-Mode Battery Train.

Note.

  1. The train is battery-powered in stations and whilst accelerating away.
  2. It says that only one engine will be replaced by batteries.
  3. Fuel and carbon savings of 20 % are claimed.

Nothing has been said in anything, I’ve read about these trains, as to whether there is regenerative braking to batteries. I would be very surprised if fuel and carbon savings of 20 % could be attained without regenerative braking to batteries.

In Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?, I discussed the question in the title.

This is a shortened version of what I said in that post.

If you type “Class 800 regenerative braking” into Google, you will find this document on the Hitachi Rail web site, which is entitled Development of Class 800/801 High-speed Rolling Stock for UK Intercity Express Programme.

If you search for brake in the document, you find this paragraph.

In addition to the GU, other components installed under the floor of drive cars include the traction converter, fuel tank, fire protection system, and brake system.

Note that GU stands for generator unit.

The document provides this schematic of the traction system.

Note that BC which is described as battery charger.

Is that for a future traction battery or a smaller one used for hotel power as in the Class 803 train?

As a Control and Electrical Engineer, it strikes me that it wouldn’t be the most difficult problem to add a traction battery to the system.

From what Hitachi have indicated in videos, it appears that they are aiming for the battery packs to be a direct replacement for the generator unit.

Generator Unit Arrangement In Class 810 Trains

When I wrote Rock Rail Wins Again!, which was about the ordering of these trains, the reason for four engines wasn’t known.

It now appears, that the extra power is needed to get the same 125 mph performance on diesel.

The formation of a five-car Class 802 train is as follows.

DPTS-MS-MS-MC-DPTF

Note.

  1. The three generator units are in the three middle cars.
  2. The three middle cars are motored.
  3. The two driver cars are trailer cars.

How are Hitachi going to put four generator units into the three middle cars?

  • I wonder if, the engines can be paired, with some auxiliaries like fuel-tanks and radiators shared between the generators.
  • A well-designed pair might take up less space than two singles.
  • A pair could go in the centre car and singles either side.

It will be interesting to see what the arrangement is, when it is disclosed.

Is there the possibility, that some of the mathematics for the Intercity Tri-Mode Battery Train has indicated that a combination of generator units and battery packs can give the required 125 mph performance?

  • Battery packs could need less space than diesel generators.
  • Regenerative braking could be used to charge the batteries.
  • How far would the train be able to travel without electrification?
  • Trains would not run the diesel engines in the station.
  • Could the fuel and carbon savings of 20 %, that are promised for the Intercity Tri-Mode Battery Train, be realised?

There may be a train buried in the mathematics, that with some discontinuous electrification could handle the East Midlands Railway Intercity services, that generates only a small amount of carbon!

Would A Mix Of Diesel Generators And Battery Packs Enable 125 mph Running?

Consider.

  • The trial Intercity Tri-Mode Battery Train intended for the London Paddington and Penzance route, will probably have two diesel generators and a battery pack according to what Hitachi have said in their infographic for the Intercity Tri-Mode Battery Train.
  • East of Plymouth some of the stretches of the route are challenging, which resulted in the development and ordering of Class 802 trains, that are more powerful, than the Class 800 trains used on easier routes.
  • An Intercity Tri-Mode Battery Train with two diesel generators and a battery pack, needs to be as powerful as a Class 802 train with three diesel generators.
  • So effectively does that mean that in the right installation with top class controlling software, that in fast running, a battery pack can be considered equivalent to a diesel generator?

I don’t know, but if it’s possible, it does bring other advantages.

  • Fuel and carbon savings of 20 %
  • No diesel running in stations or whilst accelerating away.
  • Better passenger environment.

Configurations of 3-plus-1 and 2-plus 2 might be possible.

 

 

December 27, 2020 Posted by | Transport | , , , , , , , | 3 Comments

Is The Eastern Leg Of High Speed Two Under Threat?

This page on the High Speed Two web site is entitled HS2 Phase 2b Eastern Leg.

These are the opening three paragraphs.

Earlier this year the government made clear in its response to the Oakervee Review its commitment to Phase 2b of HS2, ensuring we boost capacity, improve connectivity between our regions and share prosperity.

As part of this, the government plans to present an Integrated Rail Plan for the North and Midlands by the end of the year, informed by an assessment from the National Infrastructure Commission, which will look at how to deliver HS2 Phase 2b, Northern Powerhouse Rail, Midlands Rail Hub and other rail programmes better and more effectively.

In the meantime, the government has asked HS2 Ltd to pause work on the Eastern Leg. We recognise that this causes uncertainty and our Eastern Leg community engagement teams remain in place to support you.

The page then says that the work on the Western Leg should proceed, with the aim of a Western Leg Bill in early 2022.

In Northern Powerhouse Rail – Significant Upgrades Of The East Coast Main Line From Leeds To Newcastle (Via York And Darlington) And Restoration Of The Leamside Line, I showed that the current and future upgrades to the East Coast Main Line, required by the East Coast Main Line, Northern Powerhouse Rail and High Speed Two, will greatly reduce the times on services from London Kings Cross to Doncaster, Yorkshire, the North East and Scotland.

I said this on timings on the East Coast Main Line.

  • London Kings Cross and Doncaster could be around an hour.
  • London Kings Cross and Leeds could be around one hour and thirty minutes, using the current Doncaster and Leeds time, as against the one hour and twenty-one minutes for High Speed Two.
  • London Kings Cross and York could be around one hour and twenty-three minutes, using the current Doncaster and York time, as against the one hour and twenty-four minutes for High Speed Two.
  • Timings between York and Newcastle would be the same fifty-two minutes as High Speed Two, as the track will be the limitation for both services.
  • High Speed Two’s timing for York and Newcastle is given as fifty-two minutes, with York and Darlington as twenty-five minutes.
  • London Kings Cross and Darlington could be around one hour and forty-nine minutes
  • London Kings Cross and Newcastle could be around two hours and sixteen minutes.
  • London Kings Cross and Edinburgh would be under three-and-a-half hours, as against the proposed three hours and forty-eight minutes for High Speed Two.

LNER’s Azuma cavalry will hold the fort for as long as is needed.

I’ll now look at how various stations, will be affected if the Eastern Leg of High Speed Two is not built, until a couple of decades in the future.

Leeds

Current Long Distance Services At Leeds Station

Leeds station has the following long distance services in trains per hour (tph)

  • CrossCountry – 1
  • LNER – 2
  • TransPennine Express – 5

It is a bit thin compared to say Birmingham or Manchester.

Northern Powerhouse Rail And Leeds

Northern Powerhouse Rail has plans for Leeds with these services to other Northern cities.

  • Hull – two tph in 38 minutes
  • Manchester – six tph in 25 minutes
  • Newcastle – four tph in 58 minutes
  • Sheffield – four tph in 28 minutes.

From what they have written, the following could also be possible.

  • Bradford – six tph in a few minutes
  • Liverpool – four or more tph in 51 minutes
  • Manchester Airport – four or more tph in 35 minutes

It is an ambitious plan.

High Speed Two And Leeds

High Speed Two is planning to run the following trains to Leeds in every hour.

  • Birmingham Curzon Street and Leeds – 200 metre train
  • Birmingham Curzon Street and Leeds via East Midlands Hub – 200 metre train
  • London Euston and Leeds via Old Oak Common and East Midlands Hub – 200 metre train
  • London Euston and Leeds via Old Oak Common and East Midlands Hub – 400 metre train
  • London Euston and Leeds via Old Oak Common, Birmingham Interchange and East Midlands Hub – 400 metre train

Timings will be as follows.

  • Birmingham Curzon Street and Leeds – 49 minutes.
  • London Euston and Leeds – One hour and 21 minutes.

There will be about 1000 seats per hour between Birmingham Curzon Street and Leeds and 2500 seats per hour Between London Euston and Leeds.

High Speed Two And Leeds Via Manchester

This report on the Transport for the North web site, is entitled At A Glance – Northern Powerhouse Rail.

This map shows Transport for the North’s ideas for connections in the West linking Crewe, Liverpool, Manchester, Manchester Airport, Warrington and Wigan.

A black line goes East from Manchester to link it to Leeds via Huddersfield and Bradford.

  • This is proposed as a route shared between High Speed Two and Northern Powerhouse Rail.
  • High Speed Two are promising that London Euston and Manchester will be timed at one hour and eleven minutes.
  • London Euston and Manchester will have a frequency of three tph and will all be 400 metre High Speed Two Full Size trains, with about a thousand seats.
  • Northern Powerhouse Rail have an objective of a twenty-five minute journey time between Manchester and Leeds.

I would also build the Manchester and Leeds route with the following characteristics.

  • As a full-size tunnel capable of taking High Speed Two Full Size trains and the largest freight trains.
  • Intermediate and underground stations at Huddersfield and Bradford.
  • It could be built as a base tunnel, like the similarly-sized Gotthard base tunnel in Switzerland.
  • The Swiss tunnel has a maximum operating speed for passenger trains of 125 mph.

If it can be built for a reasonable cost and in a reasonable time-scale, it could be a way of doing the following.

  • Creating a straight 150 mph plus route across the Pennines, with a capacity of 18 tph.
  • Running high-capacity fast trains between London Euston and Leeds via Manchester Airport and Manchester.
  • Running freight trains between the two sides of the Pennines.
  • Creating a high frequency route between Liverpool and Hull via Manchester Airport, Manchester, Huddersfield and Bradford and Leeds.

The passenger service between Liverpool and Hull could be the world’s first high speed metro.

If the London Euston and Manchester trains, were to be extended to Leeds, London Euston and Leeds would take one hour and thirty-six minutes, which would only be fifteen minutes slower, than is promised for the route going via the Eastern Leg of High Speed Two.

London Kings Cross And Leeds

When the in-cab digital signalling is complete between London Kings Cross and Leeds, I am fairly confident that with a few other improvements and more zoom from the Azumas, that a London Kings Cross and Leeds time of one hour and fifty minutes will be possible.

But will two nine-car or pairs of five-car trains per hour (tph), be enough capacity? Especially, as pairs of five-car trains will split and join to serve a wider catchment area, which will harvest more passengers.

LNER will in a couple of years have an extra path every hour into Kings Cross.

I would feel that best use of this path would be to run between London Kings Cross and Edinburgh via Leeds and Newcastle.

  • Leeds and Newcastle could be the only intermediate stops.
  • Leeds would be the ideal place to change to Northern Powerhouse Rail for anywhere in the North of England.
  • My estimates, say it could run between London Kings Cross and Edinburgh in around three-and-a-half hours.
  • It would run non-stop between London Kings Cross and Leeds, Leeds and Newcastle and Newcastle and Edinburgh.

It would increase capacity, between the four major destinations on the route; London Kings Cross, Leeds, Newcastle and Edinburgh.

It could start running, once the digital signalling and current improvements to the East Coast Main Line are complete.

London St. Pancras And Leeds

I discussed, Northern Powerhouse Rail’s plan for Sheffield and Leeds in Northern Powerhouse Rail – Connecting Sheffield To HS2 And On To Leeds.

This could see the following new infrastructure.

  • Electrification between Clay Cross North Junction and Sheffield station of the route shared by the Midland Main Line and High Speed Two.
  • Electrification through Sheffield and on to Leeds, via the Wakefield Line
  • New stations for High Speed trains at Rotherham and Barnsley Dearne Valley.

I could see East Midlands Railway taking advantage of this route, with their new Class 810 trains and running a regular Leeds and St. Pancras service.

  • It would call at Wakefield Westgate, Barnsley Dearne Valley, Rotherham and Meadowhall. between Leeds and Sheffield stations.
  • It would take twenty-eight minutes between Leeds and Sheffield, if it met Northern Powerhouse Rail’s objective.
  • Perhaps one of the two tph between London St. Pancras and Sheffield could be extended to Leeds.

As the current time between London St. Pancras and Sheffield, is a few minutes under two hours, I can see a time of comfortably under two-and-a-half hours between London St. Pancras and Leeds.

A Summary Of Journey Times Between London And Leeds

I can summarise my estimates, between London and Leeds.

  • High Speed Two – Direct via Eastern Leg – One hour and twenty-one minutes.
  • High Speed Two – via Manchester – One hour and thirty-six minutes.
  • East Coast Main Line – via Doncaster – One hour and thirty minutes.
  • Midland Main Line – via Derby and Sheffield – Two hours and twenty minutes.

The direct High Speed Two route is the fastest., but others could be viable alternatives for some passengers.

Bradford

Consider.

  • Under current plans Bradford won’t be getting any high speed service from High Speed Two.
  • The best it can get under current plans is several direct services per day, between Bradford Forster Square and London Kings Cross in perhaps two hours.
  • The layout of the city and its two stations doesn’t give good connectivity.

Bradford, Harrogate, Huddersfield and Skipton could probably be served by trains to and from London Kings Cross that join and split at Leeds.

But if Northern Powerhouse Rail goes for a tunnel between Manchester and Leeds with Bradford as an underground station, it could be served by High Speed Two services going between London Euston and Leeds via Manchester.

I would estimate that if London Euston and Leeds via Manchester took around one hour and thirty-six minutes, London Euston and Bradford could take around an hour-and-a-half.

Darlington

I can summarise my estimates, between London and Darlington.

  • High Speed Two – Direct via Eastern Leg – One hour and forty-nine minutes.
  • High Speed Two – via Manchester and Leeds – Two hours and six minutes.
  • East Coast Main Line – via Doncaster – One hour and forty-nine minutes.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle; will speed up East Coast Main Line services to Darlington.

Edinburgh

I can summarise my estimates, between London and Edinburgh.

  • High Speed Two – Direct via Western Leg – Three hours and Forty minutes.
  • High Speed Two – via Manchester and Leeds – Three hours and forty-eight minutes.
  • East Coast Main Line – via Doncaster – Three hours and thirty minutes.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle; will speed up East Coast Main Line services to Newcastle.

Harrogate

Consider.

  • Under current plans Harrogate won’t be getting any high speed service from High Speed Two.
  • The best it can get under current plans is several direct services per day, between Harrogate and London Kings Cross in perhaps two hours.

Bradford, Harrogate, Huddersfield and Skipton could possibly  be served by trains to and from London Kings Cross that join and split at Leeds.

Huddersfield

  • If Huddersfield is served by underground platforms beneath the current Huddersfield station, a lot of what I said for Bradford would apply to Huddersfield.
  • The timings would probably be around an-hour-and-a-half from London Euston.

Bradford, Harrogate, Huddersfield and Skipton could possibly be served by trains to and from London Kings Cross that join and split at Leeds.

Hull

Hull is an interesting destination.

  • Reaching Hull from the current High Speed Two network will need a change at Leeds or another station.
  • Using Northern Powerhouse Rail’s objectives on timings, London Euston and Hull via Manchester on High Speed Two, would be a few minutes under two-and-a-half hours.
  • I strongly feel, that London Kings Cross and Hull via Selby could be reduced to below two hours.

Hull would also make a superb Eastern terminal station for both Northern Powerhouse Rail and a High Speed Two service from London via Manchester and Leeds.

You pays your money and takes your choice.

Middlesbrough

Reaching Middlesbrough from the proposed High Speed Two network will need a change at York or another station.

But a time of two hours and twenty minutes, should be possible using the East Coast Main Line via Doncaster.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle, will speed up East Coast Main Line services to Middlesbrough.

Newcastle

I can summarise my estimates, between London and Newcastle.

  • High Speed Two – Direct via Eastern Leg – Two hours and seventeen minutes.
  • High Speed Two – via Manchester and Leeds – Two hours and thirty-four minutes.
  • East Coast Main Line – via Doncaster – Two hours and sixteen minutes.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle; will speed up East Coast Main Line services to Newcastle.

Nottingham

I will compare average speeds on the Midland Main Line between London St. Pancras and Nottingham and on the East Coast Main Line, between London Kings Cross and Leeds.

Currently.

  • London St. Pancras and Nottingham services, over the 126 mile route, take one hour and fifty minutes. which is an average speed of 69 mph.
  • London Kings Cross and Leeds services, over the 186 mile route, take two hours and thirteen minutes, which is an average speed of 94 mph.

Note.

  1. The two routes are of similar character and are fairly straight with large sections of 125 mph running and quadruple tracks.
  2. The East Coast Main Line to Leeds  is fully electrified, whereas the Midland Main Line is only partially electrified.
  3. Both routes have a small number of stops.
  4. In a few years time, services on both routes will be run by different members of the Hitachi AT-300 train family.

I don’t feel it would be unreasonable to assume that a London St. Pancras and Nottingham service could be run at an average speed of 94 mph, if the Midland Main Line were upgraded to the same standard as the East Coast Main Line.

This could mean a time of around one hour and twenty-one minutes between London St. Pancras and Nottingham, or a saving of twenty-nine minutes.

Is that possible?

  • The new Class 810 trains, will have four engines instead of the normal three for a five-car AT-300 train. Will they be able to be closer to the 125 mph line-speed on diesel power, where it is available on the Midland Main Line.
  • The trains will be able to use electrification between London St. Pancras and Market Harborough.
  • There have been hints, that more electrification may be installed on the Midland Main Line.
  • Hitachi have announced a battery electric version of the AT-300 train called a Regional Battery Train, where one or more of the diesel engines are replaced by battery packs.
  • The new trains will be ready to accept in-cab ERTMS digital signalling, so they could be able to run at up to 140 mph, if the track were to be upgraded.

I certainly feel, that substantial time savings could be possible between London St. Pancras and Nottingham.

Eighty-one minutes would be very convenient, as it would comfortably allow a three hour round trip, which would mean just six trains or more likely pairs of trains would be needed for the current two tph service.

Eighty-one minutes would not be the fifty-two minute service promised by High Speed Two!

But!

  • The new trains are planned to be introduced from 2023.
  • Who knows, when High Speed Two will arrive at the East Midlands Hub station?
  • They won’t need any new substantial infrastructure to replace the current trains.

I also suspect the new trains will have more seats, but, the capacity of the Class 810 train, has not been published.

Nottingham could also be served by a high speed service from London Kings Cross via Grantham, which I estimate would take about one hour and twenty minutes.

Sheffield

A lot of what I said for Nottingham can be applied to Sheffield.

  • Currently, London St. Pancras and Sheffield services, over the 165 mile route, take two hours, which is an average speed of 82.5 mph.
  • High Speed Two is promising a journey time of one hour and twenty-seven minutes.
  • An average speed of 90 mph, would mean a journey time of one hour and fifty minutes.
  • This would allow a four hour round trip, which would mean just eight trains or more likely pairs of trains would be needed for the current two tph service.

It would be very convenient for the operator.

It looks like if pairs of trains were to be run on both the Nottingham and Sheffield routes, that twenty-eight trains would be needed to run both services.

This fits well with a fleet size of thirty-three trains.

The only caveat, is that to get the required journey times, it might be necessary to rebuild and electrify the tracks, between Sheffield and Clay Cross North Junction.

  • These tracks will be shared with the future Sheffield Branch of High Speed Two.
  • It would only be 15.5 miles of double-track to rebuild and electrify.
  • It could be rebuilt to allow 140 mph running. Several minutes could be saved!

The electrification could allow Hitachi’s Regional Battery trains to be able to run the Sheffield service.

These trains would certainly be a way of avoiding the tricky electrification of the Derby and Clay Cross section of the route, which goes through the World Heritage Site of the Derwent Valley Mills.

Sheffield could also be served by a high speed service from London Kings Cross via Doncaster, which I estimate would take about one hour and thirty minutes.

Skipton

Consider.

  • Under current plans Skipton won’t be getting any high speed service from High Speed Two.
  • The best it can get under current plans is several direct services per day, between Skipton and London Kings Cross in perhaps two hours.

Bradford, Harrogate, Huddersfield and Skipton could possibly  be served by trains to and from London Kings Cross that join and split at Leeds.

Sunderland

Reaching Sunderland from the proposed High Speed Two network will need a change at York or another station.

But a time of two hours and thirty minutes, should be possible using the East Coast Main Line via Doncaster.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle, will speed up East Coast Main Line services to Sunderland.

York

I can summarise my estimates, between London and York.

  • High Speed Two – Direct via Eastern Leg – One hour and twenty-four minutes.
  • High Speed Two – via Manchester and Leeds – One hour and forty-two minutes.
  • East Coast Main Line – via Doncaster – One hour and twenty-four minutes.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle; will speed up East Coast Main Line services to York.

I believe strongly, that York would be about as fast from London, by either of the direct routes, but both would serve different intermediate destinations.

Conclusion

My first conclusion is a surprising one, but the promised timings from High Speed Two and the current timings in the timetable make it clear.

To achieve the required timings for High Speed Two, major improvements must be made to existing track and these improvements will mean that existing services will be competitive with High Speed Two on time.

These improvements fall into this category.

  • Improving the East Coast Main Line between York and Newcastle, will make East Coast Main Line services to York, Darlington, Durham and Newcastle competitive with High Speed Two services.
  • Improving the East Coast Main Line between York and Newcastle, may also mean that London Kings Cross and Edinburgh will be faster than the High Speed Two service between London Euston and Edinburgh.
  • Electrifying the route shared between Sheffield and Clay Cross North Junction, will speed up London St. Pancras and Sheffield services and make them more competitive with High Speed Two.

I suspect there may be similar mutual improvements on the Western leg of High Speed Two.

Other smaller conclusions from my analysis of the improvements include.

  • These improvements will create some extra capacity on the East Coast and Midland Main Lines, by removing bottlenecks and improving line speeds.
  • Electrification, even if it is only partial or discontinuous, will improve services on the Midland Main Line.
  • Some places like Harrogate, Middlesbrough and Skipton will never be served directly by High Speed Two, but are easily served by East Coast Main Line services from London Kings Cross.
  • Northern Powerhouse Rail is very much part of the North-South capacity for England.
  • In-cab ERTMS signalling will play a large part in increasing capacity and line speeds.

Perhaps in our planning of High Speed Two, we should plan all the routes in the North and Midlands in a much more holistic way.

If we look at the capacity between London and the North, I feel that with the addition of Phase 1 of High Speed Two to Birmingham in 2029-2033 and hopefully Phase 2a soon afterwards, that Phase 2b will not be needed for reasons of speed and capacity until years later.

So, I would pause most construction of the Eastern Leg of High Speed Two until Phase 1 and Phase 2a are complete.

I would make exceptions for the following.

  • Improvements to the shared section of the East Coast Main Line and High Speed Two, between York and Newcastle.
  • Building a high speed connection between Leeds and York for the use of Northern Powerhouse Rail and the East Coast Main Line.
  • Rebuilding and electrification of the shared section of the Midland Main Line and High Speed Two, between Clay Cross North Junction and Sheffield.
  • Improve and electrify the route between Sheffield and Leeds.

But I would continue with the design, as I feel that East of Leeds is very much sub-optimal at the present time.

The route of the Eastern leg of High Speed Two would be safeguarded.

 

 

 

 

December 7, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , | 1 Comment