The Anonymous Widower

Grant Shapps Announcement On Friday

I listened to Grant Shapps announcement on Friday, when he gave the daily COVID-19 Press Conference.

This article on the Velocys web site is entitled Government Announces Jet Zero Council And Confirms Support For Velocys Waste-To-Jet-Fuel Project.

The article shows a video of the speech and this summary paragraph.

At this afternoon’s COVID-19 press conference, Secretary of State for Transport, Grant Shapps, announced the establishment of a new Jet Zero Council and confirmed Government support for Velocys.

So who are the company with the strange name of Velocys?

This is a quote from the Velocys CEO; Henrik Wareborn.

Today’s announcement on the formation of a Jet Zero Council shows that a new era of net zero carbon flying is on a credible path, at a time when we need it more than ever. This follows news earlier today that our Altalto waste-to-jet fuel facility – the first of its kind in the UK – has received additional funding from Government and formally received planning permission, meaning it could be producing sustainable aviation fuel in commercial scale by the middle of this decade.

Is a new era of net zero carbon flying a possibility or is this a dream too far?

The AltAlto Project

Yhe project is called AltAlto and it has its own web site.

It is backed by British Airways and Shell, and uses technology from Velocys.

This description of the project is on the home page.

Altalto turns household and commercial waste into clean-burning fuels with reduced greenhouse gas emissions for air and road transport.

A page called Technology describes how it is done.

This is the initial summary.

Our process can accept a wide variety of waste, while delivering a clean product. There are very limited emissions to atmosphere from the plant except water and carbon dioxide. Components of the waste which do not get turned into fuel, such as metals and stones, are recycled; a small amount of it (less than 3%) goes to landfill.

This diagram from the Velocys web site illustrates the process.

The then goes through the stages of the process.

  • Stage 1 – Preparation – First the waste is treceived, sorted and prepared.
  • Stage 2 – Gasification – Next the solid waste is gasified; heated to a high temperature to break it down and convert it into synthesis gas or syngas (carbon monoxide and hydrogen).
  • Stage 3 – Synthesis – After cleaning, the syngas is used to synthesis hydrocarbons using the Fischer-Tropsch technology provided by Velocys.
  • Stage 4 – Finishing – These hydrocarbons are then refined into the final products; renewable jet fuel (in the form of SPK) and naphtha.

They add this final summary.

The process is fundamentally different to incineration: instead of being burnt, the carbon in the waste is converted into a fuel for use in aircraft or vehicles.

There are many clean ways of making electricity, but it is really difficult to make sustainable jet fuel – this is one of the very few economic ways of doing so. It’s therefore a far better use of household waste than incineration, creating a much more valuable and environmentally beneficial product.

Could the process be considered a sophisticated waste incineration process, where the actual incineration is performed in the turbofan engine in the aircraft or the diesel engine in the truck to provide power?

I have a few questions.

What is Fischer-Tropsch Technology?

This is the first sentence for the Wikipedia entry for the Fischer-Tropsch Process.

The Fischer-Tropsch process is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150-300 °C (302-572 °F) and pressures of one to several tens of atmospheres. The process was first developed by Franz Fischer and Hans Tropsch at the Kaiser-Wilhelm-Institut fur Kohlenforschung in Mulheim an der Ruhr, Germany, in 1925.

One of the companies involved in using the Fischer-Tropsch process is the South African company; Sasol. Wikipedia gives this summary about Sasol’s use of the process.

Another large scale implementation of Fischer-Tropsch technology is a series of plants operated by Sasol in South Africa, a country with large coal reserves, but little oil. The first commercial plant opened in 1952. Sasol uses coal and now natural gas as feedstocks and produces a variety of synthetic petroleum products, including most of the country’s diesel fuel.

The involvement with the apartheid regime in South Africa probably wasn’t the best of publicity for the process.

But have Oxford University and Velocys created a way of making net zero carbon aviation and diesel fuels?

What Is SPK?

SPK is Synthetic Paraffinic Kerosene and it is an aviation biofuel.

The Wikipedia entry for aviation biofuel has a sub-section called FT-SPK, where this is said.

The second route involves processing solid biomass using pyrolysis to produce pyrolysis oil or gasification to produce a syngas which is then processed into FT SPK (Fischer-Tropsch Synthetic Paraffinic Kerosene)

This sounds like the Velocys process.

What Are The Environmental Effects?

In the Wikipedia entry for aviation biofuel, there is a section called Environmental Effects. This is the first sentence.

A life cycle assessment by the Yale School of Forestry on jatropha, one source of potential biofuels, estimated using it could reduce greenhouse gas emissions by up to 85% if former agro-pastoral land is used, or increase emissions by up to 60% if natural woodland is converted to use. In addition, biofuels do not contain sulphur compounds and thus do not emit sulphur dioxide.

As Velocys produce their SPK from household waste, their fuel will have a different and more positive effect on greenhouse gas emissions.

This press release on the Velocys web site is entitled Plans Submitted For The First Waste To Jet Fuel Plant In The UK And Europe.

This is a paragraph.

The proposed plant will take hundreds of thousands of tonnes of household and commercial solid waste and turn it into clean burning sustainable aviation fuel, reducing net greenhouse gases by 70% compared to the fossil fuel equivalent – equal to taking up to 40,000 cars per year off the road.

Earlier, I quoted this about the process.

There are very limited emissions to atmosphere from the plant except water and carbon dioxide.

A lot depends on where the carbon dioxide is produced, but if it is produced by a well-designed process plant, it should be possible to capture it for storage.

There are also possibilities to reuse carbon-dioxide in the Fischer-Tropsch process.

Could Diesel Be Produced By The Process?

In the United States, Velocys are developing a project called Bayou Fuels.

This is said on the home page.

We are developing a plant in Mississippi that will create diesel fuel for road transportation in the U.S. It will process waste from the paper and lumber industries – woody biomass forest residue that would otherwise rot on the forest floor or contribute to forest fires.

It should be noted that this is said in the Wikipedia entry for the Port of Immingham.

In 2013 ABP began the development of the “Immingham Renewable Fuels Terminal” on the Humber International Terminal site, as part of a 15-year contract with Drax Power Station to supply biomass (wood pellet) to the powerplant. ABP’s total investment in biomass handling facilities, including installations at Hull and Goole was to be around £100 million.

As Velocys’s new  plant will be at Immingham, close to the biomass port, I suspect the answer is yes.

Where Is The Plant Located?

This Google Map shows Immingham Port and the area to the South.

Note.

  1. Immingham Port is towards the North West corner of the map.
  2. South Humber Bank Power Station is towards the South East corner of the map.

It would appear that the Altalto plant, will be located on an 80 acre site between the port and the power station.

There would also appear from Google Maps that the Barton Line runs through the area, which would surely be handy for bringing in the waste and taking out the fuel.

This picture from the Altalto web site, shows a visualisation of the plant, looking North East.

INote, what looks to be the railway, through the site in the foreground.

There are also a couple of informative videos, including one from the BBC, on this page of the Velocys web site.

t looks to be the ideal site.

How Much Fuel Will The Plant Produce?

According to the video on the web site, the plant will convert 500,000 tonnes of waste into 60,000,000 litres of fuel. I estimate that would be about 48,000 tonnes of jet fuel.

Could The Diesel Fuel Be Used To Decarbonise The Railways In The UK?

I believe that a substantial amount of the use of diesel on the UK’s railways will be cut by the use of battery and hydrogen power in multiple units and locomotives.

But some services like the heavy stone trains moving aggregates from the Mendips and the Peak District to London will be difficult to decarbonise, unless a locomotive manufacturer produces a hydrogen-powered locomotive with upwards of five megawatts of power. And that is a tough design challenge.

Low sulpur diesel produced from waste would be one way to reduce the carbon footprint.

Conclusion

It sounds a crazy idea to create aviation fuel and diesel from household waste!

Will It Work?

Consider.

  • It appears that most of the technology used to produce this fuel has been around for decades.
  • Sasol opened their first commercial plant in South Africa, using the Fischer-Tropsch process in 1952 and still use the technique today.
  • Oxford University have added magic ingredients to the Fischer-Tropsch process.
  • Velocys seem to have put in a lot of serious thought to get the Altalto project ticking all the right boxes.

The project could be late, but I feel it will deliver the main objective of converting household and commercial waste to jet fuel and diesel.

 

 

June 14, 2020 Posted by | Transport, World | , , , , , , , , | 5 Comments

Splitting And Joining Of High Speed Two Trains

In Existing Stations Where High Speed Two Trains Will Call, I looked at how existing stations will need to be modified to handle the High Speed Two service pattern described in an article, which is entitled HS2 Minister Backs 18 tph Frequency, in the June 2020 Edition of Modern Railways.

The article states that splitting and joining of trains will take place at three stations; Carlisle, Crewe and East Midlands Hub.

To successfully split and join the pairs of 200 metre long High Speed Two trains, the following will be needed.

  •  400 metre long platforms, that can handle the pair of trains.
  • Excellent signage, so that passengers get into the right train and leave for the right destination.
  • Efficient crew methods, so that drivers are in the correct cabs at the right time.

For many years trains at Cambridge and several places South of London have successfully split and joined.

This video shows two Class 395 trains coupling and uncoupling automatically.

It;s impressive and I suspect High Speed Two’s trains will be equally good or even better at this procedure.

Why Is Split And Join Needed For High Speed Two?

According to the Modern Railways article, the full High Speed Two service will be as follows in trains per hour (tph) and trains per two hours (tp2h)

  1. 1 tph – London Euston and Birmingham Curzon Street via Old Oak Common (OOC) – 400 metres
  2. 2 tph – London Euston and Birmingham Curzon Street via OOC and Birmingham Interchange – 400 metres
  3. 1 tph – London Euston and Lancaster via OOC, Crewe, Warrington Bank Quay, Wigan North Western and Preston – London Euston and Liverpool Lime Street via OOC, Crewe and Runcorn – 200+200 metres with Split/Join at Crewe
  4. 1 tph – London Euston and Liverpool Lime Street via OOC, Crewe and Runcorn – 200 metres
  5. 1 tph – London Euston and Macclesfield via OOC, Stafford and Stoke-on-Trent – 200 metres
  6. 1 tph – London Euston and Manchester Piccadilly via OOC, Birmingham Interchange and Manchester Airport – 400 metres
  7. 2 tph – London Euston and Manchester Piccadilly via OOC and Manchester Airport – 400 metres
  8. 1 tph – London Euston and Edinburgh Waverley via OOC, Preston, Carlisle and Edinburgh Haymarket – London Euston and Glasgow Central via OOC, Preston and Carlisle – 200 +200 metres with Split/Join at Carlisle
  9. 1 tph – London Euston and Edinburgh Waverley via OOC, Birmingham Interchange, Preston, Carlisle and Edinburgh Haymarket – London Euston and Glasgow Central via OOC, Preston and Carlisle – 200 +200 metres with Split/Join at Carlisle
  10. 1 tp2h – Birmingham Curzon Street and Edinburgh Waverley via Wigan North Western, Preston, Lancaster, Oxenholme, Penrith and Edinburgh Haymarket – 200 metres
  11. 1 tp2h – Birmingham Curzon Street and Glasgow Central via Wigan North Western, Preston, Lancaster, Oxenholme, Penrith, Lockerbie and Motherwell – 200 metres
  12. 2 tph – Birmingham Curzon Street and Manchester Piccadilly via Manchester Airport – 200 metres
  13. 2 tph – Birmingham Curzon Street and Leeds via East Midlands Hub – 200 metres
  14. 1 tph – Birmingham Curzon Street and Newcastle via East Midlands Hub, Darlington and Durham – 200 metres
  15. 1 tph – London Euston and Sheffield via OOC and East Midlands Hub – London Euston and Leeds via OOC and East Midlands Hub – 200 + 200 metres with Split/Join at East Midlands Hub
  16. 1 tph – London Euston and Leeds via OOC and East Midlands Hub – 400 metres
  17. 1 tph – London Euston and Leeds via OOC, Birmingham Interchange and East Midlands Hub – 400 metres
  18. 1 tph – London Euston and Sheffield via OOC, East Midlands Hub and Chesterfield – London Euston and York via OOC and East Midlands Hub – 200 + 200 metres with Split/Join at East Midlands Hub
  19. 1tph – London Euston and Newcastle via OOC and York – 200 metres
  20. 1 tph – London Euston and Newcastle via OOC, York and Darlington – 200 metres

Note.

  1. Trains 10 and 11 share the same path in alternate hours.
  2. Birmingham Curzon Street is effectively a second Southern terminus.
  3. Seventeen tph leave London Euston and Old Oak Common for the North, of which eight are 400 metre trains, five are a pair of 200 metre trains and four are 200 metre trains.

As the five pairs of 200 metre trains Split/Join en route, this effectively means, that London Euston is served by twenty-two tph.

It would appear that Split/Join is important, as it allows the same number of train paths between London Euston and the North to support more services.

Could Any Other Trains Be Split And Joined?

I don’t see why not!

There are eight tph going North from London Euston and Old Oak Common, that are 400 metre long trains that don’t Split/Join

  • 3 tph – Birmingham Curzon Street
  • 2 tph – Leeds
  • 3 tph – Manchester Piccadilly

Note.

  1. Each 400 metre train would appear to have a capacity of around 1,100 passengers.
  2. Leeds is also served by another 200 metre train from London.

Effectively, this gives the following passenger capacities between London and the three major cities.

  • Birmingham – 3,300
  • Leeds – 2,750
  • Manchester – 3,300

If these capacities have been carefully predicted, performing a Split/Join on these trains might cause a shortage of capacity.

There are four single 200 metre trains, that could be doubled up for their run to the North.

  1. London Euston and Liverpool Lime Street via OOC, Crewe and Runcorn
  2. London Euston and Macclesfield via OOC, Stafford and Stoke-on-Trent
  3. London Euston and Newcastle via OOC and York
  4. London Euston and Newcastle via OOC, York and Darlington

In theory, these four trains could be doubled to provide extra services.

But there are two problems.

Where Would The Trains Split and Join?

  • Train 1 could Split/Join at Crewe.
  • Train 2 could Split/Join at Stafford, if the platforms were lengthened to accept a pair of 200 metre trains.
  • Trains 3 and 4 would need to stop at East Midlands Hub to Split/Join

It would appear that four extra trains could be run into London Euston, by running all single trains as pairs.

Where Would The Extra Services Terminate?

There are possibilities on the Western leg of High Speed Two.

  • An extra train for Liverpool Lime Street
  • An extra train for Lancaster
  • A direct train for the current Manchester Piccadilly via Wilmslow and Stockport
  • A direct train for Blackpool

But the Eastern leg of High Speed Two is more of a problem.

  • An extra train for Sheffield
  • A direct train for Hull.

Hull could be served via a new junction between High Speed Two and the Hull-Leeds Line to the North-West of Garforth or perhaps by extending a service from Sheffield.

Could Any Services North From Birmingham Curzon Street Be Split And Joined?

These 200 metre services go North from Birmingham Curzon Street station.

  1. 1 tp2h – Birmingham Curzon Street and Edinburgh Waverley via Wigan North Western, Preston, Lancaster, Oxenholme, Penrith and Edinburgh Haymarket
  2. 1 tp2h – Birmingham Curzon Street and Glasgow Central via Wigan North Western, Preston, Lancaster, Oxenholme, Penrith, Lockerbie and Motherwell
  3. 2 tph – Birmingham Curzon Street and Manchester Piccadilly via Manchester Airport
  4. 2 tph – Birmingham Curzon Street and Leeds via East Midlands Hub
  5. 1 tph – Birmingham Curzon Street and Newcastle via East Midlands Hub, Darlington and Durham.

Note that trains 1 and 2 share the same path in alternate hours.

There may be scope to double up some of these trains, to serve extra destinations in the North from Birmingham Curzon Street.

Conclusion

Split/Join is a powerful tool to increase the number of services without spending a fortune on new infrastructure.

 

 

 

 

 

 

 

June 14, 2020 Posted by | Transport | , , , , , | Leave a comment