The Anonymous Widower

Boson Energy To Use Nonrecyclable Trash To Make Carbon-Negative Hydrogen

The title of this post, is the same as that of this article on Hydrogen Fuel News.

This is the first paragraph.

Boson Energy, an Israeli-Swedish-Polish startup is preparing to move ahead with a form of carbon-negative hydrogen production using nonrecyclable garbage.

It is worth reading the Boson Energy web site.

August 11, 2022 Posted by | Energy, Hydrogen | , , , , | Leave a comment

Are Disposable Nappies A Wasted Resource?

I stated my views on disposable nappies in this post called Disposable Nappies, where this was the first sentence.

From a scientifically green point of view, in many places I’m against using disposable nappies, as they clog sewers, end up in landfill and I’ve even seen them in litter bins in parks. We used real nappies for all our three children in the seventies, washing them ourselves in a machine for the first and then using a nappy service for the last two.

But dirty nappies contain a lot of the ingredients, that can be used to make hydrocarbons.

This article from the Sunday Times in 2018 is entitled Syngas, The New Jet Fuel — Stinky Nappies And Coffee Cups.

These are the first two paragraphs of The Times article.

With their packed cabins and recycled air, long-haul passenger jets are the last place where you would want to encounter the whiff of a dirty nappy.

However, old nappies are to be used — along with other non-recyclable waste such as meal packaging and takeaway coffee cups — to power British Airways planes.

Syngas is a mixture of hydrogen, carbon monoxide and some carbon dioxide. Some countries without access to petroleum or diesel created syngas and then used the Fischer–Tropsch process to create the fuels they needed. The process doesn’t have a good reputation as the two main countries to use the process were Germany under the Nazis and South Africa during apartheid.

Why is the use of this process being revived to produce aviation biofuel or sustainable aviation fuel for British Airways?

According to Wikipedia, it can save between 20 and 98 % of carbon emissions compared to conventional jet fuel.

The same process can also make biodiesel for buses, trains and trucks

It’s certainly an area, where a lot of research is going on! Just type “syngas nappies” or “syngas diapers” into Google and you’ll get a lot of serious hits.

By my front door I have a well-designed blue bin.

This is for my food waste bin, which is collected once a week.

This page on the Hackney web site is entitled Food Waste Recycling, and this is said about where the food waste goes.

Food waste from households in Hackney is sent to an anaerobic digestion facility in south east England, where it’s turned into renewable energy to power homes and biofertiliser to be spread on local farmland to grow crops.

A similar bin of an appropriate size could be used for nappies.

The nappies would go to an appropriate recycling site, instead of down the toilet or into landfill.

 

 

July 4, 2021 Posted by | Transport/Travel | , , , , , , , , | 1 Comment

New Facility In Scotland To Turn Waste Plastic Into Hydrogen

The title of this post, is the same as that of this article on Hydrogen Fuel News.

This is the first paragraph.

Peel NRE, a part of Peel Land & Property, has unveiled its plans for a second waste plastic to hydrogen facility. This one will be installed on the River Clyde’s north bank at the Rothesay Dock in West Dunbartonshire.

A few relevant points from the article.

  • The facility will cost £20 million.
  • Input will be non-recyclable plastics, that otherwise would go to landfill.
  • There will be a hydrogen filling station at the site.
  • The facility can handle 13500 tonnes of plastic per year
  • The facility will use technology developed by the Powerhouse Energy Group.

It sounds like, we need more of these plastic to hydrogen facilities!

 

June 4, 2021 Posted by | Hydrogen | , , , , , , | 3 Comments

The Edmonton Incinerator

Although it is officially known these days as the Edmonton EcoPark, as a North Londoner, I will always know it as the Edmonton Incinerator.

I took these pictures with my drone.

These are a few facts from Wikipedia about the waste-to-energy plant.

  • It was commissioned by the Greater London Council in 1971.
  • It burns waste from the seven North-East London boroughs.
  • It generates 55 MW of electricity.

It certainly dominates the landscape alongside the North Circular Road.

But.

It is probably not amongst the greenest of incinerators.

It is probably very much a design of the 1960s.

It is approaching fifty years old.

But it appears that things could be improving.

  • There is a large composting and recycling facility being built on the site on the site.
  • Plans exist to bring in the rubbish by barge.

This Google Map shows the site.

Note.

  1. The North Circular Road runs across the bottom of the map.
  2. All of the roads obliterated the famous Cooks Ferry Inn, where I saw the Animals play in the 1960s.
  3. The River Lee Navigation runs past the incinerator.
  4. Pymme’s Brook runs on the other side.

It looks from the map, that another reservoir is being built to the East of the canal.

The Guy Who Built The Edmonton Incinerator

I used to work with the guy, who was one of those in charge of the building of the incinerator, who when I met him, was head of the Greater London Council’s Construction Branch, who were using my project management software.

I can’t remember Mr. Samuels first name, even if I ever knew it.

  • He was an Austrian Jew, who had trained as an engineer, who arrived in the UK sometime in the 1930s.
  • He taught himself English in six weeks and got a job at Lucas.
  • At the start of World War II, he volunteered and joined the Royal Engineers.
  • He spent the whole war in bomb disposal.
  • After the war he became an observer at the Nuremberg Trials.

After all he’d been through, he told me, the worst time of his life, was those years in the early seventies when I knew him, as his wife was dying of cancer.

But he taught me a lot about project management and the real horror of war.

He never told me, how many of his relatives survived the Nazis.

What Will Happen To The Edmonton Incinerator?

This year it will be fifty years since the Edmonton Incinerator was commissioned. It must be coming to the end of its life.

I can’t find any plans, but endless groups, who want it closed rather than rebuilt.

This article in the Hackney Gazette, which is entitled Campaigners Urge North London Incinerator Bidders To Pull Out, is typical.

I am very pro recycling, but then others aren’t as these pictures show.

So if some won’t recycle properly, it will all have to go to landfill.

An Odd Tale About Recycling

I applied to be a member of the Independent Monitoring Board of a prison near, where I used to live.

I had a very interesting tour of the prison, where I met several of the inmates.

One thing surprised me.

The prison had a very comprehensive internal recycling system, whereby everything was fully sorted.

One course of training, that was offered to prisoners was how to sort and process all of the rubbish. According to the guy running the course, it was one of the most popular in the prison.

Possibly, because I was told, it prepared prisoners for a job, where there were lots of vacancies.

I wonder if the new £100million recycling centre at Edmonton will use labour trained in the Prison Service?

 

April 14, 2021 Posted by | Energy, World | , , , , , , , , | 2 Comments

Beeching Reversal – Reopening Harston Station

This is one of the Round 3 bids of Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

Harston is a Cambridgeshire village, which is shown in this Google Map.

Note.

  1. The A10 winding its way North and South through the village.
  2. Cambridge is five miles to the North.
  3. The triangular road junction in the middle of the village with Station Road leading off to the South East.
  4. The Cambridge Line crosses the South-East corner of the map, at a right angle to Station Road.

This Google Map shows the former station site at an enlarged scale..

Note.

  1. There is plenty of space.
  2. There is a level crossing.
  3. The railway is double-track.

There’s even a Harston History page for the station, so if the architect’s decide to go retro, they can visit it for design inspiration.

My initial thoughts are that compared to some of the proposals for Beeching Reversal this one is practical and not over ambitious.

These are some of my thoughts.

Car Parking

Currently, there are the following stations between Cambridge and Hitchin.

Note.

Only Royston station has more than minimal parking provision.

The addition of Harston and Cambridge South stations will probably mean, that a lot of thought will be given to parking at all the stations between Cambridge and Hitchin.

Cambridge South like Cambridge North will probably have extensive parking to also serve Addenbrooke’s Hospital and Cambridge Bio-Medical Campus.

Whittlesford Parkway station on the line between Cambridge and Liverpool Street has very adequate parking provision.

I wouldn’t be surprised to see Harston station having a couple of hundred parking spaces.

East West Railway

In Looking At The East West Railway Between Bedford And Cambridge, I looked at the route of the East West Railway as it approaches Cambridge.

I very much doubt that this new railway will go through Harston station.

But Harston station will beef up the capacity on the Cambridge Line to bring more workers to one of the science and engineering capitals of the world.

Cambridgeshire Autonomous Metro

There are also plans for the Cambridgeshire Autonomous Metro.

This map shows the proposed layout of the Cambridgeshire Autonomous Metro.

Note that the green section will be in tunnel.

I doubt that the Cambridgeshire Autonomous Metro will run to Harston, as it most likely will run on rubber-tyred wheels and probably wouldn’t mix well with heavy rail.

Train Service

Currently, the current trains run through the station in the Off Peak.

  • Thameslink – 2 tph – Cambridge and Brighton
  • Thameslink – 2 tph – Cambridge and King’s Cross
  • Great Northern – 1 tph – King’s Cross and Ely
  • Great Northern – 1 tph – King’s Cross and King’s Lynn

Note.

  1. tph is an abbreviation for trains per hour.
  2. All trains are fast services, except for the Cambridge and King’s Cross service, which stops at all stations.
  3. When Cambridge South station opens, I suspect nearly all services will stop at that station.
  4. The Great Northern services also stop at Cambridge North station.
  5. In Call For ETCS On King’s Lynn Route, I talked of the possibility of running 125 mph trains on Great Northern services between King’s Cross, Cambridge, Cambridge North, Ely and King’s Lynn.

I suspect that it will be likely only the Thameslink stopping train will call at Harston station, just as it is the only service that calls at Foxton, Shepreth and Meldreth stations.

  • But is two tph enough for a Park-and-Ride station?
  • Whittlesford Parkway station already has three tph to and from Cambridge.
  • I suspect there will be a second Stansted and Cambridge service which mean Whittlesford Parkway station gets four tph to Cambridge,

I suspect Hartston station needs four tph to give a Turn-Up-And-Go service.

Barrington Quarry And Landfill

This Google map shows the location of the Barrington Quarry and Landfill, with respect to Harston.

Note.

  1. Barrington Quarry and Landfill is in the North-West corner of the map.
  2. Harston is in the North-East corner of the map.
  3. The A10 road runs South-West from Harston to Foxton station, where there is a level crossing, where the Cambridge Line crosses the road.
  4. Foxton station has a freight-only line linking it to the quarry.

This second Google Map shows Foxton station in detail.

Note the rail line to Barrington curving away to the North West.

This document from CEMEX is entitled Barrington Quarry – Restoration Project.

It appears that the quarry will be restored and some of the land will be used for new homes.

As all the track is already in place, would it be possible to run a 2tph service between Barrington and Cambridge North station?

  • It could call at  Harston, Cambridge North and Cambridge stations.
  • Harston station would get a four tph service.
  • Cambridge gets more much-needed housing connected to the city.

It could also be run using battery-electric trains that would be charged using the electrification between Foxton and Cambridge North stations.

Conclusion

Taking everything together, it appears to me, that Harston station could improve the rail network to the South West of Cambridge.

March 21, 2021 Posted by | Transport/Travel | , , , , , , , , , , , | 2 Comments

Green Jet Fuel Plant Developers’ Ioy As World Economic Forum Backs Method As Best Aviation Solution

The title of this post, is the same as that of this article on Business Live.

This is the first paragraph.

The World Economic Forum has backed sustainable aviation fuel as the most promising decarbonation policy for aviation, delighting the developers of a £350 million refinery on the Humber.

I bet Velocys are delighted.

I also think, that, the biodiesel, that they can produce, is a short term solution to the decarbonisation of rail freight and the heaviest vehicles powered by diesel.

It’s so much better than throwing the rubbish into landfill.

November 17, 2020 Posted by | Energy, Finance, Transport/Travel | , , , , , , | Leave a comment

Microwaves Could Turn Plastic Waste Into Hydrogen Fuel

This headline from this article in The Times could be the headline of the day!

Although thinking about it, it wouldn’t be a good idea to put all your plastic waste in the microwave and switch it on. It might catch fire or even worse create lots of hydrogen in your kitchen, which could be followed by a mini-Hindenburg disaster in the kitchen.

These are the introductory paragraphs.

From the yellowed bottles in landfill to the jellyfish-like bags clogging the oceans, plastics pollution is an apparently intractable problem.

Yet, chemists lament, it shouldn’t be. Within this waste there is something extremely useful, if only we could access it: hydrogen. Now a British team of scientists believes it has found a way to get at it, and do so cheaply, thanks to tiny particles of iron and microwaves.

If their system works at scale they hope it could be a way of cheaply converting useless plastic into hydrogen fuel and carbon.

Don’t we all want to believe that this impossible dream could come true?

Some Background Information

Some of the things I talk  about will be technical, so I will have a bit of a preamble.

Hydrogen; Handling And Uses

Because of pre-World War Two airships, which tended to catch fire and/or crash, hydrogen has a bad reputation.

I used to work as an instrument engineer in a hydrogen plant around 1970. To the best of my knowledge the plant I worked  in is still producing  hydrogen in the same large building at Runcorn.

Hydrogen is one of those substances, that if you handle with care, it can be one of the most useful elements in the world.

It is a fuel that burns creating a lot of energy.

The only by-product of hydrogen combustion is steam.

It is one of the feedstocks for making all types of chemicals like ethylene, fertilisers, ammonia, pharmaceuticals and a wide range of hydrocarbons.

Hydrogen is a constituent of natural gas and in my youth, it was a constituent of town gas.

Hydrogen and hydrocarbons are involved in the manufacture of a lot of plastics.

In the future, hydrogen will have even more uses like making steel and cement, and powering railway trains and locomotives, and shipping of all sizes.

Hydrocarbons

According to Wikipedia, hydrocarbons are compounds consisting entirely of atoms of hydrogen and carbon.

In a kitchen, there are several hydrocarbons.

  • If you cook by gas, you will probably be burning natural gas, which is mainly methane, which is a hydrocarbon
  • Some might use propane on a barbecue, which is another hydrocarbon.
  • I suspect you have some polythene or polyethylene, to use the correct name, in your kitchen. This common plastic is chains of ethylene molecules. Ethylene is another hydrocarbon.
  • There will also be some polypropylene, which as the name suggests is made from another hydrocarbon; propylene.

Hydrocarbons are everywhere

Plastics

I used to work in two ICI divisions; Mond at Runcorn and Plastics at Welwyn Garden City

  • The forerunners of ICI Mond Division invented polyethylene and when I worked at Runcorn, I shared an office, with one of the guys, who had been involved before the Second World War. in the development of polyethylene.
  • Plastics Division used to make several plastics and I was involved in various aspects of research plant design and production.

One day, I’ll post in this blog, some of the more interesting and funnier stories.

Many plastics are made by joining together long chains of their constituent molecules or monomer.

  • Ethylene is the monomer for polyethylene.
  • Propylene is the monomer for polypropylene.
  • Vinyl chloride is the monomer for polyvinylchloride or PVC.

So how are the chains of molecules built?

  • Polyethylene was made by ICI. by applying large amounts of pressure to ethylene gas in the presence of a catalyst.
  • They used to make polypropylene in large reaction vessels filled with oil, using another catalyst.

I suspect both processes use large quantities of energy.

Catalysts

catalyst is a substance which increases the rate of a chemical reaction.

Judging by the number of times, I find new catalysts being involved in chemical reactions, the following could be true.

  • There are processes, where better catalysts can improve yields in the production of useful chemicals.
  • There is a lot of catalyst research going on.

Much of this research in the UK, appears to be going on at Oxford University. And successfully to boot!

Velocys

It should be noted that Velocys was spun out of Oxford University, a few years ago.

This infographic shows their process.

This could be a route to net-zero carbon aviation and heavy haulage.

The beauty is that there would need to be little modification to existing aircraft and trucks.

Oxford University’s Magic Process

These paragraphs from The Times article explain their process.

The clue came in research on particles of iron, and what happens when they get really small. “There’s a fascinating problem,” Professor Edwards said. “You take a bit of metal, and you break it into smaller and smaller bits. At what stage does it stop behaving like a copy of the bigger bit?”

When the particle gets below a critical size, it turns out it’s no longer a metal in the standard sense. The electrical conductivity plummets, and its ability to absorb microwaves does the reverse, increasing by ten orders of magnitude.

Professor Edwards realised that this could be useful. “When you turn on the microwaves, these things become little hotspots of heat,” he said. When he put them in a mix of milled-up plastic, he found that they broke the bonds between the hydrogen and carbon, without the expense and mess of also heating up the plastic itself.

What is left is hydrogen gas, which can be used for fuel, and lumps of carbon nanotubes, which Professor Edwards hopes might be of a high enough grade to have a use as well. The next stage is to work with industry to find ways to scale it up.

It sounds rather amazing.

Going Large!

This article from The Times on Friday, is entitled Plastic To Be Saved From Landfill By Revolutionary Recycling Plants.

These are the two introductory paragraphs.

Thousands of tonnes of plastic waste will be turned into new plastic in Britain rather than dumped in landfill sites, incinerated or sent overseas under plans for four new plants that will use cutting-edge recycling technology.

Up to 130,000 tonnes of plastic a year will be chemically transformed in the facilities, which are to be built in Teesside, the West Midlands and Perth.

It all sounds like technology, that can transform our use of plastics.

Conclusion

In the years since I left Liverpool University in 1968 with a degree in Electrical and control Engineering, it has sometimes seemed to me, that chemistry has been a partly neglected science.

It now seems to be coming to the fore strongly.

 

October 19, 2020 Posted by | Hydrogen | , , , , , , , , , | 4 Comments

Humber Highlighted As Prime Location For Sustainable Aviation Fuel Cluster

The title of this post, is the same as that of this article on Business Live.

Points to note from the article.

  • Development of a waste-to-aviation biofuel plant on Humberside could be a £219 million annual boost to the economy and create 1500 jobs.
  • There is a pipeline to Heathrow from the Humber.
  • Velocys is backed by British Airways and Shell, and the UK government.
  • Not bad for an Oxford University spin-off of an updated process that produced diesel for the Nazis and apartheid South Africa.
  • Other potential sustainable aviation fuel clusters have been identified including Teesside, the North West, South Wales, Hampshire, St Fergus and Grangemouth.

Velocys is a share to watch!

Other Thoughts

I feel the following could happen.

  • Velocys will make a large hole in the need for landfill capacity.
  • Other old chemical and refinery processes will be updated using new catalyst technology, from universities like Oxford.

But will British Airways be accused of rubbish flights in the tabloids?

 

October 13, 2020 Posted by | Energy, Transport/Travel | , , , , , , , | Leave a comment

Waste-to-Hydrogen Project Set For California

The title of this post, is the same as that of this article on Power Magazine.

This is the introductory paragraph.

A California company that produces renewable hydrogen has joined with a Louisiana construction group on a project to build a modular waste-to-hydrogen production facility.

These are some further points.

  • The Californian company; Ways2H, also has a project in Japan.
  • They aim to setup a pipeline of projects in 2021.
  • The California Energy Commission has said the state is short of green hydrogen.
  • The process can use paper and plastic waste or municipal solid waste.
  • They can also handle medicinal waste.
  • The systems appear to be transportable.

This paragraph is from the article.

Kindler said his company could produce “white hydrogen,” because the company’s process, which uses very high temperatures to turn waste plastics, wood, rubber and other biomass into gas and a carbon solid, can be used to sequester carbon dioxide and store it underground.

It looks to me, that if they make this system work, they will have found an alternative way to make hydrogen, by a zero-carbon method.

Conclusion

Could we see one of these plants in every local authority in the world to process all their waste into hydrogen?

I suspect in Ways2H’s plan for world domination, this is one of their objectives.

October 7, 2020 Posted by | Energy, Hydrogen | , , , , | 2 Comments

Exeter City Council Builds Its First Solar And Battery Storage Project

The title of this post, is the same as that of this article on Energy Live News.

This paragraph describes the scheme.

The plant, which had its preparatory work finished recently, will be built on an inactive landfill site and will comprise of a 1.2MW array of 3,702 solar photovoltaic (PV) modules, two battery storage containers and an electrical switch room.

I do think, this is a superb use for a old landfill site.

As I believe that some landfill sites still give off methane for many years, if this is the case, this can surely continue.

The scheme will also include a 1 MW/2 MWh battery and will be geared to providing power to a council operation’s facility and in the future to supporting an electric fleet.

This is a superb example of how to turn an unwanted toxic liability into a green asset, with several benefits.

I have not heard of something like this before, but by searching the list of solar and energy-from-waste power sites in the UK, I found a cluster around the M5 to the North of the village of Puriton.

This Google Map shows the area.

Note.

  1. The village of Puriton to the East of the Junction 23 of the M5, which is a forest of blue dots.
  2. The various solar farms showing as a blue-violet field. I can count fourteen separate fields.

In total, there are about half-a-dozen renewable energy producers in the area generating up to 25 MW of electricity.

The area to the North-East of the village with all the white dots, just above the green one, is the former Royal Ordinance Factory Bridgewater, which I’m sure solar farmers would like to get their hands on.

Would this become a modern version of swords into ploughshares?

July 9, 2020 Posted by | Energy, Energy Storage | , , , | Leave a comment