The Anonymous Widower

Green Jet Fuel Plant Developers’ Ioy As World Economic Forum Backs Method As Best Aviation Solution

The title of this post, is the same as that of this article on Business Live.

This is the first paragraph.

The World Economic Forum has backed sustainable aviation fuel as the most promising decarbonation policy for aviation, delighting the developers of a £350 million refinery on the Humber.

I bet Velocys are delighted.

I also think, that, the biodiesel, that they can produce, is a short term solution to the decarbonisation of rail freight and the heaviest vehicles powered by diesel.

It’s so much better than throwing the rubbish into landfill.

November 17, 2020 Posted by | Energy, Finance, Transport | , , , , | Leave a comment

Microwaves Could Turn Plastic Waste Into Hydrogen Fuel

This headline from this article in The Times could be the headline of the day!

Although thinking about it, it wouldn’t be a good idea to put all your plastic waste in the microwave and switch it on. It might catch fire or even worse create lots of hydrogen in your kitchen, which could be followed by a mini-Hindenburg disaster in the kitchen.

These are the introductory paragraphs.

From the yellowed bottles in landfill to the jellyfish-like bags clogging the oceans, plastics pollution is an apparently intractable problem.

Yet, chemists lament, it shouldn’t be. Within this waste there is something extremely useful, if only we could access it: hydrogen. Now a British team of scientists believes it has found a way to get at it, and do so cheaply, thanks to tiny particles of iron and microwaves.

If their system works at scale they hope it could be a way of cheaply converting useless plastic into hydrogen fuel and carbon.

Don’t we all want to believe that this impossible dream could come true?

Some Background Information

Some of the things I talk  about will be technical, so I will have a bit of a preamble.

Hydrogen; Handling And Uses

Because of pre-World War Two airships, which tended to catch fire and/or crash, hydrogen has a bad reputation.

I used to work as an instrument engineer in a hydrogen plant around 1970. To the best of my knowledge the plant I worked  in is still producing  hydrogen in the same large building at Runcorn.

Hydrogen is one of those substances, that if you handle with care, it can be one of the most useful elements in the world.

It is a fuel that burns creating a lot of energy.

The only by-product of hydrogen combustion is steam.

It is one of the feedstocks for making all types of chemicals like ethylene, fertilisers, ammonia, pharmaceuticals and a wide range of hydrocarbons.

Hydrogen is a constituent of natural gas and in my youth, it was a constituent of town gas.

Hydrogen and hydrocarbons are involved in the manufacture of a lot of plastics.

In the future, hydrogen will have even more uses like making steel and cement, and powering railway trains and locomotives, and shipping of all sizes.

Hydrocarbons

According to Wikipedia, hydrocarbons are compounds consisting entirely of atoms of hydrogen and carbon.

In a kitchen, there are several hydrocarbons.

  • If you cook by gas, you will probably be burning natural gas, which is mainly methane, which is a hydrocarbon
  • Some might use propane on a barbecue, which is another hydrocarbon.
  • I suspect you have some polythene or polyethylene, to use the correct name, in your kitchen. This common plastic is chains of ethylene molecules. Ethylene is another hydrocarbon.
  • There will also be some polypropylene, which as the name suggests is made from another hydrocarbon; propylene.

Hydrocarbons are everywhere

Plastics

I used to work in two ICI divisions; Mond at Runcorn and Plastics at Welwyn Garden City

  • The forerunners of ICI Mond Division invented polyethylene and when I worked at Runcorn, I shared an office, with one of the guys, who had been involved before the Second World War. in the development of polyethylene.
  • Plastics Division used to make several plastics and I was involved in various aspects of research plant design and production.

One day, I’ll post in this blog, some of the more interesting and funnier stories.

Many plastics are made by joining together long chains of their constituent molecules or monomer.

  • Ethylene is the monomer for polyethylene.
  • Propylene is the monomer for polypropylene.
  • Vinyl chloride is the monomer for polyvinylchloride or PVC.

So how are the chains of molecules built?

  • Polyethylene was made by ICI. by applying large amounts of pressure to ethylene gas in the presence of a catalyst.
  • They used to make polypropylene in large reaction vessels filled with oil, using another catalyst.

I suspect both processes use large quantities of energy.

Catalysts

catalyst is a substance which increases the rate of a chemical reaction.

Judging by the number of times, I find new catalysts being involved in chemical reactions, the following could be true.

  • There are processes, where better catalysts can improve yields in the production of useful chemicals.
  • There is a lot of catalyst research going on.

Much of this research in the UK, appears to be going on at Oxford University. And successfully to boot!

Velocys

It should be noted that Velocys was spun out of Oxford University, a few years ago.

This infographic shows their process.

This could be a route to net-zero carbon aviation and heavy haulage.

The beauty is that there would need to be little modification to existing aircraft and trucks.

Oxford University’s Magic Process

These paragraphs from The Times article explain their process.

The clue came in research on particles of iron, and what happens when they get really small. “There’s a fascinating problem,” Professor Edwards said. “You take a bit of metal, and you break it into smaller and smaller bits. At what stage does it stop behaving like a copy of the bigger bit?”

When the particle gets below a critical size, it turns out it’s no longer a metal in the standard sense. The electrical conductivity plummets, and its ability to absorb microwaves does the reverse, increasing by ten orders of magnitude.

Professor Edwards realised that this could be useful. “When you turn on the microwaves, these things become little hotspots of heat,” he said. When he put them in a mix of milled-up plastic, he found that they broke the bonds between the hydrogen and carbon, without the expense and mess of also heating up the plastic itself.

What is left is hydrogen gas, which can be used for fuel, and lumps of carbon nanotubes, which Professor Edwards hopes might be of a high enough grade to have a use as well. The next stage is to work with industry to find ways to scale it up.

It sounds rather amazing.

Going Large!

This article from The Times on Friday, is entitled Plastic To Be Saved From Landfill By Revolutionary Recycling Plants.

These are the two introductory paragraphs.

Thousands of tonnes of plastic waste will be turned into new plastic in Britain rather than dumped in landfill sites, incinerated or sent overseas under plans for four new plants that will use cutting-edge recycling technology.

Up to 130,000 tonnes of plastic a year will be chemically transformed in the facilities, which are to be built in Teesside, the West Midlands and Perth.

It all sounds like technology, that can transform our use of plastics.

Conclusion

In the years since I left Liverpool University in 1968 with a degree in Electrical and control Engineering, it has sometimes seemed to me, that chemistry has been a partly neglected science.

It now seems to be coming to the fore strongly.

 

October 19, 2020 Posted by | Hydrogen | , , , , , , , , , | 4 Comments

Drax, Velocys Help Launch Coalition For Negative Emissions

The title of this post, is the same as that of this article on Biomass Magazine.

This is the introductory paragraph.

U.K.-based companies Drax Group and Velocys are among 11 organizations that have launched the Coalition for Negative Emissions, which aims to achieve a sustainable and resilient recovery from COVID-19 by developing pioneering projects that can remove carbon dioxide and other pollutants from the atmosphere.

This paragraph details the companies and organisations involved.

In addition to Drax and Velocys, members of the coalition include Carbon Engineering, Carbon Removal Centre, CBI, Carbon Capture and Storage Association, Climeworks, Energy U.K., Heathrow, International Airlines Group, and the U.K. National Farmers Union.

They have sent a letter to the Government, which can be downloaded from the Drax website.

Conclusion

I have an open mind about biomass and products such as aviation biofuel and techniques such as carbon capture.

Keeping the wheels of commerce turning, needs a sustainable way to fly and ideas such as producing aviation biofuel from household and industrial waste, could enable sustainable transport in the short term.

Carbon capture is very difficult in a lot of processes, but I feel that in some, such as a modern gas-turbine powered station, if they are designed in an innovative manner, they an be made to deliver a pure stream of the gas. A pure gas must be easier to handle, than one contaminated with all sorts of unknowns, as you might get from burning some sources of coal.

I am pleased that the National Farmers Union is involved as using pure carbon dioxide, as a growth promoter for greenhouse crops is a proven use for carbon dioxide.

Overall, I am optimistic about the formation of the Coalition for Negative Emissions.

 

October 14, 2020 Posted by | Energy | , , , , , , , , , , | Leave a comment

Creating Sustainable Aviation Fuels For A Net-Zero Future

The title of this post, is the same as that of this article on Airport Technology.

This is the introductory paragraph.

In June, UK Transport Minister Grant Shapps announced the creation of the Jet Zero Council, which aims to make zero-carbon transatlantic flights a reality within a generation. Dr Neville Hargreaves, vice president at sustainable fuels technology company Velocys and a member of the Jet Zero coalition, explains more.

This paragraph gives a timescale.

“People may think achieving net-zero emissions on long-haul flights, from London to New York on a Dreamliner say, is decades away – it isn’t,” he adds. “We can achieve this in the next five-ten years.”

II suspect, that if all goes well, Dr. Hargreaves is right.

Read the article to find out how Velocys intend to achieve this aim.

 

September 25, 2020 Posted by | Energy, Transport | , , , | Leave a comment

Velocys Delivers 4 FT Reactors To Red Rock Biofuels In Oregon

The title of this post, is the same as that of this article on Biodiesel Magazine.

This is the introductory paragraph.

Velocys plc has completed manufacturing and delivery of four of its Fischer-Tropsch reactors to Red Rock Biofuels. Red Rock Biofuels plans to convert 136,000 tons of waste woody biomass into more than 15 MMgy of renewable diesel, sustainable aviation fuel and naphtha fuels in Lakeview, Oregon.

It would appear that MMgy is million million (billion) gallons per year, which I assume are US gallons. Why can’t they use litres, tonnes or Olympic swimming pools, like everybody else?

It appears 15 billion US gallons per year is 56.8 million Olympic swimming pools per year!

This page on US Energy Information, which is entitled Diesel Fuel Explained, says this.

In 2019, distillate fuel (essentially diesel fuel) consumption by the U.S. transportation sector was about 47.2 billion gallons (1.1 billion barrels). This amount accounted for 15% of total U.S. petroleum consumption and, on an energy content basis, for about 23% of total energy consumption by the transportation sector.

If I haven’t got my millions and billions mixed up, that is an awful lot of diesel.

Especially, to be produced from woody biomass from reactors designed and built by a company spun out of Oxford University.

August 4, 2020 Posted by | Energy | , , | Leave a comment

Can A Green Revolution Really Save Britain’s Crisis-Stricken Aerospace Industry?

The title of this post, is the same as that of this article on the Telegraph.

This is the sub-title.

The Prime Minister has set a challenging target of green flights within a generation, but is it a sustainable plan?

I have read the whole article, which is mainly about Velocys and their project at Immingham to create aviation biofuel from household rubbish.

They say the main problem is scaling up the process to get enough jet fuel. When I was working at ICI in the early 1970s, modelling chemical processes, scale-up always loomed-large as a problem.

Nothing changes!

I think we’ll get to our carbon-neutral objective, for aviation, but it will be a mixture of things.

  • Aviation biofuel.
  • All-electric airports.
  • Efficient aerodynamics and engines.
  • Electric short-haul aircraft.
  • Rail substitution for short flights.

Traditional aerospace must reform itself or die!

As to Velocys, they must solve their scaleup problem, so that all suitable household and industrial rubbish ends up doing something more useful, than beinmg incinerated or nuried in landfill.

July 5, 2020 Posted by | Energy, Transport | , , , , , | 1 Comment

Grant Shapps Announcement On Friday

I listened to Grant Shapps announcement on Friday, when he gave the daily COVID-19 Press Conference.

This article on the Velocys web site is entitled Government Announces Jet Zero Council And Confirms Support For Velocys Waste-To-Jet-Fuel Project.

The article shows a video of the speech and this summary paragraph.

At this afternoon’s COVID-19 press conference, Secretary of State for Transport, Grant Shapps, announced the establishment of a new Jet Zero Council and confirmed Government support for Velocys.

So who are the company with the strange name of Velocys?

This is a quote from the Velocys CEO; Henrik Wareborn.

Today’s announcement on the formation of a Jet Zero Council shows that a new era of net zero carbon flying is on a credible path, at a time when we need it more than ever. This follows news earlier today that our Altalto waste-to-jet fuel facility – the first of its kind in the UK – has received additional funding from Government and formally received planning permission, meaning it could be producing sustainable aviation fuel in commercial scale by the middle of this decade.

Is a new era of net zero carbon flying a possibility or is this a dream too far?

The AltAlto Project

Yhe project is called AltAlto and it has its own web site.

It is backed by British Airways and Shell, and uses technology from Velocys.

This description of the project is on the home page.

Altalto turns household and commercial waste into clean-burning fuels with reduced greenhouse gas emissions for air and road transport.

A page called Technology describes how it is done.

This is the initial summary.

Our process can accept a wide variety of waste, while delivering a clean product. There are very limited emissions to atmosphere from the plant except water and carbon dioxide. Components of the waste which do not get turned into fuel, such as metals and stones, are recycled; a small amount of it (less than 3%) goes to landfill.

This diagram from the Velocys web site illustrates the process.

The then goes through the stages of the process.

  • Stage 1 – Preparation – First the waste is treceived, sorted and prepared.
  • Stage 2 – Gasification – Next the solid waste is gasified; heated to a high temperature to break it down and convert it into synthesis gas or syngas (carbon monoxide and hydrogen).
  • Stage 3 – Synthesis – After cleaning, the syngas is used to synthesis hydrocarbons using the Fischer-Tropsch technology provided by Velocys.
  • Stage 4 – Finishing – These hydrocarbons are then refined into the final products; renewable jet fuel (in the form of SPK) and naphtha.

They add this final summary.

The process is fundamentally different to incineration: instead of being burnt, the carbon in the waste is converted into a fuel for use in aircraft or vehicles.

There are many clean ways of making electricity, but it is really difficult to make sustainable jet fuel – this is one of the very few economic ways of doing so. It’s therefore a far better use of household waste than incineration, creating a much more valuable and environmentally beneficial product.

Could the process be considered a sophisticated waste incineration process, where the actual incineration is performed in the turbofan engine in the aircraft or the diesel engine in the truck to provide power?

I have a few questions.

What is Fischer-Tropsch Technology?

This is the first sentence for the Wikipedia entry for the Fischer-Tropsch Process.

The Fischer-Tropsch process is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150-300 °C (302-572 °F) and pressures of one to several tens of atmospheres. The process was first developed by Franz Fischer and Hans Tropsch at the Kaiser-Wilhelm-Institut fur Kohlenforschung in Mulheim an der Ruhr, Germany, in 1925.

One of the companies involved in using the Fischer-Tropsch process is the South African company; Sasol. Wikipedia gives this summary about Sasol’s use of the process.

Another large scale implementation of Fischer-Tropsch technology is a series of plants operated by Sasol in South Africa, a country with large coal reserves, but little oil. The first commercial plant opened in 1952. Sasol uses coal and now natural gas as feedstocks and produces a variety of synthetic petroleum products, including most of the country’s diesel fuel.

The involvement with the apartheid regime in South Africa probably wasn’t the best of publicity for the process.

But have Oxford University and Velocys created a way of making net zero carbon aviation and diesel fuels?

What Is SPK?

SPK is Synthetic Paraffinic Kerosene and it is an aviation biofuel.

The Wikipedia entry for aviation biofuel has a sub-section called FT-SPK, where this is said.

The second route involves processing solid biomass using pyrolysis to produce pyrolysis oil or gasification to produce a syngas which is then processed into FT SPK (Fischer-Tropsch Synthetic Paraffinic Kerosene)

This sounds like the Velocys process.

What Are The Environmental Effects?

In the Wikipedia entry for aviation biofuel, there is a section called Environmental Effects. This is the first sentence.

A life cycle assessment by the Yale School of Forestry on jatropha, one source of potential biofuels, estimated using it could reduce greenhouse gas emissions by up to 85% if former agro-pastoral land is used, or increase emissions by up to 60% if natural woodland is converted to use. In addition, biofuels do not contain sulphur compounds and thus do not emit sulphur dioxide.

As Velocys produce their SPK from household waste, their fuel will have a different and more positive effect on greenhouse gas emissions.

This press release on the Velocys web site is entitled Plans Submitted For The First Waste To Jet Fuel Plant In The UK And Europe.

This is a paragraph.

The proposed plant will take hundreds of thousands of tonnes of household and commercial solid waste and turn it into clean burning sustainable aviation fuel, reducing net greenhouse gases by 70% compared to the fossil fuel equivalent – equal to taking up to 40,000 cars per year off the road.

Earlier, I quoted this about the process.

There are very limited emissions to atmosphere from the plant except water and carbon dioxide.

A lot depends on where the carbon dioxide is produced, but if it is produced by a well-designed process plant, it should be possible to capture it for storage.

There are also possibilities to reuse carbon-dioxide in the Fischer-Tropsch process.

Could Diesel Be Produced By The Process?

In the United States, Velocys are developing a project called Bayou Fuels.

This is said on the home page.

We are developing a plant in Mississippi that will create diesel fuel for road transportation in the U.S. It will process waste from the paper and lumber industries – woody biomass forest residue that would otherwise rot on the forest floor or contribute to forest fires.

It should be noted that this is said in the Wikipedia entry for the Port of Immingham.

In 2013 ABP began the development of the “Immingham Renewable Fuels Terminal” on the Humber International Terminal site, as part of a 15-year contract with Drax Power Station to supply biomass (wood pellet) to the powerplant. ABP’s total investment in biomass handling facilities, including installations at Hull and Goole was to be around £100 million.

As Velocys’s new  plant will be at Immingham, close to the biomass port, I suspect the answer is yes.

Where Is The Plant Located?

This Google Map shows Immingham Port and the area to the South.

Note.

  1. Immingham Port is towards the North West corner of the map.
  2. South Humber Bank Power Station is towards the South East corner of the map.

It would appear that the Altalto plant, will be located on an 80 acre site between the port and the power station.

There would also appear from Google Maps that the Barton Line runs through the area, which would surely be handy for bringing in the waste and taking out the fuel.

This picture from the Altalto web site, shows a visualisation of the plant, looking North East.

INote, what looks to be the railway, through the site in the foreground.

There are also a couple of informative videos, including one from the BBC, on this page of the Velocys web site.

t looks to be the ideal site.

How Much Fuel Will The Plant Produce?

According to the video on the web site, the plant will convert 500,000 tonnes of waste into 60,000,000 litres of fuel. I estimate that would be about 48,000 tonnes of jet fuel.

Could The Diesel Fuel Be Used To Decarbonise The Railways In The UK?

I believe that a substantial amount of the use of diesel on the UK’s railways will be cut by the use of battery and hydrogen power in multiple units and locomotives.

But some services like the heavy stone trains moving aggregates from the Mendips and the Peak District to London will be difficult to decarbonise, unless a locomotive manufacturer produces a hydrogen-powered locomotive with upwards of five megawatts of power. And that is a tough design challenge.

Low sulpur diesel produced from waste would be one way to reduce the carbon footprint.

Conclusion

It sounds a crazy idea to create aviation fuel and diesel from household waste!

Will It Work?

Consider.

  • It appears that most of the technology used to produce this fuel has been around for decades.
  • Sasol opened their first commercial plant in South Africa, using the Fischer-Tropsch process in 1952 and still use the technique today.
  • Oxford University have added magic ingredients to the Fischer-Tropsch process.
  • Velocys seem to have put in a lot of serious thought to get the Altalto project ticking all the right boxes.

The project could be late, but I feel it will deliver the main objective of converting household and commercial waste to jet fuel and diesel.

 

 

June 14, 2020 Posted by | Transport, World | , , , , , , , , | 5 Comments