The Anonymous Widower

Our Sustainability Journey

The title of this post, is the same as that of this press release on the Rolls-Royce web site.

It is sub-titled.

Paul Stein’s Thoughts On Sustainability And Electrification

Paul Stein is Rolls-Royce’s Chief Technology Officer, so what he says is important.

This press release was the source of the information behind Distributed Propulsion ‘Maybe The Only Means’ For Small Electric Flight Progress, which I wrote about Rolls-Royce’s beer keg-sized 2.5 MW generator.

This is the third paragraph.

We’ve taken great steps at Rolls-Royce with our three-pillar sustainability approach of developing the gas turbine to even greater efficiency, supporting the introduction of Sustainable Aviation Fuel and creating new, disruptive technologies such as electrification.

These are definitely, the three pillars of wisdom, when it comes to sustainable aviation.

E-Fan X

This paragraph is Paul Stein’s view of the E-Fan X.

One of the great endeavours in the latter category has been our E-Fan X programme in partnership with Airbus. From our side, this has involved creating a hybrid-electric power generation system at a scale never previously seen in our industry, comprised of an embedded AE2100 gas turbine driving a 2.5MW generator and 3000V power electronics and an electric propulsion unit. What has been particularly encouraging has been the amount of industry interest and support for this programme, and I know everyone at Rolls-Royce and Airbus has been truly grateful for that.

He states that the E-Fan  has now concluded, but a several valuable lessons have been learned.

2.5 MW Generator

He describes the generator like this.

Amongst the many great achievements from E-Fan X has been the generator – about the same size as a beer keg – but producing a staggering 2.5 MW. That’s enough power to supply 2,500 homes and fully represents the pioneering spirit on this project.

The press release discloses that the heart of this staggering generator is a Rolls-Royce AE2100 gas turbine, which powers the latest version of the legendary Lockheed Hercules; the C-130J Super Hercules.

Wikipedia gives this data for the AE2100D2 version of the engine.

  • Length – three metres
  • Diameter – 0.73 metres
  • Weight – 783 kilograms
  • Maximum Power Output – 3458 kW
  • Fuel Consumption – 0.25/kW/h

It looks like in the E-Fan X application, the engine is not at full power.

Use With Aviation Biofuel

Aviation Biofuel is described like this in the first sentences of its Wikipedia entry.

Aviation biofuel is a biofuel used for aircraft. It is considered by some to be the primary means by which the aviation industry can reduce its carbon footprint. After a multi-year technical review from aircraft makers, engine manufacturers and oil companies, biofuels were approved for commercial use in July 2011.

But it doesn’t necessarily mean growing large amounts of crops and converting it to the fuel. Altalto, who are backed by British Airways, Shell, Oxford University and the British Government are building a plant at Immingham to convert household and industrial waste into aviation biofuel.

I would expect that Rolls-Royce have made sure that the generator will work with aviation biofuel.

A Memory Of Emergency Power Generation

About twenty-five years, there was a major power failure after a thunder storm, where I lived in Suffolk and C and myself went to bed in the dark. We awoke to full power in the morning, after a good night’s sleep with no disturbance.

Imagine my surprise, when I let the dogs out to find parked in the field in front of the house, a very large articulated truck.

I was greeted by an engineer, who asked if I minded, his generator in my field. I seem to remember my response was to offer him a cup of tea, which he refused, as he said he had everything he needed in the truck.

It turned out that the main sub-station for the area had received a direct lightning strike and had been destroyed. So to supply power to all the nearby villages, as my farm was at the end of the supply, it was the most convenient place to plug in a transportable gas-turbine generator. The generator was in the field for about ten days and the whole operation impressed me with its professionalism.

But with this new 2.5 MW generator from Rolls-Royce, there would only need to be a small 3.5 tonne four-wheeled truck, to include the generator, fuel and living quarters for the engineer

We have made a lot of progress in twenty-five years.

A Modern Railway Locomotive

The power of this new Class 68 diesel locomotive, that was built in Spain, by Swiss company Stadler is a very healthy 2,800 kW.

Consider these facts about a Class 68 locomotive.

  • Thirty-four of these locomotives have been produced for the UK.
  • They are powered by a Caterpillar C175-16 engine, which weighs thirteen tonnes.
  • The transmission of these locomotives is electric, which means that the diesel engine drives a generator and the train is driven by electric traction motors.
  • The locomotive is equally at home hauling intermodal freight trains and passenger trains for Chiltern Railways or TransPennine Express.
  • According to Wikipedia, Class 68 locomotives comply with Stage III A of the European emission standards but not Stage III B. But that is much better than most of our noisy, smelly and polluting diesel locomotives.

Class 68 locomotives are members of the UKLight family of locomotives, which contains, these two other locomotives.

  • Already in service is the Class 88 locomotive, which is a bi-mode locomotive, which is capable of running on electrification or the on-board 0.7 MW diesel engine.
  • Under development is the Class 93 locomotive, which is a tri-mode 110 mph locomotive, which is capable of running on electrification, the on-board 0.7 MW diesel engine or battery power.

Stadler seem to be able to mix-and-match various power sources to provide versatile and highly-desirable locomotives.

I feel it would be feasible to design a railway locomotive with the following power sources.

  • 25 KVAC  overhead or 750 VDC third-rail electrification, providing up to perhaps the four MW of a Class 88 locomotive.
  • A Rolls-Royce gas-turbine generator running on aviation biofuel, providing up to perhaps three MW.
  • Batteries up to a weight of perhaps ten tonnes.

I am sure that it could handle many of the routes still run with diesel locomotives in the UK.

  • It would handle all locomotive-hauled passenger services and would be electric-only in stations.
  • It certainly solves the problem of hauling long intermodal freight trains between Felixstowe and the Midlands and the North.
  • To handle the heaviest stone and aggregate trains, it might need a more powerful generator, but I’m sure Rolls-Royce would oblige.

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I gave a list of routes, that would need to be handled by a battery electric locomotive.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

Will Rolls-Royce’s generator be able to supply 2.5 MW for up to four hours?

This would need two-and-a-half tonnes of aviation biofuel, which would be around 3,200 litres, which could be carried in the 5,000 litre tank of a Class 68 locomotive.

It certainly seems feasible to replace diesel locomotives with gas-turbine locomotives running on aviation biofuel, to reduce net carbon emissions and reduce noise and pollution.

But this is not just a UK problem and many countries, who rely on diesel-hauled rail freight, would look seriously at such a locomotive.

Underfloor Mounting In Passenger Trains

These pictures show the space underneath a Hitachi Class 800 train.

The red cap visible in some pictures is the filler for the oil or diesel for the MTU 12V 1600 R 80L diesel engine used to power the trains away from electrification.

This diesel engine has this specification.

  • It produces 560 kW of power.
  • It weighs around six tonnes.
  • Its is about 4 x 2.5 x 1 metres in size.

The diesel engine produces about a fifth of the power as the gas-turbine generator, which is also smaller and very much lighter in weight.

It should also be noted, that a nine-car Class 800 train has five of these MTU diesel engines.

At a first glance, it would appear Hitachi could find one of Rolls-Royce’s gas-turbine generators very useful.

  • It might even enable self-powered high speed trains to run on lines without electrification at speeds well in excess of 140 mph.
  • I can certainly see, High Speed Two’s classic-compatible trains having one or possibly two of these generators, so they can extend services on lines without electrification.

We shouldn’t forget that one version of British Rail’s Advanced Passenger Train was to be gas-turbine powered.

A Class 43 Diesel Power-Car

Rolls-Royce would need a test-bed for a trial rail application of their 2.5 MW generator and there is probably no better trial vehicle, than one of the numerous Class 43 power-cars waiting to be scrapped. They could probably obtain a complete InterCity 125, if they wanted one for a realistic weight, test equipment and a second power-car for comparison and rescue.

But seriously, if we are going to remove diesel from UK railways by 2040, a solution needs to be found for the GWR Castles, ScotRail’s Inter7Citys and NetworkRail’s New Measurement Train.

One of the great advantages of these staggering (Rolls-Royce’s Chief Technology Officer’s word, not mine!) generators is that they are controlled by Full Authority Digital Engine Control or FADEC.

FADEC will give the pilots in a Hercules or other aircraft, all the precise control they need and I doubt Rolls-Royce will leave FADEC out of their gas turbine generator, as it would give the operator or driver extremely precise control.

A driver of a GWR Castle equipped with two gas-turbine power-cars, would be able to do the following.

  • Adjust the power to the load and terrain, with much more accuracy, than at present.
  • Shut the engines down and start them quickly, when passing through sensitive areas.
  • Cut carbon-dioxide emissions, by simply using a minimum amount of fuel.

I would put a battery in the back of the Class 43, to provide hotel power for the passenger coaches.

Running current MTU engines in the Class 43s, on biodiesel is surely a possibility, but that not an elegant engineering solution. It also doesn’t cut carbon emissions.

As there are still over a hundred Class 43s in service, it could even be a substantial order.

It should also be noted, that more-efficient and less-polluting MTU engines were fitted in Class 43s from 2005, so as MTU is now part of Rolls-Royce, I suspect that Rolls-Royce have access to all the drawings and engineers notes, if not the engineers themselves

But it would be more about publicity for future sales around the world, with headlines like.

Iconic UK Diesel Passenger Trains To Receive Green Roll-Royce Jet Power!

COVID-19 has given Rolls-Royce’s aviation business a real hammering, so perhaps they can open up a new revenue stream by replacing the engines of diesel locomotives,

A Class 55 Locomotive

Why Not?

A Class 55 locomotive is diesel electric and there are thousands of diesel locomotives in the world, built to similar basic designs, that need a more-efficient and more environmentally-friendly replacement for a dirty, smelly, noisy and polluting diesel power-plant.

Marine Applications

The Wikipedia entry for the Cat C175, says this.

The Cat C175 is often used in locomotives and passenger-class ships.

I suspect there will be marine applications for the gas-turbine generator.

Conclusion

I’m very certain that Rolls-Royce’s pocket power station has a big future.

Who said that dynamite comes in small parcels?

 

 

July 19, 2020 Posted by | Energy, Transport | , , , , , , , , , , | 6 Comments

Grant Shapps Announcement On Friday

I listened to Grant Shapps announcement on Friday, when he gave the daily COVID-19 Press Conference.

This article on the Velocys web site is entitled Government Announces Jet Zero Council And Confirms Support For Velocys Waste-To-Jet-Fuel Project.

The article shows a video of the speech and this summary paragraph.

At this afternoon’s COVID-19 press conference, Secretary of State for Transport, Grant Shapps, announced the establishment of a new Jet Zero Council and confirmed Government support for Velocys.

So who are the company with the strange name of Velocys?

This is a quote from the Velocys CEO; Henrik Wareborn.

Today’s announcement on the formation of a Jet Zero Council shows that a new era of net zero carbon flying is on a credible path, at a time when we need it more than ever. This follows news earlier today that our Altalto waste-to-jet fuel facility – the first of its kind in the UK – has received additional funding from Government and formally received planning permission, meaning it could be producing sustainable aviation fuel in commercial scale by the middle of this decade.

Is a new era of net zero carbon flying a possibility or is this a dream too far?

The AltAlto Project

Yhe project is called AltAlto and it has its own web site.

It is backed by British Airways and Shell, and uses technology from Velocys.

This description of the project is on the home page.

Altalto turns household and commercial waste into clean-burning fuels with reduced greenhouse gas emissions for air and road transport.

A page called Technology describes how it is done.

This is the initial summary.

Our process can accept a wide variety of waste, while delivering a clean product. There are very limited emissions to atmosphere from the plant except water and carbon dioxide. Components of the waste which do not get turned into fuel, such as metals and stones, are recycled; a small amount of it (less than 3%) goes to landfill.

This diagram from the Velocys web site illustrates the process.

The then goes through the stages of the process.

  • Stage 1 – Preparation – First the waste is treceived, sorted and prepared.
  • Stage 2 – Gasification – Next the solid waste is gasified; heated to a high temperature to break it down and convert it into synthesis gas or syngas (carbon monoxide and hydrogen).
  • Stage 3 – Synthesis – After cleaning, the syngas is used to synthesis hydrocarbons using the Fischer-Tropsch technology provided by Velocys.
  • Stage 4 – Finishing – These hydrocarbons are then refined into the final products; renewable jet fuel (in the form of SPK) and naphtha.

They add this final summary.

The process is fundamentally different to incineration: instead of being burnt, the carbon in the waste is converted into a fuel for use in aircraft or vehicles.

There are many clean ways of making electricity, but it is really difficult to make sustainable jet fuel – this is one of the very few economic ways of doing so. It’s therefore a far better use of household waste than incineration, creating a much more valuable and environmentally beneficial product.

Could the process be considered a sophisticated waste incineration process, where the actual incineration is performed in the turbofan engine in the aircraft or the diesel engine in the truck to provide power?

I have a few questions.

What is Fischer-Tropsch Technology?

This is the first sentence for the Wikipedia entry for the Fischer-Tropsch Process.

The Fischer-Tropsch process is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150-300 °C (302-572 °F) and pressures of one to several tens of atmospheres. The process was first developed by Franz Fischer and Hans Tropsch at the Kaiser-Wilhelm-Institut fur Kohlenforschung in Mulheim an der Ruhr, Germany, in 1925.

One of the companies involved in using the Fischer-Tropsch process is the South African company; Sasol. Wikipedia gives this summary about Sasol’s use of the process.

Another large scale implementation of Fischer-Tropsch technology is a series of plants operated by Sasol in South Africa, a country with large coal reserves, but little oil. The first commercial plant opened in 1952. Sasol uses coal and now natural gas as feedstocks and produces a variety of synthetic petroleum products, including most of the country’s diesel fuel.

The involvement with the apartheid regime in South Africa probably wasn’t the best of publicity for the process.

But have Oxford University and Velocys created a way of making net zero carbon aviation and diesel fuels?

What Is SPK?

SPK is Synthetic Paraffinic Kerosene and it is an aviation biofuel.

The Wikipedia entry for aviation biofuel has a sub-section called FT-SPK, where this is said.

The second route involves processing solid biomass using pyrolysis to produce pyrolysis oil or gasification to produce a syngas which is then processed into FT SPK (Fischer-Tropsch Synthetic Paraffinic Kerosene)

This sounds like the Velocys process.

What Are The Environmental Effects?

In the Wikipedia entry for aviation biofuel, there is a section called Environmental Effects. This is the first sentence.

A life cycle assessment by the Yale School of Forestry on jatropha, one source of potential biofuels, estimated using it could reduce greenhouse gas emissions by up to 85% if former agro-pastoral land is used, or increase emissions by up to 60% if natural woodland is converted to use. In addition, biofuels do not contain sulphur compounds and thus do not emit sulphur dioxide.

As Velocys produce their SPK from household waste, their fuel will have a different and more positive effect on greenhouse gas emissions.

This press release on the Velocys web site is entitled Plans Submitted For The First Waste To Jet Fuel Plant In The UK And Europe.

This is a paragraph.

The proposed plant will take hundreds of thousands of tonnes of household and commercial solid waste and turn it into clean burning sustainable aviation fuel, reducing net greenhouse gases by 70% compared to the fossil fuel equivalent – equal to taking up to 40,000 cars per year off the road.

Earlier, I quoted this about the process.

There are very limited emissions to atmosphere from the plant except water and carbon dioxide.

A lot depends on where the carbon dioxide is produced, but if it is produced by a well-designed process plant, it should be possible to capture it for storage.

There are also possibilities to reuse carbon-dioxide in the Fischer-Tropsch process.

Could Diesel Be Produced By The Process?

In the United States, Velocys are developing a project called Bayou Fuels.

This is said on the home page.

We are developing a plant in Mississippi that will create diesel fuel for road transportation in the U.S. It will process waste from the paper and lumber industries – woody biomass forest residue that would otherwise rot on the forest floor or contribute to forest fires.

It should be noted that this is said in the Wikipedia entry for the Port of Immingham.

In 2013 ABP began the development of the “Immingham Renewable Fuels Terminal” on the Humber International Terminal site, as part of a 15-year contract with Drax Power Station to supply biomass (wood pellet) to the powerplant. ABP’s total investment in biomass handling facilities, including installations at Hull and Goole was to be around £100 million.

As Velocys’s new  plant will be at Immingham, close to the biomass port, I suspect the answer is yes.

Where Is The Plant Located?

This Google Map shows Immingham Port and the area to the South.

Note.

  1. Immingham Port is towards the North West corner of the map.
  2. South Humber Bank Power Station is towards the South East corner of the map.

It would appear that the Altalto plant, will be located on an 80 acre site between the port and the power station.

There would also appear from Google Maps that the Barton Line runs through the area, which would surely be handy for bringing in the waste and taking out the fuel.

This picture from the Altalto web site, shows a visualisation of the plant, looking North East.

INote, what looks to be the railway, through the site in the foreground.

There are also a couple of informative videos, including one from the BBC, on this page of the Velocys web site.

t looks to be the ideal site.

How Much Fuel Will The Plant Produce?

According to the video on the web site, the plant will convert 500,000 tonnes of waste into 60,000,000 litres of fuel. I estimate that would be about 48,000 tonnes of jet fuel.

Could The Diesel Fuel Be Used To Decarbonise The Railways In The UK?

I believe that a substantial amount of the use of diesel on the UK’s railways will be cut by the use of battery and hydrogen power in multiple units and locomotives.

But some services like the heavy stone trains moving aggregates from the Mendips and the Peak District to London will be difficult to decarbonise, unless a locomotive manufacturer produces a hydrogen-powered locomotive with upwards of five megawatts of power. And that is a tough design challenge.

Low sulpur diesel produced from waste would be one way to reduce the carbon footprint.

Conclusion

It sounds a crazy idea to create aviation fuel and diesel from household waste!

Will It Work?

Consider.

  • It appears that most of the technology used to produce this fuel has been around for decades.
  • Sasol opened their first commercial plant in South Africa, using the Fischer-Tropsch process in 1952 and still use the technique today.
  • Oxford University have added magic ingredients to the Fischer-Tropsch process.
  • Velocys seem to have put in a lot of serious thought to get the Altalto project ticking all the right boxes.

The project could be late, but I feel it will deliver the main objective of converting household and commercial waste to jet fuel and diesel.

 

 

June 14, 2020 Posted by | Transport, World | , , , , , , , , | 5 Comments

Councils Rely On Diesels While Charging Drivers Who Use Them

The title of this post, is the same as that of this article in The Times.

Some points from the article.

  • Ninety-two percent of council vehicles are diesel-powered.
  • Only three percent are the greenest electric models.
  • Sivty-two council fleets are totally diesel.
  • Twelve councils are thinking of restricting or charging diesel or petrol vehicles to cut pollution, but all of these councils are reliant on diesel.

It looks like a case of politicians saying “Do as I say, but not as I do!”

 

 

December 11, 2019 Posted by | Transport | , , | 5 Comments

Pollution Charge For Diesels Has Cut City’s Toxic Fumes By A Third

The title of this post is the same as that of this article on Page 4 of today’s copy of The Times.

The only applies to London at the moment.

Surely other cities should follow the capital’s lead.

October 21, 2019 Posted by | Health, Transport | , , , | 2 Comments

Tell Patients To Ditch Diesel, Doctors Urged

The title of this post is the same as that of an article on the front page of today’s Times

It may be a sensible idea, but a lot of patients wouldn’t like it.

I suspect too in Inner London, where I live, the message has got through, as you meet more and more people, who are deciding that driving is not for them!

May 24, 2019 Posted by | Health | , | Leave a comment

SWR And Porterbrook Trial New Emission-Slashing Rail Technology

The title of this post is the same as that as this article on Rail Technology Magazine.

This is the first three paragraphs of the article.

Groundbreaking emission-reducing technology is to be fitted to South Western Railway (SWR) train units as part of a new trial aiming to cut down harmful emissions from diesel trains by 80%.

Porterbrook is working in partnership with exhaust manufacturer Eminox to carry out the trial, with the DfT supporting the rolling stock company’s investment.

This will see South Western Railway’s Class 159 diesel units fitted with a first-of-its-kind emissions control device, with plans to roll out the technology to hundreds of diesel trains across the UK’s rail network.

I have looked up Eminox on their web site.

This is the mission statement on the front page.

Eminox designs and manufactures exhaust after-treatment systems, reducing emissions from heavy-duty vehicles and equipment.

Our products are supplied as original equipment to meet the latest emissions standards. We also produce complete emissions systems for retrofit to meet the ever-changing demands of local air quality programmes such as London’s Ultra Low Emission Zone and Clean Air Zones across the country.

Our Eminox Custom team specialises in exhaust conversions and bespoke systems.

While politicians dither and fiddle, engineers engineer, with a little bot of help from Porterbrook and the DfT.

If this technology proves to be successful, I can see its application to large numbers of diesel trains around the world.

March 9, 2019 Posted by | Transport | , , , , , , | 5 Comments

Nissan And Jaguar Land Rover Are Paying The Price Of Backing Diesel

Politicians and unions are blaming Brexit for production cuts at Nissan and Jaguar Land Rover, but this problem has been on the cards for some time, due to our increasing reliance on diesel power.

The technology is now there for more electric cars and it is criminal that the Government hasn’t done enough to encourage their use.

  • We need more ultra-low emission zones, as London is introducing.
  • All parking spaces and garages on new housing must have charging points.
  • All city buses should be low emission.
  • All taxis and private hire vehicles should be low emission.
  • We need better connected railways with a lot more stations and some new lines.

So what have the politicians been doing in the last few years. Spending time arguing about the irrelevance of Brexit.

Talk about fiddling, while Rome burned!

February 4, 2019 Posted by | Transport | , , , | 1 Comment