The Anonymous Widower

High-Speed Low-Carbon Transport Between Great Britain And Ireland

Consider.

  • According to Statista, there were 13,160,000 passengers between the United Kingdom and the Irish Republic in 2019.
  • In 2019, Dublin Airport handled 32,907,673 passengers.
  • The six busiest routes from Dublin were Heathrow, Stansted, Amsterdam, Manchester, Birmingham and Stansted.
  • In 2018, Belfast International Airport handled 6,269,025 passengers.
  • The four busiest routes from Belfast International Airport were Stansted, Gatwick. Liverpool and Manchester, with the busiest route to Europe to Alicante.
  • In 2018, Belfast City Airport handled 2,445,529 passengers.
  • The four busiest routes from Belfast City Airport were Heathrow, Manchester, Birmingham and London City.

Note.

  1. The busiest routes at each airport are shown in descending order.
  2. There is a lot of air passengers between the two islands.
  3. Much of the traffic is geared towards London’s four main airports.
  4. Manchester and Liverpool get their fair share.

Decarbonisation of the air routes between the two islands will not be a trivial operation.

But technology is on the side of decarbonisation.

Class 805 Trains

Avanti West Coast have ordered thirteen bi-mode Class 805 trains, which will replace the diesel Class 221 trains currently working between London Euston and Holyhead.

  • They will run at 125 mph between Euston and Crewe using electric power.
  • If full in-cab digital signalling were to be installed on the electrified portion of the route, they may be able to run at 140 mph in places under the wires.
  • They will use diesel power on the North Wales Coast Line to reach Holyhead.
  • According to an article in Modern Railways, the Class 805 trains could be fitted with batteries.

I wouldn’t be surprised that when they are delivered, they are a version of the Hitachi’s Intercity Tri-Mode  Battery Train, the specification of which is shown in this Hitachi infographic.

Note.

  1. I suspect that the batteries will be used to handle regenerative braking on lines without electrification, which will save diesel fuel and carbon emissions.
  2. The trains accelerate faster, than those they replace.
  3. The claimed fuel and carbon saving is twenty percent.

It is intended that these trains will be introduced next year.

I believe that, these trains will speed up services between London Euston and Holyhead.

  • Currently, services take just over three-and-a-half hours.
  • There should be time savings on the electrification between London Euston and Crewe.
  • The operating speed on the North Wales Coast Line is 90 mph. This might be increased in sections.
  • Some extra electrification could be added, between say Crewe and Chester and possibly through Llandudno Junction.
  • I estimate that on the full journey, the trains could reduce emissions by up to sixty percent compared to the current diesel trains.

I think that a time of three hours could be achievable with the Class 805 trains.

New trains and a three hour journey time should attract more passengers to the route.

Holyhead

In Holyhead Hydrogen Hub Planned For Wales, I wrote about how the Port of Holyhead was becoming a hydrogen hub, in common with several other ports around the UK including Felixstowe, Harwich, Liverpool and Portsmouth.

Holyhead and the others could host zero-carbon hydrogen-powered ferries.

But this extract from the Wikipedia hints at work needed to be done to create a fast interchange  between trains and ferries.

There is access to the port via a building shared with Holyhead railway station, which is served by the North Wales Coast Line to Chester and London Euston. The walk between trains and ferry check in is less than two minutes, but longer from the remote platform 1, used by Avanti West Coast services.

This Google Map shows the Port of Holyhead.

I think there is a lot of potential to create an excellent interchange.

HSC Francisco

I am using the high-speed craft Francisco as an example of the way these ships are progressing.

  • Power comes from two gas-turbine engines, that run on liquified natural gas.
  • It can carry 1024 passengers and 150 cars.
  • It has a top speed of 58 knots or 67 mph. Not bad for a ship with a tonnage of over 7000.

This ship is in service between Buenos Aires and Montevideo.

Note.

  1. A craft like this could be designed to run on zero-carbon  liquid hydrogen or liquid ammonia.
  2. A high speed craft already runs between Dublin and Holyhead taking one hour and forty-nine minutes for the sixty-seven miles.

Other routes for a specially designed high speed craft might be.

  • Barrow and Belfast – 113 miles
  • Heysham and Belfast – 127 miles
  • Holyhead and Belfast – 103 miles
  • Liverpool and Belfast – 145 miles
  • Stranraer and Larne – 31 miles

Belfast looks a bit far from England, but Holyhead and Belfast could be a possibility.

London And Dublin Via Holyhead

I believe this route is definitely a possibility.

  • In a few years, with a few improvements on the route, I suspect that London Euston and Holyhead could be fairly close to three hours.
  • With faster bi-mode trains, Manchester Airport and Holyhead would be under three hours.
  • I would estimate, that a high speed craft built for the route could be under two hours between Holyhead and Dublin.

It certainly looks like London Euston and Dublin and Manchester Airport and Dublin would be under five hours.

In A Glimpse Of 2035, I imagined what it would be like to be on the first train between London and Dublin via the proposed fixed link between Scotland and Northern Ireland.

  • I felt that five-and-a-half hours was achievable for that journey.
  • The journey would have used High Speed Two to Wigan North Western.
  • I also stated that with improvements, London and Belfast could be three hours and Dublin would be an hour more.

So five hours between London Euston and Dublin using current technology without massive improvements and new lines could be small change well spent.

London And Belfast Via Holyhead

At 103 miles the ferry leg may be too long for even the fastest of the high speed craft, but if say the craft could do Holyhead and Belfast in two-and-a-half hours, it might just be a viable route.

  • It might also be possible to run the ferries to a harbour like Warrenpoint, which would be eighty-six miles.
  • An estimate based on the current high speed craft to Dublin, indicates a time of around two hours and twenty minutes.

It could be viable, if there was a fast connection between Warrenpoint and Belfast.

Conclusion

Once the new trains are running between London Euston and Holyhead, I would expect that an Irish entrepreneur will be looking to develop a fast train and ferry service between England and Wales, and the island of Ireland.

It could be sold, as the Greenest Way To Ireland.

Class 807 Trains

Avanti West Coast have ordered ten electric Class 807 trains, which will replace some of the diesel Class 221 trains.

  • They will run at 125 mph between Euston and Liverpool on the fully-electrified route.
  • If full in-cab digital signalling were to be installed on the route, they may be able to run at 140 mph in places.
  • These trains appear to be the first of the second generation of Hitachi trains and they seem to be built for speed and a sparking performance,
  • These trains will run at a frequency of two trains per hour (tph) between London and Liverpool Lime Street.
  • Alternate trains will stop at Liverpool South Parkway station.

In Will Avanti West Coast’s New Trains Be Able To Achieve London Euston and Liverpool Lime Street In Two Hours?, I came to the conclusion, that a two-hour journey time was possible, when the new Class 807 trains have entered service.

London And Belfast Via Liverpool And A Ferry

Consider.

  • An hour on the train to and from London will be saved compared to Holyhead.
  • The ferry terminal is in Birkenhead on the other side of the Mersey and change between Lime Street station and the ferry could take much longer than at Holyhead.
  • Birkenhead and Belfast is twice the distance of Holyhead and Dublin, so even a high speed craft would take three hours.

This Google Map shows the Ferry Terminal and the Birkenhead waterfront.

Note.

  1. The Ferry Terminal is indicated by the red arrow at the top of the map.
  2. There are rows of trucks waiting for the ferries.
  3. In the South East corner of the map, the terminal of the Mersey Ferry sticks out into the River
  4. Hamilton Square station is in-line with the Mersey Ferry at the bottom of the map and indicated with the usual red symbol.
  5. There is a courtesy bus from Hamilton Square station to the Ferry Terminal for Ireland.

There is a fourteen tph service between Hamilton Square and Liverpool Lime Street station.

This route may be possible, but the interchange could be slow and the ferry leg is challenging.

I don’t think the route would be viable unless a much faster ferry is developed. Does the military have some high speed craft under development?

Conclusion

London and Belfast via Liverpool and a ferry is probably a trip for enthusiasts or those needing to spend a day in Liverpool en route.

Other Ferry Routes

There are other ferry routes.

Heysham And Barrow-in-Furness

,These two ports might be possible, but neither has a good rail connection to London and the South of England.

They are both rail connected, but not to the standard of the connections at Holyhead and Liverpool.

Cairnryan

The Cairnryan route could probably be improved to be an excellent low-carbon route to Glasgow and Central Scotland.

Low-Carbon Flight Between The Islands Of Great Britain And Ireland

I think we’ll gradually see a progression to zero-carbon flight over the next few years.

Sustainable Aviation Fuel

Obviously zero-carbon would be better, but until zero-carbon aircraft are developed, there is always sustainable aviation fuel.

This can be produced from various carbon sources like biowaste or even household rubbish and disposable nappies.

British Airways are involved in a project called Altalto.

  • Altalto are building a plant at Immingham to turn household rubbish into sustainable aviation fuel.
  • This fuel can be used in jet airliners with very little modification of the aircraft.

I wrote about Altalto in Grant Shapps Announcement On Friday.

Smaller Low-Carbon Airliners

The first low- and zero-carbon airliners to be developed will be smaller with less range, than Boeing 737s and Airbus A 320s. These three are examples of three under development.

I feel that a nineteen seater aircraft with a range of 500 miles will be the first specially designed low- or zero-carbon airliner to be developed.

I believe these aircraft will offer advantages.

  • Some routes will only need refuelling at one end.
  • Lower noise and pollution.
  • Some will have the ability to work from short runways.
  • Some will be hybrid electric running on sustainable aviation fuel.

They may enable passenger services to some smaller airports.

Air Routes Between The Islands Of Great Britain And Ireland

These are distances from Belfast City Airport.

  • Aberdeen – 228 miles
  • Amsterdam – 557 miles
  • Birmingham – 226 miles
  • Blackpool – 128 miles
  • Cardiff – 246 miles
  • Edinburgh – 135 miles
  • Gatwick – 337 miles
  • Glasgow – 103 miles
  • Heathrow – 312 miles
  • Jersey – 406 miles
  • Kirkwall – 320 miles
  • Leeds – 177 miles
  • Liverpool – 151 miles
  • London City – 326 miles
  • Manchester – 170 miles
  • Newcastle – 168 miles
  • Southampton – 315 miles
  • Southend – 344 miles
  • Stansted – 292 miles
  • Sumburgh – 401 miles

Note.

  1. Some airports on this list do not currently have flights from Belfast City Airport.
  2. I have included Amsterdam for comparison.
  3. Distances to Belfast International Airport, which is a few miles to the West of Belfast City Airport are within a few miles of these distances.

It would appear that much of Great Britain is within 500 miles of Belfast City Airport.

These are distances from Dublin Airport.

  • Aberdeen – 305 miles
  • Amsterdam – 465 miles
  • Birmingham – 199 miles
  • Blackpool – 133 miles
  • Cardiff – 185 miles
  • Edinburgh – 208 miles
  • Gatwick – 300 miles
  • Heathrow – 278 miles
  • Jersey – 339 miles
  • Kirkwall – 402 miles
  • Leeds – 190 miles
  • Liverpool – 140 miles
  • London City – 296 miles
  • Manchester – 163 miles
  • Newcastle – 214 miles
  • Southampton – 268 miles
  • Southend – 319 miles
  • Stansted – 315 miles
  • Sumburgh – 483 miles

Note.

  1. Some airports on this list do not currently have flights from Dublin Airport.
  2. I have included Amsterdam for comparison.

It would appear that much of Great Britain is within 500 miles of Dublin Airport.

I will add a few long routes, that someone  might want to fly.

  • Cork and Aberdeen – 447 miles
  • Derry and Manston – 435 miles
  • Manston and Glasgow – 392 miles
  • Newquay and Aberdeen – 480 miles
  • Norwich and Stornaway – 486 miles.

I doubt there are many possible air services in the UK and Ireland that are longer than 500 miles.

I have a few general thoughts about low- and zero-carbon air services in and around the islands of Great Britain and Ireland.

  • The likely five hundred mile range of the first generation of low- and zero-carbon airliners fits the size of the these islands well.
  • These aircraft seem to have a cruising speed of between 200 and 250 mph, so flight times will not be unduly long.
  • Airports would need to have extra facilities to refuel or recharge these airliners.
  • Because of their size, there will need to be more flights on busy routes.
  • Routes which are less heavily used may well be developed, as low- or zero-carbon could be good for marketing the route.

I suspect they could be ideal for the development of new routes and even new eco-friendly airports.

Conclusion

I have come to the conclusion, that smaller low- or zero-carbon are a good fit for the islands of Great Britain and Ireland.

But then Flybe and Loganair have shown that you can make money flying smaller planes around these islands with the right planes, airports, strategy and management.

Hydrogen-Powered Planes From Airbus

Hydrogen-powered zero-carbon aircraft could be the future and Airbus have put down a marker as to the way they are thinking.

Airbus have proposed three different ZEROe designs, which are shown in this infographic.

The turboprop and the turbofan will be the type of designs, that could be used around Great Britain and Ireland.

The ZEROe Turboprop

This is Airbus’s summary of the design for the ZEROe Turboprop.

Two hybrid hydrogen turboprop engines, which drive the six bladed propellers, provide thrust. The liquid hydrogen storage and distribution system is located behind the rear pressure bulkhead.

This screen capture taken from the video, shows the plane.

It certainly is a layout that has been used successfully, by many conventionally-powered aircraft in the past. The De Havilland Canada Dash 8 and ATR 72 are still in production.

I don’t think the turboprop engines, that run on hydrogen will be a problem.

If you look at the Lockheed-Martin C 130J Super Hercules, you will see it is powered by four Rolls-Royce AE 2100D3 turboprop engines, that drive 6-bladed Dowty R391 composite constant-speed fully-feathering reversible-pitch propellers.

These Rolls-Royce engines are a development of an Allison design, but they also form the heart of Rolls-Royce’s 2.5 MW Generator, that I wrote about in Our Sustainability Journey. The generator was developed for use in Airbus’s electric flight research program.

I wouldn’t be surprised to find the following.

  • , The propulsion system for this aircraft is under test with hydrogen at Derby and Toulouse.
  • Dowty are testing propellers suitable for the aircraft.
  • Serious research is ongoing to store enough liquid hydrogen in a small tank that fits the design.

Why develop something new, when Rolls-Royce, Dowty and Lockheed have done all the basic design and testing?

This screen capture taken from the video, shows the front view of the plane.

From clues in the picture, I estimate that the fuselage diameter is around four metres. Which is not surprising, as the Airbus A320 has a height of 4.14 metres and a with of 3.95 metres. But it’s certainly larger than the fuselage of an ATR-72.

So is the ZEROe Turboprop based on a shortened Airbus A 320 fuselage?

  • The ATR 72 has a capacity of 70 passengers.
  • The ZEROe Turboprop has a capacity of less than a hundred passengers.
  • An Airbus A320 has six-abreast seating.
  • Could the ZEROe Turboprop have sixteen rows of seats, as there are sixteen windows in front of the wing?
  • With the seat pitch of an Airbus A 320, which is 81 centimetres, this means just under thirteen metres for the passengers.
  • There could be space for a sizeable hydrogen tank in the rear part of the fuselage.
  • The plane might even be able to use the latest A 320 cockpit.

It looks to me, that Airbus have designed a larger ATR 72 based on an A 320 fuselage.

I don’t feel there are any great technical challenges in building this aircraft.

  • The engines appear to be conventional and could even have been more-or-less fully developed.
  • The fuselage could be a development of an existing design.
  • The wings and tail-plane are not large and given the company’s experience with large composite structures, they shouldn’t be too challenging.
  • The hydrogen storage and distributing system will have to be designed, but as hydrogen is being used in increasing numbers of applications, I doubt the expertise will be difficult to find.
  • The avionics and other important systems could probably be borrowed from other Airbus products.

Given that the much larger and more complicated Airbus A380 was launched in 2000 and first flew in 2005, I think that a prototype of this aircraft could fly around the middle of this decade.

It may seem small at less than a hundred seats, but it does have a range of greater than a 1000 nautical miles or 1150 miles.

Consider.

  • It compares closely in passenger capacity, speed and range, with the De Havilland Canada Dash 8/400 and the ATR 72/600.
  • The ATR 72 is part-produced by Airbus.
  • The aircraft is forty percent slower than an Airbus A 320.
  • It looks like it could be designed to have a Short-Takeoff-And Landing (STOL) capability.

I can see the aircraft replacing Dash 8s, ATR 72s and similar aircraft all over the world. There are between 2000 and 3000 operational airliners in this segment.

The ZEROe Turbofan

This is Airbus’s summary of the design.

Two hybrid hydrogen turbofan engines provide thrust. The liquid hydrogen storage and distribution system is located behind the rear pressure bulkhead.

This screen capture taken from the video, shows the plane.

ZEROeTurbofan

This screen capture taken from the video, shows the front view of the plane.

The aircraft doesn’t look very different different to an Airbus A320 and appears to be fairly conventional. It does appear to have the characteristic tall winglets of the A 320 neo.

I don’t think the turbofan engines, that run on hydrogen will be a problem.

These could be standard turbofan engines modified to run on hydrogen, fuelled from a liquid hydrogen tank behind the rear pressure bulkhead of the fuselage.

If you want to learn more about gas turbine engines and hydrogen, read this article on the General Electric web site, which is entitled The Hydrogen Generation: These Gas Turbines Can Run On The Most Abundant Element In the Universe,

These are my thoughts of the marketing objectives of the ZEROe Turbofan.

  • The cruising speed and the number of passengers are surprisingly close, so has this aircraft been designed as an A 320 or Boeing 737 replacement?
  •  I suspect too, that it has been designed to be used at any airport, that could handle an Airbus A 320 or Boeing 737.
  • It would be able to fly point-to-point flights between most pairs of European or North American cities.

It would certainly fit the zero-carbon shorter range airliner market!

In fact it would more than fit the market, it would define it!

I very much believe that Airbus’s proposed zero-carbon hydrogen-powered designs and others like them will start to define aviation on routes of up to perhaps 3000 miles, from perhaps 2035.

  • The A 320 neo was launched in December 2010 and entered service in January 2016.  That was just five years and a month.
  • I suspect that a lot of components like the fuselage sections, cockpit, avionics, wings, landing gear, tailplane and cabin interior could be the same in a A 320 neo and a ZEROe Turbofan.
  • Flying surfaces and aerodynamics could be very similar in an A 320 neo and a ZEROe Turbofan
  • There could even be commonality between the ZEROe Turboprop and the ZEROe Turbofan, with respect to fuselage sections, cockpit, avionics and cabin interior.

There also must be the possibility, that if a ZEROe Turbofan is a hydrogen-powered A 320 neo, that this would enable the certification process to be simplified.

It might even be possible to remanufacture a A 320 neo into a ZEROe Turbofan. This would surely open up all sorts of marketing strategies.

My project management, flying and engineering knowledge says that if they launched the ZEROe Turbofan this year, it could be in service by the end of the decade on selected routes.

Conclusion

Both the ZEROe Turboprop and ZEROe Turbofan are genuine zero-carbon aircraft, which fit into two well-defined market segments.

I believe that these two aircraft and others like them from perhaps Boeing and Bombardier could be the future of aviation between say 500 and 3000 miles.

With the exception of the provision of hydrogen refuelling at airports, there will be no need for any airport infrastructure.

I also wouldn’t be surprised that the thinking Airbus appear to have applied to creating the ZEROe Turbofan from the successful A 320 neo, could be applied to perhaps create a hydrogen-powered A 350.

I feel that Airbus haven’t fulling disclosed their thinking.  But then no company would, when it reinvents itself.

T also think that short-haul air routes will increasing come under pressure.

The green lobby  would like airlines to decarbonise.

Governments will legislate that airlines must decarbonise.

The rail industry will increasingly look to attract customers away from the airlines, by providing more competitive times and emphasising their green credentials.

Aircraft manufacturers will come under pressure to deliver zero-carbon airliners as soon as they can.

I wouldn’t be surprised to see a prototype ZEROe Turbofan or Boeing’s equivalent fly as early as 2024.

Short Term Solutions

As I said earlier, one solution is to use existing aircraft with Sustainable Aviation Fuel.

But many believe this is greenwash and rather a cop out.

So we must do better!

I don’t believe that the smaller zero- and low-carbon aircraft with a range of up to 500 miles and a capacity of around 19 seats, will be able to handle all the passengers needing to fly between and around the islands of Great Britain and Ireland.

  • A Boeing 737 or Airbus A 320 has a capacity of around two hundred passengers, which would require ten times the number of flights, aircraft and pilots.
  • Airports would need expansion on the airside and the terminals to handle the extra planes.
  • Air Traffic Control would need to be expanded to handle the extra planes.

But the smaller planes would be ideal for the thinner secondary routes.

So I tend to think, that the greens will have to lump it, as Sustainable Aviation Fuel will increasingly be the only viable solution.

This will increase the need for Airbus or Boeing to develop a viable A 320 or 737-sized aircraft as soon as possible.

Air Bridges

I said earlier, that I believe using ferries between Ireland and Holyhead and new bi-mode Class 805 trains between London Euston and Holyhead could be a competitor to airlines.

  • The ferries would be high speed craft capable of Holyhead and Ireland in around 90-100 minutes.
  • The ferries would be zero-carbon.
  • The trains would have a sixty percent reduction in carbon emissions compared to current trains on the route.

If we can skim across the water in a zero-carbon high speed craft, are there any reasons we can’t cross the water in a low- or zero-carbon aircraft.

In the next few sub-sections, I’ll suggest a few air bridges.

Glasgow

Glasgow Airport could be an ideal airport for a  low or zero-carbon air bridge to Northern Ireland.

  • A rail link could eventually be built.
  • There is a reasonable amount of traffic.
  • The distance to Belfast City Airport is only 103 miles.

As the airport serves islands and other places that could be ideal low- and zero-carbon routes, I could see Glasgow becoming a hub for battery and hydrogen-powered aircraft.

Heathrow

Heathrow must prepare itself for an uncertain future.

It will be some years before a third runway is both needed and will have been constructed.

I believe the following will happen.

  • Smaller up to nineteen seat low- or zero-carbon airliners will be in service by 2025.
  • From around 2024, Heathrow will get requests to refuel or charge low- or zero-carbon airliners.
  • Low- or-zero- carbon A 320-size airliners will be in service by 2030.
  • Most ground equipment at Heathrow like tugs and fuel bowsers will be zero-carbon.

If I were Boris or Prime Minister, I would say that Heathrow could have its third runway with the following conditions.

  • All aircraft using the third runway must be zero-carbon
  • All air-side vehicles must be zero-carbon.
  • All vehicles bringing passengers on the last mile to the airport must be zero-carbon.
  • All aircraft using the airport that are not zero-carbon must use sustainable aviation fuel.

I suspect that the conditions would be met by a large margin.

When an airport knows it is effectively going to be closed, it will make sure it survives.

Liverpool

Liverpool Airport could be an ideal airport for a  low or zero-carbon air bridge to the island of Ireland.

  • There is a nearby Liverpool South Parkway station, with frequent services to both the local area and places further away.
  • An improved London train service starts in 2022 or 2023.
  • There would need to be a people mover between the station and the airport.
  • The airport can probably have piped hydrogen from across the Mersey.
  • There is already significant traffic to and from the island of Ireland.
  • Flight times Between Liverpool and Dublin and Belfast would be under an hour.

I also feel that Liverpool could develop lots of other low- and zero-carbon routes to perhaps Cardiff, Edinburgh, Glasgow, Norwich, Southampton and the Isle of Man.

I could even see Liverpool having a Turn-Up-And-Go shuttle service to Dublin and Belfast, with small zero-carbon planes running every fifteen minutes or so.

Manston

I wouldn’t rule out Manston as a low- and zero-carbon airport for flights to the Benelux countries and Northern France and parts of Germany.

These are a few distances from Manston Airport.

  • Amsterdam – 160 miles
  • Brussels – 134 miles
  • Cologne – 253 miles
  • Dusseldorf – 234 miles
  • Frankfurt – 328 miles
  • Geneva – 414 miles
  • Hamburg – 396 miles
  • Le Touquet – 59 miles
  • Lille – 49 miles
  • Luxembourg – 243 miles
  • Ostend – 66 miles
  • Strasbourg – 339 miles

Manston’s position on the tip of Kent gives it an advantage and I think low- and zero-carbon services could reach Cologne, Frankfurt, Geneva, Hamburg and Strasbourg.

The airport also has other advantages.

  • A big electrolyser to produce hydrogen is being built at Herne Bay.
  • The area is rich in wind and solar energy.
  • I suspect the airspace to the East of the airport isn’t very busy and short hops to the Continent could be easy to slot in.

There is a new station being built at Thanet Parkway, which is on the Ashford and Ramsgate Line, which has regular services to London, including some services on High Speed One.

This Google Map shows the location of the airport and the station.

Note.

  1. The runway of Manston Airport.
  2. The Ashford and Ramsgate Line running across the South-East corner of the map.
  3. The station could be built to the West of the village of Cliffsend, which is indicated by the red arrow.
  4. I’m sure, a people mover or a zero-carbon bus could be built to connect the station and the airport.

There would need to be improvements in the frequency of services to and from London, but I’m sure Manston Airport could become an ideal airport for low- and zero-carbon aircraft serving the near Continent.

Southampton

Southampton Airport could be the ideal design for an airport to serve an air bridge.

  • The Southampton Airport Parkway station is connected to the terminal.
  • The station has numerous rail services, including a fast service to and from London.
  • The airport is expanding and could make sure all works are compatible with a low- and zero-carbon future.

Southampton is not ideally placed for services to Ireland, but with low- and zero-carbon aircraft it could be ideal for running services to the Channel Islands and Western France.

Other Airports

I suspect other airports will go the low- and zero-carbon route.

Conclusion

I started this post, with the intention of writing about writing about low- and zero-carbon transport between the islands of Great Britain and Ireland.

But it has grown.

I have now come to the conclusion that there are several low- and zero-carbon routes that could be developed.

The most promising would appear to be.

  • London Euston and Belfast by new Class 805 train to Holyhead and then zero-carbon high speed ferry.
  • London Euston and Dublin by new Class 805 train to Holyhead and then zero-carbon high speed ferry.
  • Glasgow and Belfast by train to Cairnryan and then zero-carbon high speed ferry.
  • Point-to-point air routes using new small nineteen seat low- or zero-carbon airliners with a range of 500 miles.
  • London Euston and Belfast by new Class 807 train to Liverpool Airport and then smaller low- or zero-carbon airliner.
  • London Euston and Dublin by new Class 807 train to Liverpool Airport and then and then smaller low- or zero-carbon airliner.
  • Other air bridges will develop.

But I am fairly certain by the end of the decade, there will be A320-size airlines powered by hydrogen taking us to Ireland and Western Europe.

I believe that the survival and ultimate prospering of Airbus and Boeing depends on the development of a range of zero-carbon airliners.

For this reason alone, they will succeed.

April 22, 2021 Posted by | Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Is This A Case Of The Sh1t Hitting The Turbofan?

The title of this post was inspired by this article on Nonwovens Industry, which is entitled British Airways to Use Fuel Sourced From Recycled Diapers.

This is the first paraph.

British Airways will likely soon have part of its fleet fueled by trash. The company has entered into a partnership to build facilities that convert household waste into renewable jet fuel. The first stage of the partnership is a feasability stage with final investment planned for 2019. If the first stage is successful, part of BA’s fleet will fly using the fuel.

Admittedly, this is old news and the plant is now being built by Altalto at Immingham.

But it does get rid of one of the problems of the modern world; disposable nappies.

 

March 27, 2021 Posted by | Energy, Transport | , , , , | 4 Comments

British Airways Invests In LanzaJet; SAF Offtake Agreement

The title of this post, is the same as that of this article on Green Car Congress.

This is the first paragraph.

British Airways will power future flights with sustainable aviation fuel produced from sustainably-sourced ethanol, as part of a new partnership with sustainable jet fuel company LanzaJet. British Airways will invest in LanzaJet’s first commercial-scale Freedom Pines Fuels facility in Georgia and acquire cleaner burning sustainable aviation fuel from the plant.

Other points from the article.

  • Flights using the sustainable aviation fuel (SAF) could start in 2022.
  • LanzaJet have their own process that can use inputs like wheat straw and recycled pollution.
  • This agreement would be in addition to BA’s partnership with Velocys in the Altalto plant at Immingham.
  • British Airways also appear to have set themselves a target of being carbon net-zero by 2050.

The article is certainly on any list of must-reads.

February 14, 2021 Posted by | Energy, Transport | , , , , , | Leave a comment

Roger Ford’s Cunning Plan

In the February 2020 of Modern Railways, there is an article called LNER Procurement, which has been written by Roger Ford.

It is Roger’s reply to an article in the December 2020 Edition of Modern Railways, which was entitled LNER Seeks 10 More Bi-Modes.

He starts by describing the requirement and then says this.

Would any fleet engineer in his or her right mind want to add a unique sub-fleet of 10 high speed trains to an existing successful fleet, even if they were hydrogen-electric tri-modes from the respected Kim Chong t’ae Electric Locomotive Works?

In my analysis of the December 2020 article, I wrote this post with the same name, where I said this, under a heading of More Azumas?

Surely, It would require a very innovative train at perhaps a rock-bottom price from another manufacturer, for LNER to not acquire extra Azumas.

So it would appear that Roger and myself are vaguely in agreement on the subject of more Azumas.

The last section of the article has a title of Cunning.

Roger puts forward, the view that the procurement process, as well as being compatible with EU law, could be a warning to Hitachi, to make sure that LNER get a good deal.

It certainly could be, and I remember a similar maneuver by ICI around 1970.

The company was buying a lot of expensive IBM 360 computers.

ICI needed a new computer to do scientific calculations at their Central Instrument Research Establishment (CIRL) at Pangbourne in Berkshire.

  • English Electric had just released a clone of an IBM 360 and were keen to sell it to ICI.
  • As it would do everything that ICI wanted, they bought one.
  • It worked well and did everything that CIRL wanted at a cheaper price.

IBM’s reaction was supposedly quick and dramatic. The salesman who dealt with ICI, was immediately fired!

But as ICI had about a dozen large IBM computers, there wasn’t much they could do to one of the most important and largest UK companies.

IBM also made sure, that ICI got their next computer at a good price.

I’m with Roger that all the shenanigans are a warning to Hitachi.

Roger finishes the article with these two paragraphs.

A genuine bluff would have been to seek bids for the long-term deployment of remanufactured IC225s. Which in these straitened times could still turn out to be a more viable option.

I rather fancy the idea of a hydrogen-electric Class 91. Owner Eversholt Rail might even have played along on the understanding that it funded the inevitable hybrid Azumas.

Note that IC225s are InterCity 225 trains.

  • The 31 trains, were built for  British Rail in the 1980s.
  • They are hauled by a 4.83 MW Class 91 locomotive, which is usually at the Northern end of the train.
  • Nine Mark 4 coaches and a driving van trailer complete the train.
  • As with the Hitachi Azumas (Class 800 and Class 801 trains), they are capable of operating at 140 mph on lines where digital in-cab ERTMS signalling has been installed.

I just wonder, if a Class 91 locomotive could be to the world’s first 140 mph hydrogen-electric locomotive.

Consider the following.

Dynamics

The wheels, bogies and traction system were designed by British Rail Engineering Ltd, who were the masters of dynamics. This is a sentence from the locomotive’s Wikipedia entry.

Unusually, the motors are body mounted and drive bogie-mounted gearboxes via cardan shafts. This reduces the unsprung mass and hence track wear at high speeds.

That is a rather unique layout. But it obviously works, as otherwise these locomotives would have been scrapped decades ago.

I believe the quality dynamics are because BREL owned a PACE 231R for a start, which was an analogue computer, that was good enough for NASA to use two computers like this to calculate how to put a man on the moon.

London and Edinburgh is a slightly shorter distance, run at a somewhat slower speed.

Space

This picture shows a Class 91 locomotive.

What is in the space in the rear end of the nearly twenty metre-long locomotive?

This sentence from the Wikipedia entry for the locomotive gives a clue.

The locomotive also features an underslung transformer, so that the body is relatively empty compared to contemporary electric locomotives.

It also states that much of the layout came from the APT-P, which was a version of the tilting Advanced Passenger Train.

Would the space be large enough for a tank of hydrogen and some form of generator that used the hydrogen as fuel?

It should be noted that one version of the APT used a gas-turbine engine, so was the locomotive designed for future use as a bi-mode?

Fuel Cells

I’ve ignored fuel cells, as to get the amount of power needed, the fuel cells could be too large for the locomotive.

Class 91 Locomotive Performance

The performance of a Class 91 locomotive is as follows.

  • Power output – 4.83 MW
  • Operating speed – 140 mph
  • Record Speed – 161 mph

Not bad for a 1980s locomotive.

Required Performance Using Hydrogen Fuel

If the locomotives were only needed to use hydrogen to the North of the electrification from London, the locomotive would need to be able to haul a rake of coaches twice on the following routes.

  • Aberdeen and Edinburgh Haymarket – 130 miles
  • Inverness and Stirling – 146 miles

A range of three hundred miles would be sufficient.

The locomotive would need refuelling at Aberdeen and Inverness.

The operating speed of both routes is nowhere near 140 mph and I suspect that a maximum speed of 100 mph on hydrogen, pulling or pushing a full-size train, would probably be sufficient.

When you consider that a nine-car Class 800 train has five 560 kW diesel engines, that give a total power of 2.8 MW, can carry 611 passengers and an InterCity 225 can only carry 535, I don’t think that the power required under hydrogen will be as high as that needed under electricity.

Rolls-Royce

Rolls-Royce have developed a 2.5 MW generator, that is the size of a beer keg. I wrote about it in Our Sustainability Journey.

Could one of these incredibly-powerful generators provide enough power to speed an InterCity 225 train, through the Highlands of Scotland to Aberdeen and Inverness, at speeds of up to 100 mph.

I would give it a high chance of being a possible dream.

Application Of Modern Technology

I do wonder, if the locomotive’s cardan shaft drive could be improved by modern technology.

These pictures show Joseph Bazalgette’s magnificent Abbey Mills Pumping station in East London.

A few years ago, Thames Water had a problem. Under the pumping station are Victorian centrifugal pumps that pump raw sewage to Beckton works for treatment. These are connected to 1930s electric motors in Dalek-like structures on the ground floor, using heavy steel shafts. The motors are controlled from the control panel in the first image.

The shafts were showing signs of their age and needed replacement.

So Thames Water turned to the experts in high-power transmission at high speed – Formula One.

The pumps are now connected to the electric motors, using high-strength, lower-weight carbon-fibre shafts.

Could this and other modern technology be used to update the cardan shafts and other parts of these locomotives?

Could The Locomotives Use Regenerative Braking To Batteries?

I’ll start by calculating the kinetic energy of a full InterCity 225 train.

  • The Class 91 locomotive weighs 81.5 tonnes
  • Nine Mark 4 coaches weigh a total of 378 tonnes
  • A driving van trailer weighs 43.7 tonnes.
  • This gives a total weight of 503.2 tonnes.

Assuming that each of the 535 passengers, weighs 90 Kg with babies, baggage, bikes and buggies, this gives a passenger weight of 48.15 tonnes or a total train weight of 551.35 tonnes.

Using Omni’s Kinetic Energy Calculator, gives the following values at different speeds.

  • 100 mph – 153 kWh
  • 125 mph – 239 kWh
  • 140 mph – 300 kWh

I think, that a 300 kWh battery could be fitted into the back of the locomotive, along with the generator and the fuel tank.

With new traction motors, that could handle regenerative braking, this would improve the energy efficiency of the trains.

Sustainable Aviation Fuel

Sustainable aviation fuel produced by companies like Altalto would surely be an alternative to hydrogen.

  • It has been tested by many aerospace companies in large numbers of gas turbines.
  • As it has similar properties to standard aviation fuel, the handling rules are well-known.

When produced from something like household waste, by Altalto, sustainable aviation fuel is carbon-neutral and landfill-negative.

ERTMS Signalling And Other Upgrades

Full ERTMS digital signalling will needed to be fitted to the trains to enable 140 mph running.

Conclusion

I believe it is possible to convert a Class 91 locomotive into a hydrogen-electric locomotive with the following specification.

  • 4.83 MW power on electricity.
  • 140 mph on electrification
  • 2.5 MW on hydrogen power.
  • 100 mph on hydrogen
  • Regenerative braking to battery.

If it were easier to use sustainable aviation fuel, that may be a viable alternative to hydrogen, as it is easier to handle.

 

February 3, 2021 Posted by | Hydrogen, Transport | , , , , , , , , , , , | 2 Comments

Shell Withdraws From Waste To Jet Fuel Plant Project

The title of this post, is the same as that, of this article on Insider Media.

This is the introductory paragraph.

Oil giant Shell has withdrawn from the joint development agreement for a proposed facility for the conversion of waste into aviation fuel.

It would appear that the Altalto project will continue and has no likelihood of folding in the near future.

I like the idea behind Altalto, which will take household and industrial waste and turn it into sustainable aviation fuel and biodiesel.

But I also like Shell’s Blue Hydrogen Process, which takes methane and effectively removes the carbon to create carbon-neutral hydrogen.

Conclusion

I feel the world is a big enough place for both technologies.

January 20, 2021 Posted by | Hydrogen, Transport, World | , , , , , , | Leave a comment

Today’s Rubbish, Tomorrow’s Jet Fuel

The title of this post, is the same as that of this feature article on Professional Engineering.

This is the opening paragraph.

One day, in the very near future, commercial aircraft will be fuelled by household rubbish. Yes, seriously.

It then goes on to describe the Velocys process for producing sustainable aviation fuel from household rubbish.

This paragraph explains, how it will change rubbish disposal.

Interestingly, Velocys won’t have to pay to obtain the waste. “We don’t buy it. We get paid to take it,” says Hargreaves. He explains how the supply chain starts with councils and businesses that are obliged to pay waste contractors to dispose of their waste. Those waste contractors then pay to incinerate the waste or send it to landfill sites. Velocys’s plant will simply act as an alternative disposal route.

The article is a very good explanation of one of the developments, that will shape the future of the world.

 

December 18, 2020 Posted by | Energy, Transport | , , , , , , , , | 1 Comment

Drax, Velocys Help Launch Coalition For Negative Emissions

The title of this post, is the same as that of this article on Biomass Magazine.

This is the introductory paragraph.

U.K.-based companies Drax Group and Velocys are among 11 organizations that have launched the Coalition for Negative Emissions, which aims to achieve a sustainable and resilient recovery from COVID-19 by developing pioneering projects that can remove carbon dioxide and other pollutants from the atmosphere.

This paragraph details the companies and organisations involved.

In addition to Drax and Velocys, members of the coalition include Carbon Engineering, Carbon Removal Centre, CBI, Carbon Capture and Storage Association, Climeworks, Energy U.K., Heathrow, International Airlines Group, and the U.K. National Farmers Union.

They have sent a letter to the Government, which can be downloaded from the Drax website.

Conclusion

I have an open mind about biomass and products such as aviation biofuel and techniques such as carbon capture.

Keeping the wheels of commerce turning, needs a sustainable way to fly and ideas such as producing aviation biofuel from household and industrial waste, could enable sustainable transport in the short term.

Carbon capture is very difficult in a lot of processes, but I feel that in some, such as a modern gas-turbine powered station, if they are designed in an innovative manner, they an be made to deliver a pure stream of the gas. A pure gas must be easier to handle, than one contaminated with all sorts of unknowns, as you might get from burning some sources of coal.

I am pleased that the National Farmers Union is involved as using pure carbon dioxide, as a growth promoter for greenhouse crops is a proven use for carbon dioxide.

Overall, I am optimistic about the formation of the Coalition for Negative Emissions.

 

October 14, 2020 Posted by | Energy | , , , , , , , , , , | Leave a comment

Humber Highlighted As Prime Location For Sustainable Aviation Fuel Cluster

The title of this post, is the same as that of this article on Business Live.

Points to note from the article.

  • Development of a waste-to-aviation biofuel plant on Humberside could be a £219 million annual boost to the economy and create 1500 jobs.
  • There is a pipeline to Heathrow from the Humber.
  • Velocys is backed by British Airways and Shell, and the UK government.
  • Not bad for an Oxford University spin-off of an updated process that produced diesel for the Nazis and apartheid South Africa.
  • Other potential sustainable aviation fuel clusters have been identified including Teesside, the North West, South Wales, Hampshire, St Fergus and Grangemouth.

Velocys is a share to watch!

Other Thoughts

I feel the following could happen.

  • Velocys will make a large hole in the need for landfill capacity.
  • Other old chemical and refinery processes will be updated using new catalyst technology, from universities like Oxford.

But will British Airways be accused of rubbish flights in the tabloids?

 

October 13, 2020 Posted by | Energy, Transport | , , , , , , | Leave a comment

Creating Sustainable Aviation Fuels For A Net-Zero Future

The title of this post, is the same as that of this article on Airport Technology.

This is the introductory paragraph.

In June, UK Transport Minister Grant Shapps announced the creation of the Jet Zero Council, which aims to make zero-carbon transatlantic flights a reality within a generation. Dr Neville Hargreaves, vice president at sustainable fuels technology company Velocys and a member of the Jet Zero coalition, explains more.

This paragraph gives a timescale.

“People may think achieving net-zero emissions on long-haul flights, from London to New York on a Dreamliner say, is decades away – it isn’t,” he adds. “We can achieve this in the next five-ten years.”

II suspect, that if all goes well, Dr. Hargreaves is right.

Read the article to find out how Velocys intend to achieve this aim.

 

September 25, 2020 Posted by | Energy, Transport | , , , | Leave a comment

Norsk e-Fuel Planning Europe’s First Commercial Plant for Hydrogen-Based RAF

The title of this post, is the same as that, of this article on Renewable Energy Magazine.

This is the introductory paragraph.

Norske e-Fuel AS, the new European industry consortium headquartered in Oslo, has plans to industrialize Power-to-Liquid technology (PtL) in Norway for the European Market. The new state-of-the-art project will allow the conversion of Norway’s extensive renewable electricity resources into renewable fuels.

This paragraph explains the process.

Using a single step co-electrolysis process, the innovative technologies of Sunfire and Climeworks convert renewable electricity, water and CO2 captured from ambient air and unavoidable CO2 sources into syngas. Renewable fuels, such as jet fuel, are then produced through further processing and refining. The certified end products can be used directly in existing infrastructures.

Note.

  1. Climeworks is a company that captures carbon from the atmosphere.
  2. It is a very different process to that used by Altalto, which I wrote about in Grant Shapps Announcement On Friday, Altalto use household, industrial and woody waste as a starting point.
  3. However both processes use syngas, as an intermediate.

Wikipedia describes syngas as a fuel gas mixture consisting primarily of hydrogen, carbon monoxide, and very often some carbon dioxide.

 

September 22, 2020 Posted by | Energy, Transport | , , | Leave a comment