The Anonymous Widower

Velocys Signs Agreement For Commercial-Scale Biomass-To-Jet Fuel In Japan

The title of this post, is the same as that of this article on the Chemical Engineer.

I am very hopeful about Velocys, who are a UK public company, that were spun out of Oxford University and do clever things in the area of chemical catalysts.

Velocys’ Fischer-Tropsch technology does seem to be a good way of creating sustainable aviation fuel from household rubbish and biomass.

February 18, 2021 Posted by | Energy, Transport | , , , , , , | Leave a comment

British Airways Invests In LanzaJet; SAF Offtake Agreement

The title of this post, is the same as that of this article on Green Car Congress.

This is the first paragraph.

British Airways will power future flights with sustainable aviation fuel produced from sustainably-sourced ethanol, as part of a new partnership with sustainable jet fuel company LanzaJet. British Airways will invest in LanzaJet’s first commercial-scale Freedom Pines Fuels facility in Georgia and acquire cleaner burning sustainable aviation fuel from the plant.

Other points from the article.

  • Flights using the sustainable aviation fuel (SAF) could start in 2022.
  • LanzaJet have their own process that can use inputs like wheat straw and recycled pollution.
  • This agreement would be in addition to BA’s partnership with Velocys in the Altalto plant at Immingham.
  • British Airways also appear to have set themselves a target of being carbon net-zero by 2050.

The article is certainly on any list of must-reads.

February 14, 2021 Posted by | Energy, Transport | , , , , , | Leave a comment

Roger Ford’s Cunning Plan

In the February 2020 of Modern Railways, there is an article called LNER Procurement, which has been written by Roger Ford.

It is Roger’s reply to an article in the December 2020 Edition of Modern Railways, which was entitled LNER Seeks 10 More Bi-Modes.

He starts by describing the requirement and then says this.

Would any fleet engineer in his or her right mind want to add a unique sub-fleet of 10 high speed trains to an existing successful fleet, even if they were hydrogen-electric tri-modes from the respected Kim Chong t’ae Electric Locomotive Works?

In my analysis of the December 2020 article, I wrote this post with the same name, where I said this, under a heading of More Azumas?

Surely, It would require a very innovative train at perhaps a rock-bottom price from another manufacturer, for LNER to not acquire extra Azumas.

So it would appear that Roger and myself are vaguely in agreement on the subject of more Azumas.

The last section of the article has a title of Cunning.

Roger puts forward, the view that the procurement process, as well as being compatible with EU law, could be a warning to Hitachi, to make sure that LNER get a good deal.

It certainly could be, and I remember a similar maneuver by ICI around 1970.

The company was buying a lot of expensive IBM 360 computers.

ICI needed a new computer to do scientific calculations at their Central Instrument Research Establishment (CIRL) at Pangbourne in Berkshire.

  • English Electric had just released a clone of an IBM 360 and were keen to sell it to ICI.
  • As it would do everything that ICI wanted, they bought one.
  • It worked well and did everything that CIRL wanted at a cheaper price.

IBM’s reaction was supposedly quick and dramatic. The salesman who dealt with ICI, was immediately fired!

But as ICI had about a dozen large IBM computers, there wasn’t much they could do to one of the most important and largest UK companies.

IBM also made sure, that ICI got their next computer at a good price.

I’m with Roger that all the shenanigans are a warning to Hitachi.

Roger finishes the article with these two paragraphs.

A genuine bluff would have been to seek bids for the long-term deployment of remanufactured IC225s. Which in these straitened times could still turn out to be a more viable option.

I rather fancy the idea of a hydrogen-electric Class 91. Owner Eversholt Rail might even have played along on the understanding that it funded the inevitable hybrid Azumas.

Note that IC225s are InterCity 225 trains.

  • The 31 trains, were built for  British Rail in the 1980s.
  • They are hauled by a 4.83 MW Class 91 locomotive, which is usually at the Northern end of the train.
  • Nine Mark 4 coaches and a driving van trailer complete the train.
  • As with the Hitachi Azumas (Class 800 and Class 801 trains), they are capable of operating at 140 mph on lines where digital in-cab ERTMS signalling has been installed.

I just wonder, if a Class 91 locomotive could be to the world’s first 140 mph hydrogen-electric locomotive.

Consider the following.

Dynamics

The wheels, bogies and traction system were designed by British Rail Engineering Ltd, who were the masters of dynamics. This is a sentence from the locomotive’s Wikipedia entry.

Unusually, the motors are body mounted and drive bogie-mounted gearboxes via cardan shafts. This reduces the unsprung mass and hence track wear at high speeds.

That is a rather unique layout. But it obviously works, as otherwise these locomotives would have been scrapped decades ago.

I believe the quality dynamics are because BREL owned a PACE 231R for a start, which was an analogue computer, that was good enough for NASA to use two computers like this to calculate how to put a man on the moon.

London and Edinburgh is a slightly shorter distance, run at a somewhat slower speed.

Space

This picture shows a Class 91 locomotive.

What is in the space in the rear end of the nearly twenty metre-long locomotive?

This sentence from the Wikipedia entry for the locomotive gives a clue.

The locomotive also features an underslung transformer, so that the body is relatively empty compared to contemporary electric locomotives.

It also states that much of the layout came from the APT-P, which was a version of the tilting Advanced Passenger Train.

Would the space be large enough for a tank of hydrogen and some form of generator that used the hydrogen as fuel?

It should be noted that one version of the APT used a gas-turbine engine, so was the locomotive designed for future use as a bi-mode?

Fuel Cells

I’ve ignored fuel cells, as to get the amount of power needed, the fuel cells could be too large for the locomotive.

Class 91 Locomotive Performance

The performance of a Class 91 locomotive is as follows.

  • Power output – 4.83 MW
  • Operating speed – 140 mph
  • Record Speed – 161 mph

Not bad for a 1980s locomotive.

Required Performance Using Hydrogen Fuel

If the locomotives were only needed to use hydrogen to the North of the electrification from London, the locomotive would need to be able to haul a rake of coaches twice on the following routes.

  • Aberdeen and Edinburgh Haymarket – 130 miles
  • Inverness and Stirling – 146 miles

A range of three hundred miles would be sufficient.

The locomotive would need refuelling at Aberdeen and Inverness.

The operating speed of both routes is nowhere near 140 mph and I suspect that a maximum speed of 100 mph on hydrogen, pulling or pushing a full-size train, would probably be sufficient.

When you consider that a nine-car Class 800 train has five 560 kW diesel engines, that give a total power of 2.8 MW, can carry 611 passengers and an InterCity 225 can only carry 535, I don’t think that the power required under hydrogen will be as high as that needed under electricity.

Rolls-Royce

Rolls-Royce have developed a 2.5 MW generator, that is the size of a beer keg. I wrote about it in Our Sustainability Journey.

Could one of these incredibly-powerful generators provide enough power to speed an InterCity 225 train, through the Highlands of Scotland to Aberdeen and Inverness, at speeds of up to 100 mph.

I would give it a high chance of being a possible dream.

Application Of Modern Technology

I do wonder, if the locomotive’s cardan shaft drive could be improved by modern technology.

These pictures show Joseph Bazalgette’s magnificent Abbey Mills Pumping station in East London.

A few years ago, Thames Water had a problem. Under the pumping station are Victorian centrifugal pumps that pump raw sewage to Beckton works for treatment. These are connected to 1930s electric motors in Dalek-like structures on the ground floor, using heavy steel shafts. The motors are controlled from the control panel in the first image.

The shafts were showing signs of their age and needed replacement.

So Thames Water turned to the experts in high-power transmission at high speed – Formula One.

The pumps are now connected to the electric motors, using high-strength, lower-weight carbon-fibre shafts.

Could this and other modern technology be used to update the cardan shafts and other parts of these locomotives?

Could The Locomotives Use Regenerative Braking To Batteries?

I’ll start by calculating the kinetic energy of a full InterCity 225 train.

  • The Class 91 locomotive weighs 81.5 tonnes
  • Nine Mark 4 coaches weigh a total of 378 tonnes
  • A driving van trailer weighs 43.7 tonnes.
  • This gives a total weight of 503.2 tonnes.

Assuming that each of the 535 passengers, weighs 90 Kg with babies, baggage, bikes and buggies, this gives a passenger weight of 48.15 tonnes or a total train weight of 551.35 tonnes.

Using Omni’s Kinetic Energy Calculator, gives the following values at different speeds.

  • 100 mph – 153 kWh
  • 125 mph – 239 kWh
  • 140 mph – 300 kWh

I think, that a 300 kWh battery could be fitted into the back of the locomotive, along with the generator and the fuel tank.

With new traction motors, that could handle regenerative braking, this would improve the energy efficiency of the trains.

Sustainable Aviation Fuel

Sustainable aviation fuel produced by companies like Altalto would surely be an alternative to hydrogen.

  • It has been tested by many aerospace companies in large numbers of gas turbines.
  • As it has similar properties to standard aviation fuel, the handling rules are well-known.

When produced from something like household waste, by Altalto, sustainable aviation fuel is carbon-neutral and landfill-negative.

ERTMS Signalling And Other Upgrades

Full ERTMS digital signalling will needed to be fitted to the trains to enable 140 mph running.

Conclusion

I believe it is possible to convert a Class 91 locomotive into a hydrogen-electric locomotive with the following specification.

  • 4.83 MW power on electricity.
  • 140 mph on electrification
  • 2.5 MW on hydrogen power.
  • 100 mph on hydrogen
  • Regenerative braking to battery.

If it were easier to use sustainable aviation fuel, that may be a viable alternative to hydrogen, as it is easier to handle.

 

February 3, 2021 Posted by | Hydrogen, Transport | , , , , , , , , , , , | 1 Comment

Shell Withdraws From Waste To Jet Fuel Plant Project

The title of this post, is the same as that, of this article on Insider Media.

This is the introductory paragraph.

Oil giant Shell has withdrawn from the joint development agreement for a proposed facility for the conversion of waste into aviation fuel.

It would appear that the Altalto project will continue and has no likelihood of folding in the near future.

I like the idea behind Altalto, which will take household and industrial waste and turn it into sustainable aviation fuel and biodiesel.

But I also like Shell’s Blue Hydrogen Process, which takes methane and effectively removes the carbon to create carbon-neutral hydrogen.

Conclusion

I feel the world is a big enough place for both technologies.

January 20, 2021 Posted by | Hydrogen, Transport, World | , , , , , , | Leave a comment

Greener Planes Of The Future… Or Just Pretty Plans?

The title of this post, is the same as that of this article on the BBC.

  • It is a good survey of the way things will have to go for zero carbon aviation.
  • It shows designs from both Airbus and Boeing, with some more radical designs as well.

These are a few of my thoughts.

  • I think that we shan’t be seeing a too-radical design in the next decade, as it just wouldn’t fit the current airports.
  • But I can certainly envisage, aircraft running on liquid hydrogen.
  • There will be some outstanding aerodynamics.
  • Long-haul aircraft might just be upgraded current designs running on aviation biofuel.

I am certainly looking forward to taking a zero-carbon flight before 2030.

January 8, 2021 Posted by | Transport | , , , , , | Leave a comment

Faradair’s BEHA Hybrid Aircraft Boosted By Partnerships

The title of this post, is the same as that of this article on AINonline.

This is the introductory paragraph.

Faradair, the UK company developing a hybrid-electric short takeoff and landing aircraft for applications including regional airline service, on Thursday announced four new risk-sharing partners. Honeywell, MagniX, Cambridge Consultants, and Nova Systems, have all signed up to contribute to the development of the Bio Electric Hybrid Aircraft (BEHA), which is expected to enter service in 2026.

Some points from the article.

  • The aircraft is bio-electric as it is powered by a small gas-turbine generator, which drives a contra-rotating ducted fan, through a pair of electric-motors.
  • It has a quick-change interior, that can handle 18 passengers or five tonnes of cargo.
  • Range is given as 1,150 miles, with a service ceiling of 14,000 feet and a speed of up to 230 mph.

The Faradair web site gives other useful data.

  • Wingspan is 57 ft.
  • Length is 48 ft. 2 in.

The article also discloses an innovative way of marketing the aircraft, which looks to me, like a modern update to how the company I helped found; Metier Management Systems, leased Artemis project management computer systems, several decades ago.

Comparison With Eviation Alice

I must compare the Faradair BEMHA with the Eviation Alice.

The Alice can carry nine passengers.

  • It cruises at 276 mph.
  • Range is 620 miles
  • Service ceiling is 12,500 ft.
  • Wingspan is 52 ft. 11 in.
  • Length is 43.3 ft.

The Alice would appear to be slightly smaller, with a shorter range.

  • If you look at the pictures of the two aircraft on the Faradair and Eviation Alice web sites, you will see that they are radical designs.
  • The Eviation Alice is fully electric, whereas the Faradair BEHA has a hybrid engine based on a small gas turbine running on aviation biofuel.
  • Both aircraft use MagniX electric motors.
  • Both aircraft fit into defined segments of the aviation market.

I very much believe that we’ll be seeing more unusual zero-carbon and carbon-neutral aircraft designs in the next few years.

A few thoughts.

Battery-Electric or Gas Turbine?

The Eviation Alice is solely powered by a battery, whereas the Faradair BMHA uses a hybrid engine based on a small gas turbine running on aviation biofuel.

Airbus built an experimental aircraft called the Airbus E-Fan X. This aircraft was to have used a gas-turbine and a battery. The aircraft was cancelled because of the Covid-19 pandemic.

So Faradair seem to be going a similar route to Airbus.

The AINonline article says this about Honeywell’s involvement.

Honeywell will support Faradair in producing a turbogenerator based on its gas turbine and generator technologies that is able to run on sustainable aviation fuel. The U.S. aerospace group will also contribute to other systems for BEHA, including avionics and flight controls.

According to Wikipedia, Honeywell certainly have lots of experience of small gas-turbine engines. They also make large numbers of auxiliary power units for aircraft.

The big disadvantage of the battery approach, is surely the weight of the battery, which needs to be large to have enough energy for the flight.

  • But electric power also restricts the aircraft to airports with recharging facilities. This must reduce the flexibility of the aircraft.
  • And also what happens after a diversion caused by weather, a passenger becoming unwell or some other circumstance, where the aircraft ends up at an airport with no handling for electric aircraft?

But with an aircraft that only needs sustainable aviation fuel, it can be filled up from a bowser used for small airliners and business jets.

If you want to be zero-carbon perhaps it would be better to fuel the gas-turbine with hydrogen.

Airbus seem to have come to that conclusion with their future plans, that I wrote about in ZEROe – Towards The World’s First Zero-Emission Commercial Aircraft.

I have a feeling that both Airbus and Faradair have shown, that to get enough range and for convenience, sustainable aviation fuel or hydrogen is better.

Nine Or Eighteen Seat?

Regulation has made nine- and nineteen-seats into niche markets and each developer is concentrating on a particular market.

  • An airline that uses small airliners like Loganair, actually has aircraft in both groups.
  • I suspect other airlines have similar mixed fleets.
  • Cape Air, who are the lead customer for the Alice, only fly nine-seat aircraft.

The customer has a choice depending on the size of aircraft he needs.

Short Take-Off And Landing Capability

I have flown as a passenger several times in small airliners with a capacity of up to nineteen seats.

  • Usually, they have been in a Cessna Caravan or Britten Normand Islander.
  • In a couple of cases, the trip has involved a take-off or landing on a short or grass runway.
  • Additionally, I have over a thousand hours in command of a Cessna 340, where I used a lot of short runways.

I would feel that as a lot of small airports have short runways, that a short take-off and landing capability would be a necessity for a small airliner.

Versatility

This Faradair press release is dated December 17th, 2020.

This paragraph details the aircrafts versatility.

The ambition is to deliver an initial portfolio of 300 Faradair®-owned BEHAs between 2026-2030, in the largest proof of concept air mobility programme ever created. Of these, 150 aircraft will be built in firefighting configuration, 75 as quick change (QC, passenger to cargo) aircraft, deployed at general  aviation airfields globally, and 50 as pure freighters. The final 25 aircraft will be demonstrated in non-civilian government roles, including logistics, border and fisheries patrol, and drug interdiction.

Note.

I particularly like the quick-change variant.

As 125 aircraft can be used for freighters, has one of the large parcel carriers expressed an interest?

I must admit, I’m surprised that 150 aircraft will be needed in a firefighting configuration.

To be continued…

 

 

December 18, 2020 Posted by | Transport | , , , , , , , | 3 Comments

Today’s Rubbish, Tomorrow’s Jet Fuel

The title of this post, is the same as that of this feature article on Professional Engineering.

This is the opening paragraph.

One day, in the very near future, commercial aircraft will be fuelled by household rubbish. Yes, seriously.

It then goes on to describe the Velocys process for producing sustainable aviation fuel from household rubbish.

This paragraph explains, how it will change rubbish disposal.

Interestingly, Velocys won’t have to pay to obtain the waste. “We don’t buy it. We get paid to take it,” says Hargreaves. He explains how the supply chain starts with councils and businesses that are obliged to pay waste contractors to dispose of their waste. Those waste contractors then pay to incinerate the waste or send it to landfill sites. Velocys’s plant will simply act as an alternative disposal route.

The article is a very good explanation of one of the developments, that will shape the future of the world.

 

December 18, 2020 Posted by | Energy, Transport | , , , , , , , , | 1 Comment

Engineers Go Microbial To Store Energy, Sequester CO2

The title of this post, is the same as that of this article on the Cornell Chronicle.

This is the first two paragraphs.

By borrowing nature’s blueprints for photosynthesis, Cornell bioengineers have found a way to efficiently absorb and store large-scale, low-cost renewable energy from the sun – while sequestering atmospheric carbon dioxide to use later as a biofuel.

The key: Let bioengineered microbes do all the work.

This is slave labour, that even the most ardent of Human and Animal Rights activists would approve.

This is technology to watch!

December 15, 2020 Posted by | Energy Storage, Energy | , , , , | Leave a comment

Green Jet Fuel Plant Developers’ Ioy As World Economic Forum Backs Method As Best Aviation Solution

The title of this post, is the same as that of this article on Business Live.

This is the first paragraph.

The World Economic Forum has backed sustainable aviation fuel as the most promising decarbonation policy for aviation, delighting the developers of a £350 million refinery on the Humber.

I bet Velocys are delighted.

I also think, that, the biodiesel, that they can produce, is a short term solution to the decarbonisation of rail freight and the heaviest vehicles powered by diesel.

It’s so much better than throwing the rubbish into landfill.

November 17, 2020 Posted by | Energy, Finance, Transport | , , , , | Leave a comment

Drax, Velocys Help Launch Coalition For Negative Emissions

The title of this post, is the same as that of this article on Biomass Magazine.

This is the introductory paragraph.

U.K.-based companies Drax Group and Velocys are among 11 organizations that have launched the Coalition for Negative Emissions, which aims to achieve a sustainable and resilient recovery from COVID-19 by developing pioneering projects that can remove carbon dioxide and other pollutants from the atmosphere.

This paragraph details the companies and organisations involved.

In addition to Drax and Velocys, members of the coalition include Carbon Engineering, Carbon Removal Centre, CBI, Carbon Capture and Storage Association, Climeworks, Energy U.K., Heathrow, International Airlines Group, and the U.K. National Farmers Union.

They have sent a letter to the Government, which can be downloaded from the Drax website.

Conclusion

I have an open mind about biomass and products such as aviation biofuel and techniques such as carbon capture.

Keeping the wheels of commerce turning, needs a sustainable way to fly and ideas such as producing aviation biofuel from household and industrial waste, could enable sustainable transport in the short term.

Carbon capture is very difficult in a lot of processes, but I feel that in some, such as a modern gas-turbine powered station, if they are designed in an innovative manner, they an be made to deliver a pure stream of the gas. A pure gas must be easier to handle, than one contaminated with all sorts of unknowns, as you might get from burning some sources of coal.

I am pleased that the National Farmers Union is involved as using pure carbon dioxide, as a growth promoter for greenhouse crops is a proven use for carbon dioxide.

Overall, I am optimistic about the formation of the Coalition for Negative Emissions.

 

October 14, 2020 Posted by | Energy | , , , , , , , , , , | Leave a comment