The Anonymous Widower

A Brief History Of My Left Knee

In March this year I had an accident in my bedroom, which I wrote about in An Accident In My Bedroom.

I said this in the post.

It is now Monday morning and the first picture says a lot. Note the the mat by the step is out of line. It slipped, I then tripped over the step and hit my head on the basin. There is also an overturned stool in the bathroom, which I must have fallen on and this probably did more damage.

My GP  thinks I may have a blood pressure problem, so I am regularly taking my blood pressure, sitting and then standing up after five minutes.

But it seems to be behaving itself. If you want to look the figures are in Fighting My Way Through The Covids.

And then last Thursday, I nearly had another fall.

I was getting out of bed at about seven and rolled myself to my feet. I stood up and then my left knee gave way. As I hadn’t fully stood up, I was able to just sit on the bed. So no harm was done!

I didn’t feel light-headed or anything other than fine and I just went to the toilet, brushed my teeth and walked through to my living room and checked the computer, as I always do first thing in the morning.

This isn;t the first time, that my knee has done this.

It must have been in the 1970s, when the knee was doing something similar and I went to see my GP, who recommended seeing a specialist and having an operation. I didn’t.

Nothing much happened again, until perhaps 1980, when after moving to Suffolk, I went to see another GP.  He decided, I needed to do a set of exercises, which seemed to work, especially as I was doing a lot of horse-riding, which seemed to help.

Later, when I moved across Suffolk, I swapped real tennis for the horse riding and I’ve never really had any trouble since, until I moved to London.

One strange thing though, was I went to see a specialist fitness trainer after my left-sided stroke in 2010, who said strangely, that my left leg was stronger than my right.

Since the stroke, I’ve had the following falls.

  1. Two trips on Islington’s bad pavements, where I just picked myself up, dusted myself down and started all over again.
  2. In one, my knee possibly collapsed, I thought I was having a stroke and I ended up in UCLH.
  3. I rolled out of bed in a hotel in Strasbourg, when I was dreaming about my late wife.
  4. I rolled out of bed at home in another vivid dream and needed hospital attention.
  5. The recent fall, where I ended up in the Royal London.

I certainly feel that 2 and 5 are down to the dodgy knee, I should also say, that in all the falls except for number 2, I felt very normal, although perhaps a bit surprised and stupid.

These are a few random points.

  • As a child, I always hopped on my left leg.
  • A couple of friends have told me I don’t stand straight.
  • My left humerus was broken by the school bully and badly set in Highlands Hospital, so I avoid using it. Does this affect my stance and put pressure on the knee?
  • At times in my life, I’ve worn an elastic bandage on the knee.
  • I sometimes had trouble with my knee, in intimate moments with my late wife.

As the knee has never been looked at using modern technology, perhaps now is the time.

 

 

 

September 13, 2020 Posted by | Health | | 3 Comments

Hull Issues New Plea For Electrification

The title of this post, is the same as that of this article on Rail Magazine.

This is the introductory paragraph.

Residents and businesses in Hull are being urged to support electrification of the railway to Selby and Sheffield.

This paragraph is about the difficulty of electrifying the route.

“Unlike elsewhere on the trans-Pennine routes, work here can start straightaway and would be a quick win. Our plans involve few extra land purchases, no tunnel widening, and no re-routing,” said Daren Hale, Hull City Council and Hull’s representative on the Transport for the North board.

Services to Hull station are as follows.

  • Hull Trains – London Kings Cross and Hull via Selby, Howden and Brough.
  • Hull Trains – Beverley and Hull via Cuttingham
  • LNER – London Kings Cross and Hull via Selby and Brough
  • Northern Trains – Halifax and Hull via Bradford Interchange, New Pudsey, Bramley, Leeds, Cross Gates, Garforth, East Garforth, Micklefield, South Milford, Selby and Brough
  • Northern Trains – Sheffield and Hull via Meadowhall, Rotherham Central, Swinton, Mexborough, Conisbrough, Doncaster, Kirk Sandall, Hatfield & Stainforth, Thorne North, Goole, Saltmarshe, Gilberdyke, Broomfleet, Brough, Ferriby and Hessle,
  • Northern Trains – Bridlington and Hull via Nafferton, Driffield, Hutton Cranswick, Arram, Beverley and Cottingham.
  • Northern Trains – Scarborough and Hull via Seamer, Filey, Hunmanby, Bempton, Bridlington, Nafferton, Driffield, Hutton Cranswick, Arram, Beverley and Cottingham.
  • Northern Trains – York and Hull via Selby, Howden, Gilberdyke and Brough.
  • TransPennine Express – Manchester Piccadilly and Hull via Stalybridge, Huddersfield, Leeds, Selby, Brough

Note.

  1. Some services are joined back-to-back with a reverse at Hull station.
  2. I have simplified some of the lists of intermediate stations.
  3. Services run by Hull Trains, LNER or TransPennine Express use bi-mode Class 800 or Class 802 trains.
  4. All routes to Hull station and the platforms are not electrified.

Trains approach Hull by three routes.

  • Selby and Brough
  • Goole and Brough
  • Beverley and Cottingham

Could these three routes be electrified?

I have just flown my helicopter along all of them.

I’ve also had a lift in the cab of a Class 185 train between Hull and Leeds, courtesy of Don Coffey.

Hull And Selby via Brough

There is the following infrastructure.

  • Several major road overbridges, which all seem to have been built with clearance for overhead wires.
  • There are also some lower stone arch bridges, which may need to be given increased clearance.
  • No tunnels
  • The historic Selby Swing Bridge.
  • Four farm crossings.
  • Fourteen level crossings.

Hull And Goole via Brough

There is the following infrastructure.

  • Several major road overbridges, which all seem to have been built with clearance for overhead wires.
  • No tunnels
  • A swing bridge over the River Ouse.
  • A couple of farm crossings
  • Six level crossings

Hull And Beverley via Cottingham

There is the following infrastructure.

  • A couple of major road overbridges, which all seem to have been built with clearance for overhead wires.
  • No tunnels
  • A couple of farm crossings
  • Six level crossings

All of the routes would appear to be.

  • At least double track.
  • Not in deep cuttings.
  • Mainly in open countryside.

I feel that compared to some routes, they would be easy to electrify, but could cause a lot of disruption, whilst the level crossings and the two swing bridges were electrified.

Speeding Up Services To And From Hull

What Are The Desired  Timings?

The Rail Magazine article says this about the desired timings.

Should the plans be approved, it is expected that Hull-Leeds journey times would be cut from 57 minutes to 38, while Hull-Sheffield would drop from 86 minutes to 50 minutes.

These timings are in line with those given in this report on the Transport for the North web site, which is entitled At A Glance – Northern Powerhouse Rail,

The frequency of both routes is given in the report as two trains per hour (tph)

The Performance Of An Electric Class 802 Train

As Hull Trains, LNER and TransPennine Express will be using these trains or similar to serve Hull, I will use these trains for my calculations.

The maximum speed of a Class 802 train is 125 mph or 140 mph with digital in-cab signalling.

This page on the Eversholt Rail web site, has a data sheet for a Class 802 train.

The data sheet shows the following for a five-car Class 802 train.

It can accelerate to 100 mph and then decelerate to a stop in 200 seconds in electric mode.

The time to 125 mph and back is 350 seconds

Thoughts On Hull And Leeds

Consider.

  • The Hull and Leeds route is 52 miles long, is timed for a 75 mph train and has an average speed of 55 mph
  • There are three intermediate stops, which means that in a Hull and Leeds journey, there are four accelerate-decelerate cycles.
  • A 38 minute journey between Hull and Leeds would be an average speed of 82 mph
  • A train travelling at 100 mph would take 31 minutes to go between Hull and Leeds.
  • A train travelling at 125 mph would take 25 minutes to go between Hull and Leeds.

I also have one question.

What is the speed limit on the Selby Swing Bridge?

I have just been told it’s 25 mph. As it is close to Selby station, it could probably be considered that the stop at Selby is a little bit longer.

These could be rough timings.

  • A train travelling at 100 mph would take 31 minutes to go between Hull and Leeds plus what it takes for the four stops. at 200 seconds a stop, which adds up to 43 minutes.
  • A train travelling at 125 mph would take 25 minutes to go between Hull and Leeds plus what it takes for the four stops. at 350 seconds a stop, which adds up to 48 minutes.

Note how the longer stopping time of the faster train slows the service.

I think it would be possible to attain the required 38 minute journey, running at 100 mph.

Thoughts On Hull And Sheffield

Consider.

  • The Hull and Sheffield route is 61 miles long, is timed for a 90 mph train and has an average speed of 43 mph
  • There are five intermediate stops, which means that in a Hull and Sheffield journey, there are six accelerate-decelerate cycles.
  • A 50 minute journey between Hull and Leeds would be an average speed of 73 mph.
  • A train travelling at 100 mph would take 36 minutes to go between Hull and Sheffield.
  • A train travelling at 125 mph would take 29 minutes to go between Hull and Sheffield.

I also have one question.

What is the speed limit on the swing bridge over the River Ouse?

As there is no nearby station, I suspect it counts as another stop, if it only has a 25 mph limit.

These could be rough timings.

  • A train travelling at 100 mph would take 36 minutes to go between Hull and Sheffield plus what it takes for the six stops. at 200 seconds a stop, which adds up to 56 minutes.
  • A train travelling at 125 mph would take 29 minutes to go between Hull and Sheffield plus what it takes for the six stops. at 350 seconds a stop, which adds up to 64 minutes.

Note how the longer stopping time of the faster train slows the service.

I think it would be possible to attain the required 50 minute journey, running at 100 mph.

Conclusions From My Rough Timings

Looking at my rough timings, I can conclude the following.

  • The trains will have to have  the ability to make a station stop in a very short time. Trains using electric traction are faster at station stops.
  • The trains will need to cruise at a minimum of 100 mph on both routes.
  • The operating speed of both routes must be at least 100 mph, with perhaps 125 mph allowed in places.
  • I feel the Hull and Leeds route is the more difficult.

I also think, that having a line running at 100 mph or over, with the large number of level crossings, there are at present, would not be a good idea.

What Does Hull Want?

Hull wants what Northern Powerhouse Rail is promising.

  • Two tph between Hull and Leeds in 38 minutes and Hull and Sheffield in 50 minutes.

They’d probably also like faster electric services between Hull and Bridlington, London Kings Cross, Manchester, Scarborough and York.

When Do They Want It?

They want it now!

Is There An Alternative Solution, That Can Be Delivered Early?

This may seem to be the impossible, as electrifying between Hull and Leeds and Hull and Sheffield is not an instant project, although full electrification could be an ultimate objective.

Consider.

  • Hull and Brough are 10.5 miles apart.
  • Brough and Leeds are 41 miles apart.
  • Brough and Doncaster are 30 miles apart and Doncaster and Sheffield are 20 miles apart.
  • Brough and Temple Hirst Junction are 26 miles apart.
  • Brough and York are 42 miles apart.
  • Hull and Beverley are 8 miles apart.
  • Beverley and Bridlington are 23 miles apart.
  • Beverley and Seamer are 42 miles apart.

Note that Doncaster, Leeds and Temple Hirst Junction are all electrified.

Hitachi’s Regional Battery Train

Hitachi have just launched the Regional Battery Train, which is described in this Hitachi infograpic.

It has a range of 56 miles and an operating speed of 100 mph.

Class 800 and Class 802 trains could be converted into Regional Battery Trains.

  • The three diesel engines would be exchanged for battery packs.
  • The trains would still be capable of 125 mph on fully-electrified routes like the East Coast Main Line.
  • They would be capable of 100 mph on routes like the 100 mph routes from Hull.
  • The trains would have full regenerative braking to batteries, which saves energy.
  • Below 125 mph, their acceleration and deceleration on battery power would probably be the same as when using electrification. It could even be better due to the simplicity and low impedance of batteries.

But they would need some means of charging the batteries at Hull.

A Start To Electrification

If the ultimate aim is to electrify all the lines, then why not start by electrifying.

  • Hull station.
  • Hull and Brough
  • Hull and Beverley

It would only be 18.5 miles of electrification and it doesn’t go anywhere near the swing bridges or about six level crossings.

Battery Electric Services From Hull

I will now look at how the various services could operate.

Note in the following.

  1. When I say Regional Battery Train, I mean Hitachi’s proposed train or any other battery electric train with a similar performance.
  2. I have tried to arrange all power changeovers in a station.
  3. Pantograph operation can happen at line-speed or when the train is stationary.

I have assumed a range of 56 miles on a full battery and an operating speed of 100 mph on a track that allows it.

Hull And London Kings Cross

The legs of the service are as follows.

  • Hull and Brough – 10.5 miles – Electrified
  • Brough and Temple Hirst Junction – 26 miles – Not Electrified
  • Temple Hirst Junction and London Kings Cross – 169 miles – Electrified

Note.

  1. Hull and Brough takes about 11 minutes, so added to the time spent in Hull station, this must be enough time to fully-charge the batteries.
  2. Regional Battery Trains will be able to do 56 miles on a full battery so 26 miles should be easy.
  3. One changeover between power sources will be done in Brough station.
  4. The other changeover will be done at line speed at Temple Hirst Junction, as it is now!

Hull Trains and LNER would be able to offer an all-electric service to London.

A few minutes might be saved, but they would be small compared to time savings, that will be made because of the introduction of full ERTMS in-cab signalling South of Doncaster, which will allow 140 mph running.

Hull And Leeds

The legs of the service are as follows.

  • Hull and Brough – 10.5 miles – Electrified
  • Brough and Leeds – 41 miles – Not Electrified

Note.

  1. Hull and Brough takes about 11 minutes, so added to the time spent in Hull station, this must be enough time to fully-charge the batteries.
  2. Regional Battery Trains will be able to do 56 miles on a full battery so 41 miles should be easy.
  3. One changeover between power sources will be done in Brough station, with the other in Leeds station.

If Leeds and Huddersfield is electrified, TransPennine Express will be able to run an all-electric service between Manchester and Hull, using battery power in the gaps.

Hull And Sheffield

The legs of the service are as follows.

  • Hull and Brough – 10.5 miles – Electrified
  • Brough and Doncaster – 30 miles – Not Electrified
  • Doncaster and Sheffield – 20 miles – Not Electrified

Note.

  1. Hull and Brough takes about 11 minutes, so added to the time spent in Hull station, this must be enough time to fully-charge the battery.
  2. Regional Battery Trains will be able to do 56 miles on a full battery so 30 miles should be easy.
  3. Trains would charge using the electrification at Doncaster.
  4. Doncaster and Sheffield both ways should be possible after a full charge at Doncaster station.
  5. One changeover between power sources will be done in Brough station, with the others in Doncaster station.

Hull And York

The legs of the service are as follows.

  • Hull and Brough – 10.5 miles – Electrified
  • Brough and York- 42 miles – Not electrified

Note.

  1. Hull and Brough takes about 11 minutes, so added to the time spent in Hull station, this must be enough time to fully-charge the batteries.
  2. Regional Battery Trains will be able to do 56 miles on a full battery so 42 miles should be easy.
  3. One changeover between power sources will be done in Brough station, with the other in York station.
  4. Trains would be fully charged for the return in York station.

This journey will also be effected by the York to Church Fenton Improvement Scheme, which is described on this page on the Network Rail web site. According to the web page this involves.

  • Replace old track, sleepers, and ballast (The stones which support the track)
  • Install new signalling gantries, lights, and cabling
  • Fully electrify the route from York to Church Fenton – extending the already electrified railway from York.

There will be another five miles of electrification., which will mean the legs of the Hull and York service will be as follows.

  • Hull and Brough – 10.5 miles – Electrified
  • Brough and Church Fenton – 31.5 miles – Not Electrified
  • Church Fenton and York – 10.5 miles – Electrified

It is a classic route for a battery electric train.

Note.

  1. Church Fenton and York takes about 19 minutes, so added to the time spent in York station, this must be enough time to fully-charge the batteries.
  2. There will be a changeover between power sources in Church Fenton station.

This appears to me to be a very sensible addition to the electrification.

If you look at a Leeds and York, after the electrification it will have two legs.

  • Leeds and Church Fenton – 13 miles – Not Electrified
  • Church Fenton and York – 10.5 miles – Electrified

It is another classic route for a battery electric train.

Hull And Bridlington

The legs of the service are as follows.

  • Hull and Beverley – 13 miles – Electrified
  • Beverley and Bridlington – 23 miles – Not Electrified

Note.

  1. Hull and Beverley takes about 13 minutes, so added to the time spent in Hull station, this must be enough time to fully-charge the batteries.
  2. Regional Battery Trains will be able to do 56 miles on a full battery so 46 miles to Bridlington and back to Beverley, should be possible.
  3. The changeovers between power sources would be in Beverley station.

If necessary, there is a bay platform at Bridlington, that could be fitted with simple electrification to charge the trains before returning.

Hull And Scarborough

The legs of the service are as follows.

  • Hull and Beverley – 13 miles – Electrified
  • Beverley and Seamer- 42 miles – Not Electrified
  • Seamer and Scarborough – 3 miles – Not Electrified

Note.

  1. Hull and Beverley takes about 13 minutes, so added to the time spent in Hull station, this must be enough time to fully-charge the batteries.
  2. Regional Battery Trains will be able to do 56 miles on a full battery so 45 miles to Scarborough should be easy.
  3. The changeovers between power sources would be in Beverley station.

There would need to be charging at Scarborough, so why not electrify between Scarborough and Seamer?

  • Power changeover would be in Seamer station.
  • The electrification could also charge battery electric trains running between York and Scarborough.
  • Seamer and York are 39 miles apart.
  • All Northern Trains and TransPennine Express services appear to stop in Seamer station.

This could be three very useful miles of electrification.

Could This Plan Based On Battery Trains Be Delivered Early?

The project could be divided into sub-projects.

Necessary Electrification

Only these double-track routes would need to electrified.

  • Hull and Brough
  • Hull and Beverley
  • Seamer and Scarborough

There would also be electrification at Hull and Scarborough stations to charge terminating trains.

In total it would be under twenty-five double-track miles of electrification.

Note.

  1. There are no swing bridges on these routes.
  2. There are no tunnels
  3. Many of the overbridges appear to be modern with adequate clearance for electrification.
  4. I don’t suspect that providing adequate power will be difficult.
  5. Hull and Scarborough are larger stations and I believe a full service can be provided, whilst the stations are being electrified.

It would not be a large and complicated electrification project.

Conversion Of Class 800 And Class 802 Trains To Regional Battery Trains

Whilst the electrification was being installed, the existing Class 800 and Class 802 trains needed by Hull Trains, LNER and TransPennine Express could be converted to Regional Battery Trains, by the replacement of some or all of the diesel engines with battery power-packs.

I suspect LNER or GWR could be the lead customer for Hitachi’s proposed conversion of existing trains.

  • Both train companies have routes, where these trains could be deployed without any electrification or charging systems. Think London Kings Cross and Harrogate for LNER and  Paddington and Oxford for GWR.
  • Both train companies have large fleets of five-car trains, that would be suitable for conversion.
  • Both train companies have lots of experience with Hitachi’s trains.

It should be noted that GWR, Hull Trains and TransPennine Express are all part of the same company.

What About Northern Trains?

Northern Trains will need some battery electric trains, if this plan goes ahead, to run routes like.

  • Hull and Bridlington – 46 miles
  • Hull and Leeds – 41 miles
  • Hull and Scarborough – 42 miles
  • Hull and Sheffield – 40 miles
  • Hull and York – 42 miles
  • Scarborough and York – 31.5 miles
  • The distances are the lengths of the route without electrification.

I suspect they will need a train with this specification.

  • Four cars
  • Ability to use 25 KVAC overhead electrification.
  • Battery range of perhaps 50 miles.
  • 100 mph operating speed.

There are already some possibilities.

  • CAF are talking about a four-car battery electric version of the Class 331 train.
  • Hitachi have mentioned a battery electric Class 385 train.
  • Porterbrook have talked about converting Class 350 trains to battery electric operation.
  • Bombardier have talked about battery electric Aventras.

There are also numerous four-car electric trains, that are coming off lease that could be converted to battery electric operation.

When Could The Project Be Completed?

There are three parts to the project.

  • Under twenty-five double-track miles of electrification.
  • Adding batteries to Class 800 and Class 802 trains.
  • Battery electric trains for Northern.

As the sub-projects can be progressed independently, I can see the project being completely by the end of 2024.

Across The Pennines In A Regional Battery Train

By providing the ability to run Class 802 trains on battery power to Hull and Scarborough, the ability to run Regional Battery Trains from Liverpool in the West to Hull, Middlesbrough and Scarborough in the East under electric power, could become possible.

Looking at Liverpool and Scarborough, there are these legs.

  • Liverpool Lime Street and Manchester Victoria – 32 miles – Electrified
  • Manchester Victoria and Stalybridge – 8 miles – Not Electrified
  • Stalybridge and Huddersfield – 18 miles – Not Electrified
  • Huddersfield and Leeds – 17 miles – Not Electrified
  • Leeds and York – 26 miles – Not Electrified
  • York and Scarborough – 42 miles – Not Electrified

Note.

  1. East of Manchester Victoria, there is electrification in Leeds and York stations, which could charge the train fully if it were in the station for perhaps ten minutes.
  2. Currently, stops at Leeds and York are around 4-5 minutes.
  3. Manchester Victoria and Stalybridge is being electrified.
  4. In this post, I have suggested that between Seamer and Scarborough should be electrified to charge the trains.
  5. I have also noted that between Church Fenton and York is being fully electrified.

This could mean power across the Pennines between Liverpool and Scarborough could be as follows.

  • Liverpool Lime Street and Manchester Victoria – 32 miles – Electrification Power and Charging Battery
  • Manchester Victoria and Stalybridge – 8 miles – Electrification Power and Charging Battery
  • Stalybridge and Huddersfield – 18 miles – Battery Power
  • Huddersfield and Leeds – 17 miles – Battery Power
  • Leeds station – Electrification Power and Charging Battery
  • Leeds and Church Fenton – 13 miles – Battery Power
  • Church Fenton and York – 10.5 miles – Electrification Power and Charging Battery
  • York and Seamer – 39 miles – Battery Power
  • Seamer and Scarborough – 3 miles – Electrification Power and Charging Battery

There are three stretches of the route, where the train will be run on battery power.

  • Stalybridge and Leeds – 35 miles
  • Leeds and Church Fenton – 13 miles
  • York and Seamer – 39 miles

There will be charging at these locations.

  • West of Stalybridge
  • Through Leeds Station
  • Through York Station
  • East of Seamer Station

I feel it could be arranged that trains left the charging sections and stations with a full battery, which would enable the train to cover the next section on battery power.

To make things even easier, Network Rail are developing the Huddersfield And Westtown Upgrade, which will add extra tracks and eight miles of new electrification between Huddersfield and Dewsbury.

This would change the power schedule across the Pennines between Liverpool and Scarborough to this.

  • Liverpool Lime Street and Manchester Victoria – 32 miles – Electrification Power and Charging Battery
  • Manchester Victoria and Stalybridge – 8 miles – Electrification Power and Charging Battery
  • Stalybridge and Huddersfield – 18 miles – Battery Power
  • Huddersfield and Dewsbury – 8 miles – Electrification Power and Charging Battery
  • Fewsbury and Leeds – 9 miles – Battery Power
  • Leeds station – Electrification Power and Charging Battery
  • Leeds and Church Fenton – 13 miles – Battery Power
  • Church Fenton and York – 10.5 miles – Electrification Power and Charging Battery
  • York and Seamer – 39 miles – Battery Power
  • Seamer and Scarborough – 3 miles – Electrification Power and Charging Battery

There are now four stretches of the route, where the train will be run on battery power.

  • Stalybridge and Huddersfield – 18 miles
  • Dewsbury and Leeds – 9 miles
  • Leeds and Church Fenton – 13 miles
  • York and Seamer – 39 miles

I can envisage the electrification being extended.

But battery power on this route gives all the advantages of electric trains, with none of the costs and installation problems of electrification.

Conclusion

I believe a limited electrification of lines for a few miles from the coastal terminals at Hull and Scarborough and battery electric trains can deliver zero-carbon and much faster electric trains to the railways of Yorkshire to the East of Leeds, Sheffield and York.

If this approach is used, the electrification will be much less challenging and if skates were to be worn, the scheme could be fully-implemented in around four years.

The scheme would also deliver the following.

  • Faster, all-electric TransPennine services.
  • An all-electric Hull and London service.
  • A substantial move towards decarbonisation of passenger train services in East Yorkshire.

It is also a scheme, that could be extended South into Lincolnshire, across the Pennines to Lancashire and North to Teesside and Tyneside.

 

 

September 13, 2020 Posted by | Transport | , , , , , , , , , , , , , | 13 Comments

Hydrogen Train “Coradia iLint”

The title of this post, is the same as that on this page of the Austrian Railways web site.

One of the sections is entitled Tried And Tested On Geographically Demanding Routes, where this is said.

Up to now, hydrogen trains have mainly been used on flat routes in Northern Germany and the Netherlands. By testing on geographically demanding, alpine routes in the southern parts of Lower Austria, the hydrogen train is now being put through its paces for the first time.

They also give a link to a route timetable.

September 13, 2020 Posted by | Hydrogen, Transport | , , | Leave a comment