The Anonymous Widower

‘Castle’ HSTs To Be Withdrawn By Great Western Railway

The title of this post, is the same as that of this article on Rail Advent.

This quote from a  GWR spokesman, sums up the action that will be taken.

The Castles were always designed to be a temporary measure on the Cardiff to Penzance route. We expect to replace the Castle Class trains on a phased basis over the next couple of years, bringing customers the benefit of more modern trains that will reduce both cost and carbon emissions across the route.

These are my thoughts.

Could The Engines In The Power Cars Be Replaced With Modern Carbon-Neutral Engines?

This would be an alternative way to solve the decarbonisation problem.

It would also mean that other applications of the Class 43 power cars, like ScotRail’s Inter7City trains, Cross Country’s HSTs and Network Rail’s New Measurement Train would have a decarbonisation route,

In Rolls-Royce Releases mtu Rail Engines For Sustainable Fuels, Rolls-Royce mtu outline their route to decarbonise rail engines using sustainable fuels.

This was the first paragraph of my conclusion in the linked article.

Rolls-Royce and Cummins seem to be doing a thoroughly professional job in decarbonising the diesel engines they have made in recent years.

The Class 43 power cars have Rolls-Royce mtu Series 4000 engines, which will soon be available to run on sustainable fuel.

I think as a possible fall-back, one Class 43 power car should be converted to carbon neutral.

Could The Engines In The Power Cars Be Replaced With Modern Hydrogen Engines?

I looked at this in Will We See Class 43 Power Cars Converted To Hydrogen?.

I came to the conclusion, that this might be possible and said this.

It would be the ultimate Roller.

But then Rolls-Royce know about winning battles with large internal combustion engines.

The Option Of New Trains

This quote from a  GWR spokesman was fairly definite about new trains, when they said.

The Castles were always designed to be a temporary measure on the Cardiff to Penzance route. We expect to replace the Castle Class trains on a phased basis over the next couple of years, bringing customers the benefit of more modern trains that will reduce both cost and carbon emissions across the route.

What trains could replace the Castles?

  • The Cardiff and Penzance route is just short of 250 miles or roughly 400 kilometres.
  • Only about 30 miles at the Cardiff end is electrified.
  • Trains would need to be able to handle 25 KVAC overhead electrification.
  • 125 mph trains will be needed at the Cardiff end.
  • Four or five passenger cars will be needed.
  • Currently, there are twelve Castles, so I will assume twelve new trains.

As these trains will be lasting up to forty years, they must be zero-carbon, which must mean battery-electric or hydrogen.

Charging Battery-Electric Trains

Consider

  • Bristol Temple Meads, Exeter St. Davis and Plymouth are large stations with several platforms. I suspect that a number of Furrer + Frey’s charging stations can be installed along the route.
  • The timetable would be adjusted to allow trains to be charged as they stopped to set down and pick up passengers.
  • Trains would dwell in the station and then use their 125 mph performance to regain the time.
  • I’ve also found a Penzance to Cardiff service, that stopped at Plymouth for fourteen minutes, which is more than enough to charge the batteries.
  • Regenerative braking to the batteries would further eke out the range.
  • There might also be some extra electrification around Bristol or Exeter.
  • Some form of charging would be needed at Penzance.

Note.

  1. Putting up electrification may mean that it will delay the new trains for a few years.
  2. Charging stations along the route could probably be installed to a tight timetable.

I believe that with some top-class work, by battery and charger manufacturers, that a battery-electric train could be developed that could run between Cardiff and Penzance.

Thoughts On Hydrogen

Consider.

  • The Alstom Coradia iLint train has a range of about 1,000 km. on hydrogen.
  • Companies like Airbus, Boeing and a host of rocket makers will improve the storage and safety of hydrogen.
  • A range of a 1,000 km. would allow refuelling at one end of the route.
  • Trains could be multiple units or a hydrogen-electric locomotive pulling a rake of coaches with a driving van trailer.

I feel that hydrogen would be very feasible as a power source.

Alstom Could Offer A Hydrogen Aventra

Consider.

  • Alstom are developing a hydrogen-powered Aventra.
  • Bombardier were offering a 125 mph Aventra.
  • A typical Aventra like a Class 720 train seats a hundred passengers a car.

A hydrogen Aventra would be feasible.

Hitachi Could Offer A Battery-Electric Or Hybrid AT-300

In 2021, in Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%, I wrote about the announcement of the Hitachi Intercity Tri-Mode Battery Hybrid Train, which is shown in this Hitachi infographic.

Note.

  1. Batteries replacing an engine to cut fuel usage and reduce carbon emissions.
  2. First time a modern UK intercity train, in passenger service, will use alternative fuel.
  3. These Hitachi trains use mtu engines, so I suspect they will be switched to sustainable fuel like HVO.
  4. The trains are 125 mph and 140 mph with the latest digital signalling.
  5. Great Western Railway already have 58 five-car Class 800/802 trains and 35 nine-car 800/802 trains.
  6. They would not need any changing stations or other infrastructure changes.
  7. Staff retraining would be minimal.

Testing of the prototype of these trains must be getting very close or even underway.

Stadler Could Offer A Battery-Electric Flirt Akku

Consider

  • Stadler have run a Flirt Akku on batteries for 243 km.
  • Flirt Akkus will go into service soon.
  • Flirts have been designed for 125 mph running.

With charging at Cardiff, Bristol, Exeter, Plymouth and Penzance, I believe a Flirt Akku could handle the route.

Are Hitachi Home And Hosed?

I have a feeling that the announcement has been made about retiring the Castles as the prototype Hitachi Intercity Tri-Mode Battery Hybrid Train is under test and is performing well.

So I wouldn’t be surprised to see an order for twelve more Class 802 trains soon.

 

 

November 27, 2022 Posted by | Transport/Travel | , , , , , , , , , , , , , , | 9 Comments

Rolls-Royce Releases mtu Rail Engines For Sustainable Fuels

The title of this post, is the same as that of this press release from Rolls-Royce.

The press release starts with these bullet points.

  • mtu Series 1300, 1500 and 1800 engines already released; Series 1600 and 4000 to follow shortly
  • Up to 90% CO2 savings by operating existing engines with Hydrotreated Vegetable Oil (HVO/renewable diesel)
  • Locally emission-free operation possible in combination with mtu Hybrid PowerPack
  • Field tests with DB Cargo and RDC Autozug Sylt

Note.

  1. Hitachi Class 800, 802, 805 and Class 810 trains appear to use Series 1600 engines.
  2. CAF Class 195, 196 and Class 197 trains appear to use Series 1800 engines.
  3. Class 43 power cars, as used in InterCity 125 trains appear to use Series 4000 engines.

It would appear that many of the UK’s new diesel trains and the remaining Class 43 power-cars can be converted to run on HVO.

This paragraph from the press release gives more details.

Rolls-Royce is taking a significant step towards even more climate-friendly rail transport with the release of mtu rail engines for use with sustainable fuels. With synthetic diesel fuels of the EN15940 standard, CO2 emissions can be reduced by up to 100 percent compared to fossil diesel. Hydrotreated Vegetable Oil (HVO or renewable diesel), which is already commercially available today, reduces CO2 emissions by up to 90 percent. If the fuels are produced with the help of renewable energy and green hydrogen – through what is termed a Power-to-X process – existing rail vehicles can be operated in a completely CO2-neutral manner. The mtu Series 1800 engines which are used in mtu PowerPacks, as well as Series 1300 and 1500 for locomotives and multi-purpose vehicles, are already approved for use with synthetic fuels such as HVO. Series 1600 and versions of Series 4000 engines will follow in the near future. The release of engines for climate-friendly fuels requires a series of tests and trials and Rolls-Royce has found strong partners for this activity. DB Cargo and RDC Autozug Sylt have already tested or are currently testing mtu Series 4000 engines with HVO in their locomotives.

Rolls-Royce mtu seem to have covered all issues.

This is a very significant statement in the paragraph.

If the fuels are produced with the help of renewable energy and green hydrogen – through what is termed a Power-to-X process – existing rail vehicles can be operated in a completely CO2-neutral manner.

This must be the most affordable way to make your diesel trains zero carbon.

Conclusion

Rolls-Royce and Cummins seem to be doing a thoroughly professional job in decarbonising the diesel engines they have made in recent years.

It now needs someone to take small diesel engines down the conversion route, just as Rolls-Royce mtu and Cummins are cleaning up their large engines.

September 24, 2022 Posted by | Hydrogen, Transport/Travel | , , , , , , , , , , , , | 6 Comments

Could An Oxford And Cambridge Service Be Run Via The Lizzie Line?

This article on the BBC is entitled East-West Rail: Part Of £5bn Scheme ‘Appears To Be Unachievable’.

These are the first four paragraphs.

A £5bn rail project “appears to be unachievable” in parts, a government report said.

The East-West Rail scheme will create a link from Oxford to Cambridge, with services being introduced in stages.

Stage two, between Oxford and Bedford, and stage three, between Bedford and Cambridge, have “major issues”, the Infrastructure and Projects Authority said.

A spokesman for East-West Rail said the delivery programme was “under review”.

As someone, who used to live near Cambridge, I have seen the transport routes improve in East Anglia, but not the area’s connections to the rest of the country.

The article describes Stage 2 and 3 of the East West Railway like this.

Stage two involves predominantly upgrading existing infrastructure, between Bletchley and Bedford, to allow services between Oxford and Bedford.

Stage three involves building a new line, between Bedford and Cambridge, to extend the railway and facilitate services from Oxford to Cambridge.

So if the Government feel that the major issues and opposition should lead to cancellation of the scheme to the East of Bedford or even Bletchley, what are the problems and alternatives?

Freight

The Port of Felixstowe is the UK’s busiest container port and it handles 48% of Britain’s containerised trade.

Having lived as a teenager in Felixstowe and in Suffolk for probably half my life, there is only one certainty about the port in my mind. It will get bigger and will generate more rail and road traffic in East Anglia.

  • The roads have improved greatly, since the 1960s, when I used to cycle between Ipswich and Felixstowe, along a two-lane single carriageway road.
  • The renamed A14 has replaced the A45 and now connects the port to the M1 and the M6.
  • Tens of long freight trains every day now connect Felixstowe with the rest of the country.
  • The East West Railway will be a very useful link between Felixstowe and South Wales and the West of England.
  • Global warming will mean the decarbonisation of heavy freight, with more traffic on an electrified railway.

Felixstowe’s connections to the North and Midlands may have improved greatly, but they will need to be improved a lot more.

The Port of Southampton is the UK’s second busiest container port.

  • Most freight trains from Southampton go North via Basingstoke, Reading and Oxford.
  • A plan some years ago was for an Electric Spine, that would have connected the Port of Southampton to the Northern cities.
  • The Electric Spine would have envisaged electrification of the East West Railway to the West of Bedford and electrified connections with the West Coast Main Line and the Midland Main Line.
  • The Midland Main Line is now planned to be fully electrified, under the the Integrated Rail Plan for the North and Midlands.

Southampton, like Felixstowe will be in need of improved transport connections.

In an ideal world, an electrified East West Railway, would improve freight connections between the UK’s two busiest container ports and major cities in the UK.

Problems With Freight

Could this be the major problem East of Bletchley, where the residents living along the route, don’t want to see large numbers of freight trains running close by?

In this document on the East-West Rail Consortium web site, this is said.

Note that doubling of Warren Hill Tunnel at Newmarket and
redoubling between Coldham Lane Junction and Chippenham Junction is included
in the infrastructure requirements. It is assumed that most freight would operate
via Newmarket, with a new north chord at Coldham Lane Junction, rather than
pursuing further doubling of the route via Soham.

Will the residents of Newmarket object to a double-track freight railway through the town? Freight trains and horses are not a good mix.

I do wonder, if freight trains hauled by noisy and unfriendly diesel locomotives are one of the reasons a full Oxford and Cambridge railway is losing its appeal and becoming a vote loser for the Government.

Cambridge Has An Accommodation And Commuting Problem

There is a shortage of accommodation in Cambridge for offices, laboratories, workshop and above all workers.

So it looks to the surrounding towns and cities to provide help.

London and Ely have good links, but the city needs better links to Bedford, Bury St. Edmunds, Haverhill, Ipswich, Norwich, Kings Lynn, Peterborough, Soham, Stansted Airport, Stevenage, Sudbury and Thetford.

Cambridge may be the place in the South East with the largest numbers of commuters from London.

Cambridge Needs A Decent Rail Network

In my view Cambridge needs at least the following services in trains per hour (tph)

  • Colchester via Haverhill, Sudbury and Marks Tey – 2 tph
  • Ipswich via Newmarket, A14 Parkway, Bury St. Edmunds, Stowmarket and Needham Market – 2 tph
  • King’s Lynn via Cambridge North, Ely and Downham Market – 2 tph
  • Oxford via Bedford, Milton Keynes/Bletchley and Bicester – 2 tph
  • London King’s Cross via Cambridge South – 2 tph
  • Norwich via Cambridge North, Ely, Thetford, Attleborough  and Wymondham – 2 tph
  • Peterborough via Cambridge North, Ely and March – 2 tph
  • Stansted Airport via Cambridge South and Audley End – 2 tph
  • Stevenage via Royston and Hitchin – 2 tph
  • Wisbech via Cambridge North, Ely and March – 2 tph

Note.

  1. Some services already exist.
  2. Some of these services duplicate each other to give 4 tph or even 6 tph on certain routes.
  3. Some services could be back-to-back through Cambridge.
  4. A 14 Parkway station is a new station proposed by the East West Railway. I wrote about it in detail in Soham Station – 14th December 2021.
  5. Haverhill would be served by a rebuilt Stour Valley Railway.
  6. Wisbech would be served by restoring the railway to March.

To complete the network there would be a two tph service between Peterborough and Ipswich, which would go via March, Ely, Soham, A 14 Parkway, Bury St. Edmunds, Stowmarket and Needham Market.

Oxford Could Probably Argue that It Needs A Decent Rail Network Like Cambridge

Oxford would argue this and they have a point.

The East West Railway Is The Odd Line Out

Looking at the rail networks at Cambridge and Oxford, it appears, that with the exception of Cotswold services at Oxford and a few CrossCountry services, it appears that the East West Railway is a bit of an odd line out, as everything else is a local service.

The Effects Of Not Building The Bedford And Cambridge Section Of The East-West Railway

What will it mean, if the Bedford and Cambridge Section of The East-West Railway is not built?

  • Cambourne will not get the promised station.
  • Bedford and Cambridge journeys will be by bus, train via London or private car.
  • Commuting into Cambridge from the West will be difficult.
  • Milton Keynes and Cambridge journeys will be by bus, train via London or private car.
  • Oxford and Cambridge journeys will be by bus, train via London or private car.
  • Train journeys between Cambridge and much of the rest of the UK, will need to go via London.

It would appear that by not building the third section of the East West Railway, a lot of potential passengers will be denied a rail service.

Could Services Be Run Using Existing Infrastructure Through London?

The Elizabeth Line will eventually be able to handle a lot more services than it does at present.

Would Extending The Elizabeth Line To Oxford Be A Good Start?

Consider.

  • Oxford has two services to London; Chiltern to Marylebone and Great Western Railway (GWR) to Paddington.
  • The GWR service to Paddington stops only at Reading and Slough, has a frequency of two tph and takes under an hour.
  • The fastest journey between Oxford and Liverpool Street using a fast GWR train and the Elizabeth Line takes one hour and 20 minutes.
  • Only 10.6 miles of the route between Oxford and Paddington is without electrification.
  • There is also a two tph stopping shuttle train between Oxford and Didcot Parkway stations and a two tph stopping train between Paddington and Didcot Parkway.

I feel that combining the two Didcot Parkway services and moving them to the Elizabeth Line would be an experiment worth trying.

This would give 2 tph direct to the following stations.

  • Bond Street for the West End
  • Canary Wharf for finance.
  • Farringdon for Cambridge, Gatwick and Brighton.
  • Hayes & Harlington for Heathrow.
  • Liverpool Street for the City of London, Cambridge and Stansted
  • Reading for Wales and the West.

Note.

  1. No-one would have a worse service than currently, but many passengers would avoid a change on their journey.
  2. Services could terminate at either Abbey Wood or Shenfield stations.
  3. Services could be an extension of the two tph to Reading or additional services.
  4. Between Didcot Parkway and Oxford is shown on OpenRailwayMap, as proposed for electrification.
  5. There may need to be some new platforms at Didcot Parkway station.
  6. I estimate that between Oxford and Liverpool Street would take one hour and fifty minutes.

It certainly looks, that it would be possible to replace the current GWR service between Oxford and Paddington, with an all-electric Elizabeth Line service.

The direct stopping service between Oxford and Liverpool Street would be thirty minutes slower, than the current fastest train.

The current fastest train between Liverpool Street and Cambridge takes 71 minutes, so with a change at Liverpool Street Oxford and Cambridge  would probably be just over three hours.

Google Maps estimate a driving time of two hours between the two University Cities.

Could The Elizabeth Line Be Extended To Cambridge?

There is no train connection between the Elizabeth Line and the West Anglia Main Line at Liverpool Street station, although the walk for passengers is not that long.

In Extending The Elizabeth Line – Connecting West Anglia Main Line Services To The Central Tunnel, I describe how it could be possible to connect the West Anglia Main Line to the Elizabeth Line at Stratford station.

This connection would allow services from Cambridge, Harlow and Stansted to anywhere on the Elizabeth Line to the West of Stratford.

Oxford and Cambridge and Heathrow and Stansted would be distinct possibilities.

Could A High Speed Limited Stop Service Run Between Oxford And Cambridge?

In Extending The Elizabeth Line – High Speed Trains On The Elizabeth Line, I proposed running faster long-distance trains through the Central Tunnel of the Elizabeth Line.

  • They would have to be dimensionally identical to the Class 345 trains to fit the platform edge doors.
  • They would have a long-distance interiors.
  • In the Central Tunnel, they would behave like 345 trains. with Paddington to Stratford taking 19 minutes.
  • But on main lines like the Great Western Main Line, they could rattle along at 125 mph.

If the trains could keep up with Class 802 train performance between Oxford and Paddington and enter the Central Tunnel quickly, these times could be possible.

  • Oxford and Paddington – 55 minutes
  • Paddington and Stratford – 19 minutes
  • Stratford and Tottenham Hale – 14 minutes
  • Tottenham Hale and Cambridge – 65 minutes

Just over two-and-a-half hours, without a change of train, sounds fine to me.

What About The Trains From Great Malvern?

The fast services between Paddington and Oxford, run twice an hour, with the service formed of one hourly Paddington and Oxford service and another hourly Paddington and Great Malvern service.

  • If Oxford gets electrified soon, this will mean that the Oxford and Paddington service would be all-electric.
  • But the Great Malvern service would need to be able to handle 65.5 miles of line without electrification each way.
  • The speed limits between Oxford and Great Malvern vary between 70 and 100 mph.

I’m certain that Stadler could design and build a train, with the following characteristics.

  • Class 345 dimensions.
  • 125 mph performance.
  • Ninety miles range on battery power.

The trains would be charged between Paddington and Oxford and by a charger at Great Malvern.

Conclusion

Would an Oxford and Cambridge service through Central London be an alternative to the East-West Railway?

Perhaps not an alternative, but an addition?

 

 

 

 

 

August 3, 2022 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , | 3 Comments

Green Light For Major Transpennine Improvements

The title of this post, is the same as that of this article on Railnews.

These paragraphs outline the project.

Improvements on the Transpennine route in West Yorkshire have been given the green light, after a Transport and Works Act order was signed by the transport secretary on 27 June, six months earlier than planned.

The cost of the upgrades was described as ‘multi-billion’ by Network Rail, which said it was the ‘biggest milestone’ so far on the Transpennine Route Upgrade programme.

The improvements will be carried out between Huddersfield and Westtown in Dewsbury, and include quadrupling the double line and remodelling track layouts as well as major renovations at Huddersfield, Deighton and Mirfield and a new station at Ravensthorpe. In addition, there will be a flyover near Ravensthorpe to separate the Wakefield and Leeds lines and reduce conflicting movements.

Effectively, Grant Shapps fired the starting gun for this project four days ago.

I have written various posts on the upgrade and they can be read from this link.

The Transpennine Route Upgrade Web Site

The project now has its own comprehensive web site, which is named the Transpennine Route Upgrade.

A Reply To Peter Robins About Electrification

Peter Robins made this very perceptive comment.

The main point of TPU isn’t electrification, though, it’s upgrading the track to remove bottlenecks, improve lines speeds, add capacity. This is mainly what the Hudd-Dew TWA order is about. If you electrify the line while you’re doing that, then you increase the number of connecting places/lines which are within range of current batteries.

I think that Lds-CF will also have to wait for the post-IRP review, meaning the full upgrade will be a long time coming.

This Hitachi infographic shows the specification of their Regional Battery Train.

Note.

  1. It is a 100 mph train.
  2. Batteries can be charged when travelling under wires or 10-15 mins static.
  3. Range on batteries is 90 km. or 56 miles.
  4. My experience of Hitachi bi-modes is that pantographs on these trains can go up and down, with all the alacrity of a whore’s drawers.

Hitachi have stated that they will be testing a Class 802 train with batteries later this year.

Could Hitachi Battery Trains Be Charged On The Electrification Between Huddersfield And Dewsbury?

Looking at the data from RealTimeTrains for this route it appears that the fastest time I can find between Huddersfield And Dewsbury is eleven minutes.

Would this be enough time to fully-charge the battery? If not the electrification could perhaps be extended for a couple of miles.

How Many Of Transpennine Express (TPE)’s Services Could Be Decarbonised, if Huddersfield And Dewsbury Were To Be Electrified?

I’ll look at each service that uses this route.

Liverpool Lime Street And Newcastle

This is an hourly service that calls at Newton-le-Willows, Manchester Victoria, Huddersfield, Dewsbury, Leeds, York, Northallerton, Darlington and Durham.

  • Liverpool Lime Street and Manchester Victoria is electrified.
  • Colton Junction and Newcastle is electrified.
  • Huddersfield and Dewsbury will be electrified by the Transpennine Route Upgrade.

This leaves the following sections without electrification.

  • Manchester Victoria and Huddersfield – 25.8 miles
  • Dewsbury and Colton Junction – 29.3 miles

Note.

  1. There are also stops under the wires, at Dewsbury, Huddersfield and Leeds, which could be used to top up the battery.
  2. The largest unelectrified section would be 29.3 miles.

It looks to me that Liverpool Lime Street And Newcastle could be served using a Hitachi Regional Battery Train or similar.

Manchester Airport And Redcar Central

This is an hourly service that calls at Gatley, Manchester Piccadilly, Manchester Oxford Road, Manchester Victoria, Huddersfield, Dewsbury, Leeds, York, Thirsk, Northallerton, Yarm, Thornaby and Middlesbrough.

  • Manchester Airport and Manchester Victoria is electrified.
  • Colton Junction and Northallerton is electrified.
  • Huddersfield and Dewsbury will be electrified by the Transpennine Route Upgrade.

This leaves the following sections without electrification.

  • Manchester Victoria and Huddersfield – 25.8 miles
  • Dewsbury and Colton Junction – 29.3 miles
  • Northallerton and Redcar Central – 28.8 miles

Note.

  1. There are also stops under the wires, at Dewsbury, Huddersfield and Leeds, which could be used to top up the battery.
  2. The largest unelectrified section would be 29.3 miles.
  3. I suspect that charging could be needed at Redcar end of the route. Middlesbrough would probably be best, as it could also charge the LNER services, if they used battery power from Northallerton.

It looks to me that Manchester Airport And Redcar Central could be served using a Hitachi Regional Battery Train or similar.

Manchester Piccadilly And Hull

This is an hourly service that calls at Stalybridge, Huddersfield, Leeds, Selby and Brough.

  • Manchester Piccadilly and Manchester Victoria is electrified.
  • Huddersfield and Dewsbury will be electrified by the Transpennine Route Upgrade.
  • Leeds and Neville Hill Depot is electrified.

This leaves the following sections without electrification.

  • Manchester Victoria and Huddersfield – 25.8 miles
  • Dewsbury and Leeds – 29.3 miles
  • Neville Hill Depot and Hull – 50 miles

Note.

  1. There are also stops under the wires, at Huddersfield and Leeds, which could be used to top up the battery.
  2. The largest unelectrified section would be 50 miles.
  3. I am sure that charging would be needed at Hull end of the route. Hull would probably be best, as it could also charge the Hull Trains, LNER and Northern Trains services, if they used battery power from the East Coast Main Line.
  4. Alternatively, there could be electrification between Hull and Brough. or Neville Hill and Micklefield. The latter would knock eight miles off the unelectrified section and is needed to allow electric trains to access Neville Hill Depot under electric power.

It looks to me that Manchester Piccadilly and Hull could be served using a Hitachi Regional Battery Train or similar.

Manchester Piccadilly and Huddersfield

This is an hourly service that calls at Stalybridge, Mossley, Greenfield, Marsden, and Slaithwaite.

  • Manchester Piccadilly is electrified.
  • Huddersfield is electrified.

This leaves the following sections without electrification.

  • Manchester Piccadilly and Huddersfield – 25.5 miles

Note.

  1. There are also stops under the wires, at Manchester Piccadilly and Huddersfield, which would be used to top up the battery.
  2. The largest unelectrified section would be 25.5 miles.
  3. Trains would be charged at both ends of the route.

It looks to me that Manchester Piccadilly and Huddersfield could be served using a Hitachi Regional Battery Train or similar.

Huddersfield And Leeds

This is an hourly service that calls at Deighton, Mirfield, Ravensthorpe, Dewsbury, Batley, Morley and Cottingley

  • Huddersfield is electrified.
  • Leeds is electrified.

This leaves the following sections without electrification.

  • Dewsbury and Leeds – 29.3 miles

Note.

  1. There are also stops under the wires, at Manchester Piccadilly and Huddersfield, Deighton, Mirfield, Ravensthorpe, Dewsbury and Leeds, which would be used to top up the battery.
  2. The largest unelectrified section would be 29.3 miles.
  3. Trains would be charged at both ends of the route.

It looks to me that Huddersfield and Leeds could be served using a Hitachi Regional Battery Train or similar.

York And Scarborough

This is an hourly service that calls at Malton and Seamer

  • York is electrified.

This leaves the following sections without electrification.

  • York And Scarborough – 42.1 miles

Note.

  1. The largest unelectrified section would be 42.1 miles.
  2. Trains would be charged at both ends of the route.

It looks to me that York and Scarborough could be served using a Hitachi Regional Battery Train or similar.

How Many Of Northern Trains’s Services Could Be Decarbonised, if Huddersfield And Dewsbury Were To Be Electrified?

I’ll look at each service that uses this route.

Wigan North Western And Leeds

This is an hourly service that calls at Daisy Hill, Atherton, Walkden, Salford Crescent, Salford Central, Manchester Victoria, Rochdale, Smithy Bridge, Littleborough, Walsden, Todmorden, Hebden Bridge, Mytholmroyd, Sowerby Bridge, Brighouse, Mirfield, Dewsbury, Morley and Cottingley

  • Wigan North Western is electrified.
  • Salford Crescent and Manchester Victoria is electrified.
  • Heaton Lodge East junction and Dewsbury is electrified.
  • Leeds is electrified.

This leaves the following sections without electrification.

  • Wigan North Western and Salford Crescent – 16 miles
  • Manchester Victoria and Heaton Lodge East junction – 37.6 miles
  • Dewsbury and Leeds – 29.3 miles

Note.

  1. There are also stops under the wires, at Wigan North Western, Salford Crescent, Salford Central, Manchester Victoria, Mirfield, Dewsbury and Leeds, which would be used to top up the battery.
  2. The largest unelectrified section would be 37.6 miles.
  3. Trains would be charged at both ends of the route.

It looks to me that Wigan North Western and Leeds could be served using a Hitachi Regional Battery Train or similar.

Huddersfield And Castleford

This is an occasional service that calls at Deighton, Mirfield and Wakefield Kirkgate.

As it is run by buses at the moment, I can’t get the data to work out if it could be served using a Hitachi Regional Battery Train or similar.

But I suspect it can, after looking at a map.

How Many Of Grand Central’s Services Could Be Decarbonised, if Huddersfield And Dewsbury Were To Be Electrified?

I’ll look at each service that uses this route.

London King’s Cross And Bradford Interchange

This is a four trains per day service that calls at Doncaster, Pontefract Monkhill, Wakefield Kirkgate, Mirfield, Brighouse, Halifax and Low Moor.

  • King’s Cross and Doncaster is electrified.
  • Mirfield is electrified.

This leaves the following sections without electrification.

  • Doncaster and Mirfield – 34.8 miles
  • Mirfield and Bradford Interchange – 17.3 miles

Note.

  1. There are also stops under the wires, at Mirfield, which would be used to top up the battery.
  2. The largest unelectrified section would be 34.8 miles.
  3. Trains would need to be charged at Bradford Interchange, during the turnround of around an hour.
  4. It is likely, that some electrification will be erected in the Bradford area, to improve services to Leeds.

It looks to me that London King’s Cross and Bradford Interchange could be served using a Hitachi Regional Battery Train or similar.

Conclusion

It looks like electrifying between Huddersfield and Dewsbury will enable a Hitachi Regional Battery Train or similar to work all passenger routes, that run on that section of track.

 

July 1, 2022 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , | 21 Comments

TransPennine Express Explores Further Fleet And Capacity Expansion Options

The title of this post, is the same as that of this article on Railway Gazette.

This is the first paragraph.

First TransPennine Express is hopeful that it will be able to issue a call for expressions of interest in the provision of additional bi-mode trains before the end of March. This follows ‘a healthy level of interest’ in its existing call for expressions of interest in the supply of bi-mode locomotives to replace the Class 68s which work with its MkVa coaches.

I wrote about the expressions of interest to replace the Class 68 locomotives with new bi-mode locomotives in Suppliers Sought For New Bi-Mode Locomotives For TransPennine Express And Great Western Railway.

This was my conclusion in the related post.

When I saw First Group’s proposals, I thought that they were over ambitious.

But after doing a few simple calculations, I think they can decarbonise some, but not all of the TransPennine Express services and the Night Riviera.

So do First Group want to complete the decarbonisation of  TransPennine Express services?

These are my thoughts.

The Train Fleet Specification

The Railway Gazette article makes these points about the new bi-mode trains.

  • The trains could be existing or new bi-modes.
  • It would be desirable for the trains to have a long-term electric-only option.
  • Options for this would include removing the diesel engines or converting the trains to battery-electric operation.
  • Hydrogen is not mentioned.
  • A fleet size of twenty-five trains is mentioned.
  • The possibility of electric-only trains in the future is mentioned..
  • Five-cars, with the ability to lengthen to six- or seven-cars.
  • 200 km/h operation.

There is nothing unusual in the specification.

Will They Be Existing Or New Trains?

I doubt that there are any existing 200 km/h bi-modes in the UK, that are not wanted by their current operators.

I am very certain they will be new trains.

Could The Trains Be Hitachi Class 802 Trains?

The trains sound very much like Hitachi Class 802 trains, that are in service with TransPennine Express, Great Western Railway and Hull Trains, all of whom are First Group companies.

  • Long-term, the diesel engines can be removed or replaced with batteries.
  • The battery option is under development and should be on test this year.
  • The trains can be lengthened to as long as twelve cars, so six- and seven-car trains would be possible.

Hitachi will obviously show interest in this possible order.

Will These Trains Replace the Class 185 Trains?

Consider.

  • TransPennine Express have 51 three-car Class 185 trains.
  • This is a total of 153 cars.
  • On some routes they work singly and on others they work in pairs.
  • A three-car Class 185 train has 167 Standard Class and 15 First Class seats or 60.7 seats per car.
  • A pair of Class 185 trains have 334 Standard Class and 30 First Class seats.
  • A five-car TransPennine Express Class 802 train has 318 Standard Class and 24 First Class seats or 68.4 seats per car.
  • It would appear that a Class 802 train is not that far short of the capacity of a pair of Class 185 trains.
  • Some of the TransPennine services are very crowded.

I suspect that twenty-five five-car trains be able to handle the the workload of the Class 185 trains.

If a small amount of extra capacity were needed, some of the new trains could be six-cars.

In this section, I have assumed the new trains will be Class 802 trains, but any train manufacturer pitching for this order would adjust the capacity to the needs of TransPennine Express.

The Railway Gazette article says this.

TPE continues to explore opportunities for new services in the north of England, and the move could also feed into government plans for the removal of older and more costly to operate diesel trains elsewhere on the network, should any rolling stock become surplus to requirements at TPE.

So where could the Class 185 trains be used in the future?

Recently, MTU Hybrid PowerPacks have replaced the transmission on a Class 168 train, which reduces carbon emissions and fuel consumption and makes the train quieter and more passenger-friendly, as it doesn’t use diesel in stations.

The Class 185 trains are only fifteen years old and I suspect that MTU have designed the Hybrid PowerPack, so that it can replace the Cummins engine in trains like these.

The conversion could be done as a rolling program, so that any future operator would start with diesel and go hybrid a train at a time.

There has been speculation, that the trains may end up on the East West Railway and I wrote about this in East West Railway Company To Start Second Phase Of Rolling Stock Procurement.

But the East West Railway may prefer to use zero-carbon trains on a route, where there is electrification in places on the route.

Alternatively, South Western Railway run 10 two-car Class 158 trains and 30 three-car Class 159 trains between London Waterloo and Exeter.

  • South Western Railway is another First Group company.
  • The Class 185 trains could provide a capacity increase.
  • The Class 185 trains are 100 mph trains, whereas the Class 158/159 trains are only capable of 90 mph.

The London Waterloo and Exeter Route could be electrified in the future and I am pretty sure, that the Class 185 trains with a hybrid transmission could be a good stand-in until this happens.

Other Train Manufacturers

I believe that Hitachi are in pole position for this order, just because they are an established supplier to both TransPennine Express and First Group.

But twenty-five five-car trains would be a very worthwhile order, so I suspect that companies like Alstom, CAF, Siemens, Stadler and Talgo will also express interest.

Conclusion

Buying extra bi-mode trains will take TransPennine Express further along the route to full decarbonisation.

 

 

 

 

March 15, 2022 Posted by | Transport/Travel | , , , , , , , , , , , | 5 Comments

Suppliers Sought For New Bi-Mode Locomotives For TransPennine Express And Great Western Railway

The title of this post, is the same as that of this article on Rail Advent.

These three paragraphs give a summary of the proposed fleet of locomotives required by First Group for their two operations.

TransPennine Express is looking for expressions of interest from suppliers for a fleet of at least 15 bi-mode locomotives for use on with its Mk5 carriages.

The provision released by First Group is for up to 30 bi-mode locomotives, with an additional 5 for use on Great Western Railway’s Sleeper Service.

The operators say that the new locomotives must have the capability to be powered by overhead wires as well as being able to operate with an alternate traction mode, IE Diesel or Battery, where routes are not yet electrified or for use as a contingency.

I have also read the detailed proposal, which can be downloaded from this page of the First Group web site.

  • The locomotives must be capable of hauling a train at 100 mph.
  • First Group are putting a high emphasis on environmental impact of the locomotives.
  • The locomotives must be compatible with the latest emission regulations.
  • The locomotives must be low-noise.
  • The locomotives must be capable of hauling seven coaches, including a driving van trailer.

Nothing in the request for proposals would appear to be too challenging.

I have some thoughts.

The Number Of Locomotives For TransPennine Express

Currently, TransPennine Express has a fleet of fourteen Class 68 locomotives and enough coaches and driving van trailers to create thirteen rakes of Mark 5A coaches.

So why do TransPennine Express talk of up to thirty locomotives?

  • Fifteen locomotives would handle the current services, so thirty could cover new services or more services on the current locomotive-hauled routes.
  • Manchester Airport and Cleethorpes and Manchester Piccadilly and Hull are run by Class 185 diesel  trains, which will need replacing at some future time.
  • First Group probably know the costs of running Class 802 trains and locomotives with rakes of coaches better than anyone , so are they thinking about swapping some Class 802 trains for locomotives with rakes of coaches?

The last point would be one for the accountants.

But I am led to the conclusion, that TransPennine Express could be expanding and also decarbonising the long routes still operated by Class 185 trains.

The Number Of Locomotives For Great Western Railway

Currently, Great Western Railway has a fleet of four Class 57 locomotives to haul the Night Riviera.

Five replacement locomotives would probably be enough.

Could A Battery-Electric Locomotive Handle The TransPennine Express Requirement?

Currently, there are gaps in the electrification of the TransPennine network.

  • Manchester Victoria and Stalybridge – 7.7 miles – Electrification in progress
  • Stalybridge and Huddersfield – 18 miles
  • Huddersfield and Dewsbury – 8 miles – Electrification in progress
  • Dewsbury and Leeds – 9.1 miles
  • Leeds and York – 25.6 – Electrification in progress
  • Northallerton and Redcar – 28.8 miles
  • Manchester Piccadilly and Stalybridge – 7.5 miles
  • Leeds and Hull – 51.8 miles
  • Doncaster and Cleethorpes – 72.1 miles
  • Scarborough and York – 42 miles
  • Doncaster and Sheffield – 18.7 miles
  • Sheffield and Stockport – 36.8 miles – Rumoured to be electrified

Note.

  1. Many gaps are quite small.
  2. The longest gaps are on easy routes.
  3. Sheffield will be electrified for the Midland Main Line.
  4. A length of electrification at Scunthorpe could ease Doncaster and Cleethorpes.

I feel that a battery-electric locomotive with a range of a hundred miles hauling seven coaches, would be able to handle all the TransPennine routes.

If the train could run the routes with an electricity consumption of 4 kWh per vehicle-mile, seven coaches would need 4 * 8 * 100 = 3.2 MWh of battery storage.

Note.

  1. A 3.2 MWh battery would weigh around 3.2 tonnes, which would be less than the diesel engine in a Class 68 locomotive.
  2. Regenerative braking to batteries could be used to improve range.
  3. In How Much Power Is Needed To Run A Train At 125 Or 100 mph?, I calculated that an InterCity 125 needs 1.81 kWh per vehicle mile to maintain 100 mph.

I am fairly certain, that a well-designed efficient battery-electric locomotive would be able to handle all of the routes for TransPennine Express.

Could A Battery-Electric Locomotive Handle The Night Riviera?

I have just looked up the Southbound Night Riviera on Real Time Trains.

  • It leaves Paddington at 23:50.
  • It is typically eight coaches and a Class 57 locomotive.
  • The train is planned to run at 75 mph.
  • The first 53 miles between Paddington and Newbury are electrified.
  • There is a stop of one hour and 39 minutes at Exeter.
  • Newbury and Exeter is 120.4 miles
  • Exeter and Penzance is 130.8 miles

The Northbound Night Riviera only has a five minute stop at Exeter and two minutes stops at Totnes, Newton Abbott and Taunton.

A battery-electric locomotive would need a range of 140 miles hauling eight coaches.

  • Some stops like Plymouth may need to be lengthened by a few minutes to charge the batteries.
  • Extra stops of perhaps five minutes could be added to top-up the batteries.
  • The train would be limited to 75 mph, which would improve efficiency.
  • It might even be prudent to electrify the uphill track of some of the steeper parts of the route.

But think of the marketing advantages of a zero-carbon sleeper train!

Conclusion

When I saw First Group’s proposals, I thought that they were over ambitious.

But after doing a few simple calculations, I think they can decarbonise some, but not all of the TransPennine Express services and the Night Riviera.

January 22, 2022 Posted by | Transport/Travel | , , , , , , , , , | 9 Comments

The Proposed Mid-Cornwall Metro

In the January 2022 Edition of Modern Railways, there is this description of the Mid-Cornwall Metro.

This would see an hourly service shuttling between the north and south coasts of the county and linking the main population centres at Newquay, St Austell, Truro and Falmouth. This would become the main service on the Newquay branch, and it would take over one of the twice-hourly services on the Falmouth branch, with the other service being a Truro to Falmouth shuttle as now.

Facilitating the Metro idea will be the latest phase of the modernisation of signalling in Cornwall, which will see the upgrade of a level crossing near Truro. Other infrastructure work required is a new passing loop on the Newquay branch at Tregoss Moor and restoration of a second platform face at the terminus at Newquay.

A business case was due to be submitted to the Department for Transport before Christmas 2021.

These are a few thoughts.

The Current Timings

If you look at the distances and timings of the various sections they are as follows.

  • Newquay and Par – Five stops – 20.8 miles – 49-52 minutes
  • Par and Truro – One stop – 19 miles – 22 minutes
  • Truro and Falmouth Docks – Four stops – 11.8 miles – 24 minutes

Note.

  1. It appears that the Newquay to Par service is three minutes quicker than the other way.
  2. There will be a reverse at Par, which could take three minutes.
  3. The Par and Truro times were either GWR Castles or Class 802 trains.

The total time is 98-101 minutes and the total distance is 51.6 miles

Possible Timing

Consider.

  • For the ease of timetabling and operation, it is probably best that a round trip between the two Newquay and Falmouth Docks takes an exact number of hours.
  • The operating speed between Par and Truro is 75 mph and it is only 50 mph elsewhere.
  • Turnround time at Newquay is five minutes.
  • Turnround time at Falmouth Docks is 4-6 minutes

For these reasons, I doubt that much improvement could be made on the fastest time of 98 minutes. Certainly, a round trip of three hours would appear impossible.

But a round trip time of four hours would be very sensible.

However, there would be a turnround time of between 19-22 minutes at each end of the route.

This time might seem overly long, but it would be ideal for charging a battery-electric train.

How Many Trains Would Be Needed?

As the round trip will be four hours and an hourly service is needed, there will be a need for four trains to run the service, with the addition of probably two extra trains to allow for one in maintenance and one covering for any breakdowns.

Could The Mid-Cornwall Metro Use Battery-Electric Trains?

This Hitachi infographic shows the specification of the Hitachi Regional Battery Train.

Note

  1. The range of ninety kilometres is fifty-six miles and a longer distance than Newquay and Falmouth Docks.
  2. The operating speed of 90-100 mph is ideal.
  3. The time needed for a full charge at either end is within the timetable, I calculated earlier.

Hitachi Regional Battery Trains would be ideal for working the Mid-Cornwall Metro with a full charge at both ends of the route.

I have used my virtual helicopter to explore the Cornish Main Line between Par and Truro.

If it was decided to electrify the Cornish Main Line between Truro and Par, this could be an alternative way to charge the trains.

  • The Mid-Cornish Metro trains should be able to do a return trip to Newquay and Falmouth Docks from the main line without charging at the two terminal stations.
  • The electrification would be able to charge battery-electric Class 802 trains between Plymouth and Penzance.

But the extra infrastructure works to raise nine road bridges and several footbridges might blow the budget.

Where Would The Trains Be Serviced?

Great Western Railway has depots at both Penzance and Plymouth and with perhaps a charger at Truro and/or Par stations, the trains should be able to get to either depot at the end of the day.

Trains To Newquay

Wikipedia says this about the services to Newquay station.

The service is irregular with typically one train around every two hours.

As well as the local service, the station handles a number of long-distance trains in the summer. These services include Great Western Railway trains from London Paddington and CrossCountry trains from the North of England and the Scottish Lowlands, which do not stop at intermediate stations between Par and Newquay. On Sundays, there are some local trains and a small number of intercity services. As well as the weekend through trains, in peak summer months there is also a Monday-Friday through Great Western Railway intercity service to and from London, but local trains continue on these days too. Traditionally, there was no Sunday service in the winter, even in the ‘golden age’ between both of the 20th century’s world wars, but the line has a service of three trains each way on Sundays from 11 December 2011.

The Mid-Cornwall Metro will at least come with an hourly service.

But this will mean, that to run other services to the station with the hourly Metro will mean that a second platform will be needed.

I discuss the improvements needed in Beeching Reversal – Transforming The Newquay Line.

This is a quirky video, which describes an architect’s plans for the station.

It is the sort of simple solution, that I like.

Conclusion

I believe that a small fleet of Hitachi Regional Battery Trains could create an iconic Metro for Cornwall, that would appeal to both visitors and tourists alike.

 

January 3, 2022 Posted by | Transport/Travel | , , , , , , , , | 8 Comments

Discontinuous Electrification Through Derwent Valley Mills

One big problem area of electrification on the Midland Main Line could be North of Derby, where the railway runs through the World Heritage Site of the Derwent Valley Mills. There might be serious objections to electrification in this area.

But if electrification were to be installed between Leicester and Derby stations, the following would be possible.

  • The Midland Main Line would be electrified at East Midlands Hub station.
  • Power could be taken from High Speed Two’s supply at East Midland Hub station, even if High Speed Two is not built in full.
  • Battery-electric trains could do a return trip to Nottingham from an electrified East Midlands Parkway station, as it’s only sixteen miles in total.

I am sure, that Hitachi’s Class 810 trains could be upgraded to have a of perhaps twenty-five miles on battery power, as this fits with Hitachi’s statements.

North of Derby, there would be electrification on the following sections.

  • Derby station and South of the heritage-sensitive section at Belper station.
  • Sheffield station and North of the heritage-sensitive section at Duffield station.

Milford Tunnel, which has Grade II Listed portals and is part of the World Heritage Site would not be electrified.

Belper and Duffield stations are 2.6 miles or 4.8 kilometres apart.

I believe it could be arranged that there would be no electrification in the sensitive section, where the Heritage Taliban might object.

The Hitachi Intercity Battery Hybrid Train

Hitachi will start testing their Intercity Battery Hybrid Train next year.

The train is described in this Hitachi infographic.

Note that is has a gap-jumping range of 5 km, which would handle the gap between Belper and Duffield stations.

CrossCountry Services Between Derby And Sheffield

CrossCountry operate the following services between Derby and Sheffield through Milford Tunnel and the World Heritage Site.

  • Plymouth and Edinburgh Waverley/Glasgow Central
  • Southampton/Reading and Newcastle

CrossCountry would need new trains and one of the current Hitachi Class 802 trains could handle this route and use electrification where it exists.

A five kilometre gap will be no big obstacle to designing a battery-electric train for these CrossCountry services.

Freight Trains

In Will Zero-Carbon Freight Trains Be Powered By Battery, Electric Or Hydrogen Locomotives?, I came to this conclusion.

In the title of this post, I asked if freight locomotives of the future would be battery, electric or hydrogen.

I am sure of one thing, which is that all freight locomotives must be able to use electrification and if possible, that means both 25 KVAC overhead and 750 VDC third rail. Electrification will only increase in the future, making it necessary for most if not all locomotives in the future to be able to use it.

I feel there will be both battery-electric and hydrogen-electric locomotives, with the battery-electric locomotives towards the less powerful end.

Hydrogen-electric will certainly dominate at the heavy end.

These locomotives would be able to handle the section of the Midland Main Line through Derwent Valley Mills.

 

December 30, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , | 7 Comments

More On Batteries On Class 802 Trains

In the December 2021 Edition of Modern Railways, there’s an article called Battery Trial For TPE ‘802’.

Class 802 trains are now involved in two battery trials.

This article puts some flesh of the bones of the two trials.

It is hoped that replacing one diesel engine (generator unit) with a battery pack will enable the following.

  • Reduction of carbon emissions by at least 20 %.
  • Reduction of fuel consumption.
  • The ability to rely on battery power when entering and leaving stations to reduce noise pollution and emissions.

This paragraph explains a possible way the trains will be operated.

Another option is to use the battery to provide ‘classic’ hybridisation efficiency, allowing most diesel running to be done fuel-efficiently under two engines rather than three. In this case, the battery module would provide top-up power for peak demand and give regenerative braking capability when operating in diesel mode, which the trains currently do not have.

This is one of the aims of the GWR trial and I suspect anybody, who has owned and/or driven a hybrid car will understand Hitachi’s thinking.

The next paragraph is very revealing.

To fully test the 6m-long, 2.2m-wide battery module, the intention is for it to be flexibly programmable in order for different approaches to charging, including from the overhead line power supply, diesel engines and during braking , to be evaluated.

It looks to me that Hyperdrive Innovation will earn their fees for the battery design and manufacture.

This picture shows the underneath of a Class 802 train.

Note.

  • The car is 26 metres long
  • The car is 2.75 metres wide.
  • The MTU 12V 1600 diesel engines, fitted to a Class 802 train, each weigh around two tonnes.
  • The engines have a power output of 700 kW

I would think that the 6 x 2.2 m battery would fit under the car easily.

As an engineer, who has evaluated all sorts of weight and balance problems, I would make the battery similar in weight to the diesel engine. This would mean that the existing mountings for the diesel engine  should be able to support the battery pack. It would also probably mean that the handling of a car with a diesel engine and one with a battery pack should be nearer to being identical.

Tesla claim an energy density of 250 Wh/Kg for their batteries, which would mean a battery with the weight of one of the diesel engines could have a capacity of around 500 kWh.

As a Control Engineer, I believe that Hitachi and Hyperdrive Innovation have a tricky problem to get the algorithm right, so that the trains perform equally well under all conditions. But with a good simulation and lots of physical testing, getting the algorithm right is very much a solvable problem.

The article says this about the reliability of the diesel engines or generator units (GU) as Hitachi call them.

Whilst reliability of the generator units (GU) has improved, operators of the bi-mode sets still report frequent issues  which see sets ending their daily diagram with one out of use.

I wonder, if battery packs will improve reliability.

From statements in the article, it looks like Hitachi, MTU and the train operating companies are being cautious.

The article also says this about the design of the battery packs.

The battery pack has been designed so it is a like-for-like replacement for a GU, which can maintain or improve performance, without compromising on seats or capacity.

I have always said it would be plug-and-play and this would appear to confirm it.

How Will The Batteries Be Charged?

I showed this paragraph earlier.

To fully test the 6m-long, 2.2m-wide battery module, the intention is for it to be flexibly programmable in order for different approaches to charging, including from the overhead line power supply, diesel engines and during braking , to be evaluated.

GWR and TPE run their Class 802 trains to several stations without electrification. and they will probably need some method of charging the battery before leaving the station.

This is Hitachi’s infographic for the Hitachi Intercity Tri-Mode Battery Train.

Note.

  1. This infographic was published with the Hitachi press release announcing the development of the tri-mode train for GWR.
  2. One diesel engine has been replaced by a battery pack.
  3. Charging the battery can be under wires or 10-15 minutes whilst static.
  4. At some stations like Exeter St. Davids, Penzance, Plymouth or Swansea, heavily-laden services might need the assistance of batteries to get up to operating speed.

The infographic released with the Hitachi press release announcing the trials for TPE.

It is similar, but it says nothing about charging.

So how will these trains be charged in stations like Hull, Middlesbrough. Penzance, Scarborough and Swansea, so they leave on their return journey with a full battery?

Consider.

  • The formation of a five-car Class 802 train is DPTS-MS-MS-MC-DPTF.
  • Pantographs appear to be on both driver cars.
  • The middle three cars have diesel engines.
  • Only the middle three cars have traction motors.
  • There is probably a high-capacity electrical bus running the length of the train, to enable electricity to power all the cars from either or both paragraphs, when running on an electrified line.

The simplest way to charge the batteries would probably be to install a short lengthy of 25 KVAC overhead electrification in the station and then to charge the batteries the driver would just raise the pantograph and energise the electrical bus, which would then feed electricity to the batteries.

I wrote about Furrer + Frey’s Voltap charging system in Battery Train Fast Charging Station Tested. This charging system would surely work with Hitachi’s designs as batteries can be charged from overhead electrification.

Conclusion

I suspect that Hitachi will achieve their objectives of saving fuel and cutting emissions.

But there is more than this project to just replacing one diesel engine with a battery pack  and seeing what the savings are.

It appears that the battery packs could have an effect on train reliability.

If the battery packs are truly like-for-like with the diesel engines, then what will be effect of replacing two and three diesel engines in a five-car Class 802 train with battery packs.

Will it be possible to develop an ability to setup the train according to the route? It’s only similar to the way Mercedes probably set up Lewis Hamilton’s car for each circuit.

But then the speed Formula One cars lap Silverstone is not that different to the maximum speed of a Hitachi Class 802 train.

November 26, 2021 Posted by | Transport/Travel | , , , , , , , , , , | 10 Comments

Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%

The title of this post is the same as that of this press release from Hitachi.

The press release starts with these bullet points.

  • Batteries replacing an engine to cut fuel usage and reduce carbon emissions
  • First time a modern UK intercity train, in passenger service, will use alternative fuel
  • Tri-mode train can improve air quality and reduce noise across South West route’s non-electrified stations

They follow these with this introductory paragraph.

In a UK-first, Hitachi Rail and Eversholt Rail have signed an exclusive agreement aimed at bringing battery power – and fuel savings of more than 20% – to the modern Great Western Railway Intercity Express Trains that carry passengers between Penzance and London.

After a couple more paragraphs, the press return returns to the Penzance theme.

GWR’s Intercity Express Train fleet currently calls at 15 non-electrified stations on its journey between Penzance and London, all of which could benefit from trains running on battery-only power.

The press release then sets out their aims.

The projected improvements in battery technology – particularly in power output and charge – create opportunities to replace incrementally more diesel engines on long distance trains. With the ambition to create a fully electric-battery intercity train – that can travel the full journey between London and Penzance – by the late 2040s, in line with the UK’s 2050 net zero emissions target.

Penzance gets another mention, but the late 2040s for a fully electric-battery intercity train between Penzance and London, is not an ambitious target.

Hitachi Intercity Tri-Mode Battery Train

Hitachi have called the train the Intercity Tri-Mode Battery Train and the specification is shown in this infographic.

Note that fuel & carbon savings of at least 20 % are claimed.

Penzance To London In A Class 802 Train

It would appear that Penzance and London has been chosen as the trial route.

These figures were obtained from Real Time Trains figures for the 1015 from Penzance on the 14th December 2020.

  • Penzance to St. Erth – 5.65 miles – 8 mins – 42.4 mph – 1 mins stop
  • St. Erth to Camborne – 7.2 miles – 10 mins – 43.2 mph – 1 mins stop
  • Camborne to Redruth – 3.65 miles – 5 mins – 43.8 mph – 2 mins stop
  • Redruth to Truro – 9 miles – 10 mins – 54 mph – 2 mins stop
  • Truro to St. Austell  – 14.7 miles – 15 mins – 58.8 mph – 1 mins stop
  • St. Austell to Par – 4.5 miles – 6 mins – 45 mph – 1 mins stop
  • Par to Bodmin Parkway – 8 miles – 11 mins – 43.6 mph – 1 mins stop
  • Bodmin Parkway to Liskeard – 9.2 miles – 12 mins – 46 mph – 1 mins stop
  • Liskeard to Plymouth – 17.8 miles – 25 mins – 42.7 mph – 9 mins stop
  • Plymouth to Totnes – 23.1 miles – 25 mins – 55.4 mph – 1 mins stop
  • Totnes to Newton Abbot – 8.8 miles – 9 mins – 59.3 mph – 2 mins stop
  • Newton Abbot to Exeter St. Davids – 20.2 miles – 18 mins – 71.3 mph – 2 mins stop
  • Exeter St. Davids to Tiverton Parkway – 16.5 miles – 14 mins – 70.7 mph – 1 mins stop
  • Tiverton Parkway to Taunton – 14.2 miles – 11 mins – 77.4 mph – 2 mins stop
  • Taunton to Reading – 106.7 miles – 76 mins – 84.2 mph – 5 mins stop
  • Reading to Paddington – 36 miles – 25 mins – 86.4 mph

The route can be broken neatly into four very different sections.

  • Penzance and Plymouth – 79.5 miles – 112 mins – 42.5 mph – 75 mph operating speed
  • Plymouth and Exeter St. Davids – 52 miles – 57 mins – 54.7 mph – 100 mph operating speed
  • Exeter St. Davids and Newbury – 120.4 miles – 95 mins – 76 mph – 100 mph operating speed
  • Newbury and Paddington – 53 miles – 36 mins – 88.3 mph – 100-125 mph operating speed

Note.

  1. The speed builds up gradually as the journey progresses.
  2. Only between Newbury and Paddington is electrified.

How does Penzance and Paddington stand up as a trial route?

  • Penzance and Plymouth has eight intermediate stops about every nine-ten miles.
  • The nine minute stop at Plymouth, is long enough to charge the batteries, should that be incorporated in the trial.
  • The Cornish Main Line is generally double track, with an operating speed of 75 mph.
  • Plymouth and Exeter includes the running by the sea, through Dawlish.
  • Exeter could be given an extended stop to charge the batteries.
  • Exeter and Newbury is a faster run and the batteries may help with performance.
  • The Reading and Taunton Line has an operating speed of 110 mph.
  • Remember the trains are designed for 140 mph and they achieve nothing like that on diesel.
  • At each of the fifteen stops, the performance, noise and customer reaction can be evaluated. Strange, but my experience of battery trains, says that they are very much quieter than similar electric trains.

The route has a good selection of the types of routes, that Great Western Railway has in its network.

It would appear to be a good route to sort out the good and bad points of the train.

I have a few thoughts.

Possible Destinations For A Intercity Tri-Mode Battery Train

Currently, the following routes are run or are planned to be run by Hitachi’s Class 800, 802, 805 and 810 trains, where most of the route is electrified and sections do not have any electrification.

  • GWR – Paddington and Bedwyn – 13.3 miles
  • GWR – Paddington and Bristol Temple Meads- 24.5 miles
  • GWR – Paddington and Cheltenham – 43.3 miles
  • GWR – Paddington and Great Malvern – 76 miles
  • GWR – Paddington and Oxford – 10.4 miles
  • GWR – Paddington and Penzance – 252 miles
  • GWR – Paddington and Swansea – 45.7 miles
  • Hull Trains – Kings Cross and Hull – 36 miles
  • LNER – Kings Cross and Harrogate – 18.5 miles
  • LNER – Kings Cross and Huddersfield – 17 miles
  • LNER – Kings Cross and Hull – 36 miles
  • LNER – Kings Cross and Lincoln – 16.5 miles
  • LNER – Kings Cross and Middlesbrough – 21 miles

Note.

  1. The distance is the length of line on the route without electrification.
  2. Five of these routes are under twenty miles
  3. Many of these routes have very few stops on the section without electrification.

I suspect that GWR and LNER have plans for other destinations.

What Is The Kinetic Energy Of A Five-Car Class 802 Train At Various Speeds?

I will do my standard calculation.

  • Empty train weight – 243 tonnes (Wikipedia for Class 800 train!)
  • Passenger weight – 302 x 90 Kg (Includes baggage, bikes and buggies!)
  • Train weight – 270.18 tonnes

Using Omni’s Kinetic Energy Calculator, the kinetic energy at various speeds are.

  • 60 mph – 27 kWh
  • 75 mph – 42 kWh
  • 80 mph – 48 kWh
  • 90 mph – 61 kWh
  • 100 mph – 75 kWh
  • 110 mph – 91 kWh
  • 125 mph – 117 kWh – Normal cruise on electrified lines.
  • 140 mph – 147 kWh – Maximum cruise on electrified lines.

A battery must be large enough to capture this kinetic energy, which will be generated, when the train stops.

Acceleration And Deceleration Of A Five-Car Class 802 Train

The first Intercity Tri-Mode Battery Trains will be conversions of Class 802 trains.

This page on the Eversholt Rail web site, has a data sheet for a Class 802 train.

The data sheet shows the following for a five-car Class 802 train.

  • It can accelerate to 120 kph/75 mph in 100 seconds in electric mode.
  • It can accelerate to 160 kph/100 mph in 160 seconds in electric mode.
  • It can accelerate to 120 kph/75 mph in 140 seconds in diesel mode.
  • It can decelerate from 120 kph/75 mph in 50 seconds in electric mode.
  • It can decelerate from 160 kph/100 mph in 90 seconds in electric mode.

Note.

  1. 75 mph is the operating speed of the Cornish Main Line and possibly the Highland Main Line.
  2. 100 mph is the operating speed for a lot of routes in the UK.
  3. It would appear that trains accelerate to 75 mph forty second faster in electric mode, compared to diesel mode.
  4. In diesel mode acceleration slows markedly once 100 kph is attained.

Can we assume that performance in battery mode, will be the same as in electric mode? I will assume that this is valid.

Battery Use In A Station Stop

Suppose the train is travelling at 75 mph with a full load of passengers and makes a station stop, without the use of the diesel engines.

  • If the train is decelerating from 75 mph, there must be space for 42 kWh in the battery.
  • Because regenerative braking is not 100 % efficient, only perhaps 80 % would be stored in the battery. This is 33.6 kWh.
  • To accelerate the train to 75 mph, the battery must supply 42 kWh, as diesel power will not be used for this purpose.
  • The train will take 50 seconds to decelerate, 100 seconds to accelerate and perhaps 60 seconds in the station or 210 seconds in total.
  • Let’s say the battery will need to supply 2 kWh per minute per car for hotel power, that will be 35 kWh for the 210 seconds.

Adding and subtracting inputs and outputs to the battery gives this equation 33.6 – 35 – 42 = -43.4 kWh

The energy in the battery has been reduced by 43.4 kWh, at each 75 mph stop.

Repeating the calculation for a 100 mph stop, which takes 310 seconds, gives an equation of 60 -51.7 – 75 = -66.7 kWh.

Note that in this calculation, I have assumed that the efficiency of regenerative braking is 80 %. These are a selection of figures.

  • For 60 % efficiency, the stops would cost 51.8 kWh from 75 mph and 81.7 kWh from 100 mph.
  • For 80 % efficiency, the stops would cost 43.4 kWh from 75 mph and 66.7 kWh from 100 mph.
  • For 90 % efficiency, the stops would cost 39.2 kWh from 75 mph and 59.2 kWh from 100 mph.

So it is important to raise the efficiency of regenerative braking to as near to 100 % as possible.

It should also be noted that with an 80 % efficiency of regenerative braking, hotel power has an effect.

  • With 1 kWh per minute per car, the stops would cost 25.9 kWh from 75 mph and 40.8 kWh from 100 mph.
  • With 2 kWh per minute per car, the stops would cost 43.4 kWh from 75 mph and 66.7 kWh from 100 mph.
  • With 3 kWh per minute per car, the stops would cost 60.9 kWh from 75 mph and 92.6 kWh from 100 mph.

It is important to reduce the hotel power of the train, as low as possible.

With a 90 % regeneration efficiency and hotel power of 1 kWh per car per minute, the figures are 21.7 kWh from 75 mph and 33.3 kWh from 100 mph.

London Paddington And Penzance By Intercity Tri-Mode Battery Train

Listing the stops between London Paddington and Penzance and their speeds gives the following.

  • St. Erth – 75 mph
  • Camborne – 75 mph
  • Redruth – 75 mph
  • Truro – 75 mph
  • St. Austell – 75 mph
  • Par – 75 mph
  • Bodmin Parkway – 75 mph
  • Liskeard – 75 mph
  • Plymouth – 75 mph
  • Totnes – 100 mph
  • Newton Abbot – 100 mph
  • Exeter St. Davids – 100 mph
  • Tiverton Parkway – 100 mph
  • Taunton – 100 mph
  • Reading – Electrified

This is nine stops from 75 mph, five from 100 mph and one where the electrification is used.

  • Each 75 mph stop needs 43.4 kWh from the battery.
  • Each 100 mph stop needs 66.7 kWh from the battery.

To achieve Hitachi’s aim of low noise and pollution-free station stops between London Paddington and Penzance will need 724.1 kWh of power from the battery.

With 80 % regeneration efficiency and hotel power of 2 kWh per minute per car gives a figure of 724.1 kWh.

With 90 % regeneration efficiency and hotel power of 1 kWh per minute per car gives a figure of 361.8 kWh.

The battery must also have sufficient capacity to handle the regenerative braking. I would suspect that provision will be made for a stop from 125 mph, which is 117 kWh.

So will the battery for the route be somewhere between 500 and 1000 kWh?

Note that each of the three MTU 12V 1600 diesel engines, fitted to a Class 800 train, weigh around two tonnes and Tesla claim an energy density of 250 Wh/Kg for their batteries.

This would mean a battery the weight of one of the diesel engines would have a capacity of 500 kWh.

A train with a full 500 kWh battery at Newbury could arrive in Penzance with some juice in the battery, if regenerative braking could be efficient and the demands of the train to run internal systems were at a low level.

Hitachi’s Increasing Efficiency Of Class 80x Trains

The next variant of the Class 80x trains to come into service, should be the Class 803 trains for East Coast Trains.

  • These trains will be all-electric like LNER’s Class 801 trains.
  • They are designed for a four-hour limited-stop service between London Kings Cross and Edinburgh.
  • They will be one-class and average single fares will be £25,

This sentence from Wikipedia, describes a big difference between Class 803 and Class 801 trains.

Unlike the Class 801, another non-bi-mode AT300 variant which despite being designed only for electrified routes carries a diesel engine per unit for emergency use, the new units will not be fitted with any, and so would not be able to propel themselves in the event of a power failure. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies would face a failure.

I wouldn’t be surprised to find out that the Class 803 trains have been put on a diet to increase their acceleration to meet the demanding schedule, which has been promised by East Coast Trains.

Hitachi has also given out clues to other efficiency improvements.

  • Class 807 trains for Avanti West Coast, will have no diesel engines or batteries.
  • Class 810 trains for East Midlands Railway will have a revised nose and different headlights. Is this for better aerodynamics?
  • Class 810 trains, also have slots for four diesel engines. I can’t see why they would need all this power on the relatively-flat Midland Main Line. Will two of the slots be used by batteries to reduce fuel consumption and/or increase efficiency?

Hitachi are only doing, what all good engineers would do.

Low-Carbon Between Plymouth and Penzance

In How Much Power Is Needed To Run A Train At 125 mph?, I estimated that an all-electric Class 801 train needs around 3.42 kWh per vehicle mile to maintain 125 mph.

It will need less power to maintain the 75 mph of the Cornish Main Line. I would suspect that as air resistance is based on the square of the speed, that the energy consumption of the Class 802 train could be something under 2 kWh per vehicle. Or even less!

The Cornish Main Line is 79.5 miles between Plymouth and Penzance, but the Intercity Tri-Mode Battery Train, will not be on diesel all the way.

  • At each station stop deceleration and acceleration, the train will not be using diesel. This could take a mile away for each station.
  • All braking will be regenerative to the battery.

I suspect that by using the gradients on the route to advantage and by using diesel in selected areas, that a good driver or a well-written driver assistance system giving advice could safely navigate an Intercity Tri-Mode Battery Train all the way to Penzance on a minimum amount of diesel.

It’s not as if the train will be stranded, as they would have two onboard diesel engines.

I have a suspicion, that with a top-up at Plymouth, if Hitachi can raise efficiencies to a maximum and power consumption to a minimum, that on one battery, the train might be able to run between Plymouth and Penzance for much of the way, without using diesel.

The question also has to be asked, as to what would be the performance of the train with two diesel engines replaced by batteries?

I suspect this is something else to be determined in the trial.

Will Hitachi’s Intercity Tri-Mode Battery Train And Regional Battery Train Have The Same Battery Packs?

The specification of Hitachi’s closely-related Regional Battery Train is described in this Hitachi infographic.

The Regional Battery Train is stated to have a battery range of 90 km/56 miles at 162 kph/100 mph.

Operating speed and battery range have not been disclosed yet for the Intercity Tri-Mode Battery Train. I await them with great interest.

I would expect that it is likely, that Hitachi’s two battery trains and others that follow, will use identical battery packs for ease of manufacture, services and operation.

In their press release, which announced the Battery Regional Train, Hitachi said this.

Hitachi has identified its fleets of 275 trains as potential early recipients of the batteries for use in the UK, as well as installing them on new metro and intercity trains that will be needed in the coming years to replace ageing diesel fleets.

Battery trains produce no greenhouse gases, air pollution and are a far quieter, offering passengers cleaner air in stations, less noise disruption and a carbon-free way to travel. Installing batteries on to existing fleets can also extend their range and allow passengers to reach stations on non-electrified branch lines without having to change train.

They didn’t exactly say all battery packs will be the same, but they were close to it, by saying that they can already be fitted to 275 trains. I would read those paragraphs to say, that a series of trains would use the same technology for different purposes.

What Will Be The Battery Range Of A Hitachi Intercity Tri-Mode Battery Train?

This page on the Eversholt Rail web site, has a data sheet for a Class 802 train, which says that a five-car Class 802 train has  an operating speed of 110 mph on diesel power.

According to Wikipedia and other sources, a Class 802 train has three diesel engines.

If the Regional Battery Train has replaced three diesel engines with battery packs in a five-car train like a Class 802 train to get the 90 km/56 mile range, would this mean?

  • Replacing one diesel engine with a battery pack, give a range of thirty kilometres or about nineteen miles.
  • Replacing two diesel engines with battery packs double the range to sixty kilometres or thirty-eight miles.

It looks like a Hitachi Intercity Tri-Mode Battery Train with one of the same battery-packs should easily reach several of the destinations in my list.

But they would need charging before return or some assistance from the two remaining diesel engines.

I talk about charging the Intercity Tri-Mode Battery Train in Charging The Batteries On An Intercity Tri-Mode Battery Train.

Conclusion

It sounds like a worthwhile train to me and I await the results of the trial with interest.

 

 

 

 

 

November 26, 2021 Posted by | Transport/Travel | , , , , , , , , | 10 Comments