The Anonymous Widower

DfT To Have Final Say On Huddersfield Rebuild Of Rail Station And Bridges

The title of this post, is the same as that of this article on Rail Technology Magazine.

This is the first paragraph.

As part of the £1.4bn Transpennine Route Upgrade. Transport Secretary Grant Shapps is to rule on planned changes to Huddersfield’s 19th century rail station and not the Kirklees council, in what is to be a huge revamp of the line between Manchester and York.

According to the article eight bridges are to be replaced or seriously modified.

As Huddersfield station (shown) is Grade I listed and three other Grade II listed buildings and structures are involved, I can see this project ending up with a substantial bill for lawyers.

But then, to have a world-class railway across the Pennines, a few eggs will need to be broken.

Electric Trains Across The Pennine

This page on the Network Rail web site describes the Huddersfield To Westtown (Dewsbury) Upgrade.

When the upgrade and the related York To Church Fenton Improvement Scheme is completed, the TransPennine route between Huddersfield and York will be fully-electrified.

As Manchester To Stalybridge will also have been electrified, this will mean that the only section without electrification will be the eighteen miles across the Pennines between Stalybridge and Huddersfield.

Will this final eighteen miles ne electrified?

Eighteen miles with electrification at both ends will be a short jump for a Hitachi Intercity Tri-Mode Battery Train, the specification of which is shown in this Hitachi infographic.

The Class 802 trains of TransPennine Express are able to be converted into these trains.

The trains could work these routes.

  • Liverpool Lime Street and Scarborough
  • Manchester Airport and Redcar
  • Liverpool Lime Street and Edinburgh via Newcastle
  • Manchester Airport and Newcastle
  • Manchester Piccadilly and Hull
  • Manchester Airport and Cleethorpes

Note.

  1. I suspect some more Class 802 trains with batteries will be needed.
  2. The trains would either use battery or diesel power to reach Hull, Redcar and Scarborough or there could be a few miles of electrification to stretch battery range.
  3. Will the Class 68 diesel locomotives be replaced with Class 93 tri-mode locomotives to haul the Mark 5A coaches to Scarborough.
  4. Manchester Airport and Cleethorpes could be a problem and will probably need some electrification around Sheffield and Grimsby.

This would just mean TransPennine’s two short routes to be decarbonised.

  • Manchester Piccadilly and Huddersfield
  • Huddersfield and Leeds

As except for the eighteen mile gap between Stalybridge and Huddersfield, these two routes are fully-electrified, I suspect that a battery-electric version of a 110 mph electric train like a Class 387 or Class 350 train could run these routes.

Conclusion

It looks like if these sections of the TransPennine Express network are upgraded and electrified.

  • York and Church Fenton
  • Huddersfield and Westtown
  • Manchester and Staylebridge

Together with a few extra miles of electrification at strategic points, that TransPennine Express will be able to decarbonise.

 

May 18, 2021 Posted by | Transport | , , , , , , , , , , | 3 Comments

Warrington Bank Quay Could Become Major Rail Interchange

The title of this post, is the same as that of this article on the Warrington Guardian.

This is the first three paragraphs.

Warrington Bank Quay could become a major rail interchange as part of plans to create a new train line through the town.

Transport for the North revealed the final draft of its proposed Northern Powerhouse Rail earlier this week, with one of its key recommendations being the construction of a new link running from Liverpool to Manchester via the town centre.

And the Warrington Guardian understands that this will involve an underground line calling at Bank Quay Station.

I talked about this in Northern Powerhouse Rail – A New Line Between Liverpool And Manchester Via The Centre Of Warrington.

But it does appear to be more ambitious than the original indications.

March 5, 2021 Posted by | Transport | , , | 1 Comment

Beeching Reversal – Ferryhill Station Reopening

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts. There used to be a Ferryhill station on the East Coast Main Line. It closed in 1967 and burnt down in 1969, before being demolished.

I first noted the station in Boris Johnson Backs Station Opening Which Could See Metro Link To County Durham, after Boris promised it would be built in PMQs.

I then mentioned the station in Northern Powerhouse Rail – Significant Upgrades Of The East Coast Main Line From Leeds To Newcastle (Via York And Darlington) And Restoration Of The Leamside Line.

Last night, I read this document from Railfuture, which talks about rail improvements in the North East and on the East Coast Main Line.

In the document, Ferryhill station is mentioned eighteen times.

Reopening Ferryhill station would appear to have support at all levels.

The Location Of Ferryhill Station

This Google Map shows the general area of the proposed Ferryhill station.

 

Note.

  1. Ferryhill is the village in the North-West corner of the map.
  2. The lion-shaped quarry in the North-East is destined to become a landfill site.
  3. Below this is Thrislington Plantation, which is a National Nature Reserve.
  4. The East Coast Main Line runs North-South between the village and the quarry.

South of the village the line splits, as is shown in detail in this second Google Map.

Note.

  • Ferryhill South junction by Denhamfields Garage, with the nearby Ferryhill Station Primary School
  • The line going South-East is the Stillington freight line to Teesside.
  • The other line going in a more Southerly direction is the electrified East Coast Main Line to Darlington and the South.
  • Between Ferryhill South junction and Tursdale Junction with the Leamside Line is a 2.5 mile four-track electrified railway.

I suspect the station could be any convenient location, to the North of the junction.

Railfuture have strong opinions on the station and feel it should be a Park-and-Ride station for the settlements in the former North Durham coalfield, with frequent services to Newcastle.

Current Passenger Train Services Through Ferryhill

These services currently pass the location of the proposed Ferryhill station.

  • LNER – London Kings Cross and Edinburgh via York, Darlington. Newcastle and Berwick-upon-Tweed
  • LNER – London Kings Cross and Edinburgh via Peterborough, Newark North Gate, Doncaster, York, Darlington, Durham and Newcastle
  • CrossCountry – Plymouth and Edinburgh via Totnes, Newton Abbot, Exeter St Davids, Tiverton Parkway, Taunton, Bristol Temple Meads, Bristol Parkway, Cheltenham Spa, Birmingham New Street, Derby, Chesterfield, Sheffield, Wakefield Westgate, Leeds, York, Darlington, Durham and Newcastle
  • CrossCountry – Southampton and Newcastle via Birmingham New Street, Derby, Sheffield, Doncaster, York, Darlington and Durham
  • TransPennine Express – Liverpool Lime Street and Edinburgh via Newton-le-Willows, Manchester Victoria, Huddersfield, Leeds, York, Darlington, Durham, Newcastle and Morpeth
  • TransPennine Express – Manchester Airport and Newcastle via Manchester Piccadilly, Manchester Oxford Road, Manchester Victoria, Huddersfield, Dewsbury, Leeds, York, Northallerton, Darlington and Durham

Note.

  1. All trains have a frequency of one train per hour (tph)
  2. All trains call at York, Darlington and Newcastle.
  3. I have missed out some of the intermediate stations, where trains don’t call at least hourly.
  4. I have missed out stations South of Birmingham New Street.
  5. A few Northern Trains services pass through at Peak times or to go to and from depots.

I suspect some of these services could stop and to encourage commuters to Newcastle, Durham and Darlington to swap from car to train,

I also suspect that Ferryhill station needs a frequency of at least two tph and if possible four! Four tph would give a Turn-up-and-Go service to Darlington, Newcastle and York.

Planned And Possible Future Passenger Train Services Through Ferryhill

From various sources, these services are either planned or possible.

High Speed Two

High Speed Two are planning the following services, that will pass through.

  • Birmingham Curzon Street and Newcastle via East Midlands Hub, York, Darlington and Durham.
  • London Euston and Newcastle via Old Oak Common, East Midlands Hub and York.
  • London Euston and Newcastle via Old Oak Common, East Midlands Hub, York and Darlington.

Note.

  1. All trains have a frequency of one tph.
  2. All trains call at York, East Midlands Hub, York and Newcastle.
  3. All trains will be 200 metres long.

I feel that Ferryhill station should have platforms long enough to accommodate these trains and other long trains, to future-proof the design and to cater for possible emergencies.

The longest trains on the route would probably be one of the following.

  • A pair of five-car Class 800 trains or similar, which would be 260 metres long.
  • A High Speed Two Classic-Compatible train, which would be 200 metres long.

Unless provision needed to be made for pairs of High Speed Two Classic-Compatible trains.

East Coast Trains

From next year, East Coast Trains, intend to run a five trains per day (tpd) service between London and Edinburgh via Stevenage, Newcastle and Morpeth.

Note that in Thoughts On East Coast Trains, I said this service would stop at Durham, as that was said in Wikipedia at the time.

Northern Powerhouse Rail

Northern Powerhouse Rail has an objective to to run four tph between Leeds and Newcastle in 58 minutes.

At present there are only three tph on this route, two tph from TransPennine Express and one tph from CrossCountry. All three services stop at Leeds, York, Darlington, Durham and Newcastle.

I believe that the best way to provide the fourth service between Leeds and Newcastle would be to run a third LNER service between London Kings Cross and Edinburgh, when upgrades to the East Coast Main Line give the train operating company another path.

  • The service would only stop en route at Leeds and Newcastle.
  • It would increase the frequency between London Kings Cross and Leeds to three tph
  • It would increase the frequency between London Kings Cross and Newcastle to three tph
  • It would increase the frequency between London Kings Cross and Edinburgh to three tph
  • It would increase the frequency between London Leeds and Newcastle to four tph
  • It would run non-stop between London Kings Cross and Leeds, in under two hours.

I believe that, when all the upgrades to the East Coast Main Line are complete, that such a service could match or even better High Speed Two’s time of three hours and forty-eight minutes between London and Edinburgh.

Ferryhill And Teesside Via The Stillington Freight Line

The Clarence Railway is described in this paragraph in its Wikipedia entry.

The Clarence Railway was an early railway company that operated in north-east England between 1833 and 1853. The railway was built to take coal from mines in County Durham to ports on the River Tees and was a competitor to the Stockton and Darlington Railway (S&DR). It suffered financial difficulty soon after it opened because traffic was low and the S&DR charged a high rate for transporting coal to the Clarence, and the company was managed by the Exchequer Loan Commissioners after July 1834.

But it has left behind a legacy of useful rail lines, that connect important factories, ports, towns, works on other railways on Teesside.

This Google Map shows the triangle between Eaglescliffe, Stockton-on-Tees and Thornaby stations.

Note.

  1. Eaglescliffe station is in the South-West corner of the map and lines from the station lead to Darlington and Northallerton stations.
  2. Thornaby station is in the North-East corner of the map and connects to Middlesbrough station.
  3. Stockton station is at the North of the map.

Tracks connect the three stations.

This Google Map shows the connection between Thornaby and Stockton stations.

Note.

  1. Stockton station is at the North of the map.
  2. Thornaby station is at the East of the map.
  3. In the South-Western corner of the map is a triangular junction, that links Eaglescliffe, Stockton-on-Tees and Thornaby stations.

Currently, this triangular junction, allows trains to go between.

  • Middlesbrough and Newcastle via Thornaby, Stockton, Hartlepool and Sunderland.
  • Middlesbrough and Darlington via Thornaby and Eaglescliffe.
  • Middlesbrough and Northallerton via Thornaby and Eaglescliffe.

But it could be even better.

This Google Map shows another triangular junction to the North of Stockton station.

Note.

  1. The Southern junction of the triangle leads to Stockton station and ultimately to Darlington, Eaglescliffe, Middlesbrough, Northallerton and Thornaby.
  2. The Eastern junction leads to Hartlepool, Sunderland and Newcastle.

So where does the Western Junction lead to?

The railway is the Stillington Branch Line.

  • It leads to Ferryhill.
  • It is about ten miles long.
  • It is double-track.
  • There used to be intermediate stations at Radmarshall, Stillington and Sedgefield.

Looking at timings for trains on the various sections of the route gives.

  • Middlesbrough and Stockton – 11 minutes
  • Stockton and Ferryhill South Junction – 23 minutes
  • Ferryhill South Junction and Newcastle – 20 minutes

This gives a timing of 54 minutes compared with up to 78 minutes for the current service on the Durham Coast Line.

In their document, Railfuture gives this as one of their campaigns.

Providing Faster Journeys Teesside to Tyneside by running passenger services from
Middlesbrough, Thornaby and Stockton via the 10 mile Stillington freight only line and then via the
East Coast Main Line to Newcastle. Our aim is to reduce overall journey time on direct train
between Middlesbrough to Newcastle from 1 hour 15 minutes to 55 minutes and so open up many
additional job opportunities to the residents of both areas.

My calculations say that it should be possible, to run a useful service between Middlesbrough and Newcastle, via the Stillington freight line.

  • The route is used regularly for freight trains and by LNER for what look to be testing or empty stock movements.
  • Will any station be built at Radmarshall, Stillington or Sedgefield?
  • I estimate that between Ferryhill South Junction and Middlesbrough, is about fifteen miles, so it might be possible to run a Middlesbrough and Newcastle service using battery electric trains, like Hitachi’s Regional Battery Trains, which would be charged on the East Coast Main Line.

Activating the route, doesn’t look to be the most expensive passenger reopening on the cards.

I suspect though, that if passenger services were to be run on the Stillington Line, that Ferryhill station, will need platforms on both the East Coast Main Line and the Stillington Line.

Services could include.

  • Newcastle and Middlesbrough via Ferryhill
  • Newcastle and Hartlepool via Ferryhill
  • Newcastle and York via Eaglescliffe and Ferryhill, with a reverse at Middlesbrough.

 

Note.

  1. The Northern terminus could be Ferryhill for some trains.
  2. Two tph between Stockton and Ferryhill would be a useful service.
  3. Would a Newcastle and Middlesbrough service call at the poorly-served Chester-le-Street station to improve services?

I also feel that as some of these services will be running on the East Coast Main Line between Ferryhill and Newcastle, it probably would be desirable for these services to be run by Hitachi’s Regional Battery Trains, which would be capable of maintaining the maximum speed for the route, as all the other passenger services can at present!

Ferryhill And Tyneside Via The Leamside Line

The reopening of the Leamside Line is a high priority of Northern Powerhouse Rail, which I wrote about in Northern Powerhouse Rail – Significant Upgrades Of The East Coast Main Line From Leeds To Newcastle (Via York And Darlington) And Restoration Of The Leamside Line.

In their document, Railfuture gives this as one of their campaigns.

Reopening the rail line from Ferryhill to Pelaw (the Leamside Line) with the aim of providing
services that will improve local connections and open new opportunities to people living in this part
of County Durham, as well as providing relief for congestion on the existing line through Durham.

This reopening has been talked about for years, so I suspect that Network Rail know the problems and at least have a rough estimate for what needs to be done and how much it will cost.

The Wikipedia entry for the Leamside Line has a section, which is entitled Proposed Re-Opening, Upgrade and Development, where this is the first paragraph.

Since the line’s closure in the early 1990s, a number of proposals to re-open the Leamside Line were put forward, including plans by AECOM, ATOC, Durham County Council, Railtrack and Tyne and Wear PTE. The line has been considered for a number of potential uses, including a regional suburban rail service linking Tyneside and Teesside, a diversionary freight route for the East Coast Main Line, and an extension to the Tyne and Wear Metro network.

Wikipedia also states that an application to the Restoring Your Railway Fund for money for a feasibility study was unsuccessful.

All that could change with the developments needed between Leeds and Newcastle for High Speed Two and Northern Powerhouse Rail.

  • High Speed Two are planning to run at least three tph to and from Newcastle.
  • Northern Powerhouse Rail are planning to run an extra service between Leeds and Newcastle.
  • LNER will have an extra path on the East Coast Main Line, that could be used through the area.

Using the Leamside Line as a diversion for freight and slower passenger trains would appear to be a possibility.

It could also be combined with the Stillington Line and Northallerton and Stockton to create a double-track diversion, alongside the double-track section of the East Coast Main Line between Northallerton and Newcastle.

Extending The Tyne And Wear Metro Along The Leamside Line

This has been talked about for some time.

In the Wikipedia entry for the Tyne and Wear Metro. there is a section, which is entitled Extension To Washington IAMP, where this is said.

There have been a number of proposals looking in to the possibility of re-opening the former Leamside Line to Washington, including a 2009 report from the Association of Train Operating Companies (ATOC), and a 2016 proposal from the North East Combined Authority (NECA), as well as the abandoned Project Orpheus programme, from the early 2000s. Most recently, proposals are being put forward to link the current network at Pelaw and South Hylton, with the International Advanced Manufacturing Park in Washington, using part of the alignment of the former Leamside Line.

If the Tyne and Wear Metro were to be extended to the Southern end of the Leamside Line, Ferryhill station could be a Southern terminal.

  • There is space to create a line alongside the East Coast Main Line between Tursdale Junction, where it connects with the Leamside Line and Ferryhill station.
  • The new Tyne and Wear trains have been designed to share tracks with other trains on Network Rail tracks.
  • This would enable interchange between East Coast Main Line, Stillington Line and Metro services, without going North to Newcastle.

At the present time, all that would be needed would be for the Metro connection to be safeguarded.

Railfuture’s Campaigns In The North East

This is a tidying up of several improvements, which are campaigns of Railfuture, that are outlined in this document.

They will be covered in separate posts.

Conclusions

I can separate conclusions into sections.

The Design Of Ferryhill Station

These are my conclusions about the design of Ferryhill station.

  • It should be built as a Park-and-Ride station.
  • It should have platforms long enough for any train that might stop at the station. I suspect this would be a pair of Class 800 trains, which would be 260 metres long.
  • Platforms should be on both the East Coast Main Line and the Stillington Line.
  • There should be safeguarding of a route, so that Metro trains could access the station from the Leamside Line.

As the station could be a Park-and-Ride station, I will assume the station will need good road access.

Train Services At Ferryhill Station

These are my conclusions about the services calling at Ferryhill station.

There should be four tph between Leeds and Newcastle, all of which would stop at York, Darlington, Ferryhill and Durham, with some services calling at Northallerton and Chester-le-Street.

There should also be less frequent services at Ferryhill to Scotland and London. Perhaps a frequency of around six tpd would be sufficient, as changes could be made at Leeds, Newcastle of York.

Two tph would probably be ideal for services on the Stillington Line to Hartlepool, Middlesbrough and Redcar.

It would certainly be a busy and well-connected station.

 

December 13, 2020 Posted by | Design, Transport | , , , , , , , , , , , , , , , , , , | 5 Comments

Is The Eastern Leg Of High Speed Two Under Threat?

This page on the High Speed Two web site is entitled HS2 Phase 2b Eastern Leg.

These are the opening three paragraphs.

Earlier this year the government made clear in its response to the Oakervee Review its commitment to Phase 2b of HS2, ensuring we boost capacity, improve connectivity between our regions and share prosperity.

As part of this, the government plans to present an Integrated Rail Plan for the North and Midlands by the end of the year, informed by an assessment from the National Infrastructure Commission, which will look at how to deliver HS2 Phase 2b, Northern Powerhouse Rail, Midlands Rail Hub and other rail programmes better and more effectively.

In the meantime, the government has asked HS2 Ltd to pause work on the Eastern Leg. We recognise that this causes uncertainty and our Eastern Leg community engagement teams remain in place to support you.

The page then says that the work on the Western Leg should proceed, with the aim of a Western Leg Bill in early 2022.

In Northern Powerhouse Rail – Significant Upgrades Of The East Coast Main Line From Leeds To Newcastle (Via York And Darlington) And Restoration Of The Leamside Line, I showed that the current and future upgrades to the East Coast Main Line, required by the East Coast Main Line, Northern Powerhouse Rail and High Speed Two, will greatly reduce the times on services from London Kings Cross to Doncaster, Yorkshire, the North East and Scotland.

I said this on timings on the East Coast Main Line.

  • London Kings Cross and Doncaster could be around an hour.
  • London Kings Cross and Leeds could be around one hour and thirty minutes, using the current Doncaster and Leeds time, as against the one hour and twenty-one minutes for High Speed Two.
  • London Kings Cross and York could be around one hour and twenty-three minutes, using the current Doncaster and York time, as against the one hour and twenty-four minutes for High Speed Two.
  • Timings between York and Newcastle would be the same fifty-two minutes as High Speed Two, as the track will be the limitation for both services.
  • High Speed Two’s timing for York and Newcastle is given as fifty-two minutes, with York and Darlington as twenty-five minutes.
  • London Kings Cross and Darlington could be around one hour and forty-nine minutes
  • London Kings Cross and Newcastle could be around two hours and sixteen minutes.
  • London Kings Cross and Edinburgh would be under three-and-a-half hours, as against the proposed three hours and forty-eight minutes for High Speed Two.

LNER’s Azuma cavalry will hold the fort for as long as is needed.

I’ll now look at how various stations, will be affected if the Eastern Leg of High Speed Two is not built, until a couple of decades in the future.

Leeds

Current Long Distance Services At Leeds Station

Leeds station has the following long distance services in trains per hour (tph)

  • CrossCountry – 1
  • LNER – 2
  • TransPennine Express – 5

It is a bit thin compared to say Birmingham or Manchester.

Northern Powerhouse Rail And Leeds

Northern Powerhouse Rail has plans for Leeds with these services to other Northern cities.

  • Hull – two tph in 38 minutes
  • Manchester – six tph in 25 minutes
  • Newcastle – four tph in 58 minutes
  • Sheffield – four tph in 28 minutes.

From what they have written, the following could also be possible.

  • Bradford – six tph in a few minutes
  • Liverpool – four or more tph in 51 minutes
  • Manchester Airport – four or more tph in 35 minutes

It is an ambitious plan.

High Speed Two And Leeds

High Speed Two is planning to run the following trains to Leeds in every hour.

  • Birmingham Curzon Street and Leeds – 200 metre train
  • Birmingham Curzon Street and Leeds via East Midlands Hub – 200 metre train
  • London Euston and Leeds via Old Oak Common and East Midlands Hub – 200 metre train
  • London Euston and Leeds via Old Oak Common and East Midlands Hub – 400 metre train
  • London Euston and Leeds via Old Oak Common, Birmingham Interchange and East Midlands Hub – 400 metre train

Timings will be as follows.

  • Birmingham Curzon Street and Leeds – 49 minutes.
  • London Euston and Leeds – One hour and 21 minutes.

There will be about 1000 seats per hour between Birmingham Curzon Street and Leeds and 2500 seats per hour Between London Euston and Leeds.

High Speed Two And Leeds Via Manchester

This report on the Transport for the North web site, is entitled At A Glance – Northern Powerhouse Rail.

This map shows Transport for the North’s ideas for connections in the West linking Crewe, Liverpool, Manchester, Manchester Airport, Warrington and Wigan.

A black line goes East from Manchester to link it to Leeds via Huddersfield and Bradford.

  • This is proposed as a route shared between High Speed Two and Northern Powerhouse Rail.
  • High Speed Two are promising that London Euston and Manchester will be timed at one hour and eleven minutes.
  • London Euston and Manchester will have a frequency of three tph and will all be 400 metre High Speed Two Full Size trains, with about a thousand seats.
  • Northern Powerhouse Rail have an objective of a twenty-five minute journey time between Manchester and Leeds.

I would also build the Manchester and Leeds route with the following characteristics.

  • As a full-size tunnel capable of taking High Speed Two Full Size trains and the largest freight trains.
  • Intermediate and underground stations at Huddersfield and Bradford.
  • It could be built as a base tunnel, like the similarly-sized Gotthard base tunnel in Switzerland.
  • The Swiss tunnel has a maximum operating speed for passenger trains of 125 mph.

If it can be built for a reasonable cost and in a reasonable time-scale, it could be a way of doing the following.

  • Creating a straight 150 mph plus route across the Pennines, with a capacity of 18 tph.
  • Running high-capacity fast trains between London Euston and Leeds via Manchester Airport and Manchester.
  • Running freight trains between the two sides of the Pennines.
  • Creating a high frequency route between Liverpool and Hull via Manchester Airport, Manchester, Huddersfield and Bradford and Leeds.

The passenger service between Liverpool and Hull could be the world’s first high speed metro.

If the London Euston and Manchester trains, were to be extended to Leeds, London Euston and Leeds would take one hour and thirty-six minutes, which would only be fifteen minutes slower, than is promised for the route going via the Eastern Leg of High Speed Two.

London Kings Cross And Leeds

When the in-cab digital signalling is complete between London Kings Cross and Leeds, I am fairly confident that with a few other improvements and more zoom from the Azumas, that a London Kings Cross and Leeds time of one hour and fifty minutes will be possible.

But will two nine-car or pairs of five-car trains per hour (tph), be enough capacity? Especially, as pairs of five-car trains will split and join to serve a wider catchment area, which will harvest more passengers.

LNER will in a couple of years have an extra path every hour into Kings Cross.

I would feel that best use of this path would be to run between London Kings Cross and Edinburgh via Leeds and Newcastle.

  • Leeds and Newcastle could be the only intermediate stops.
  • Leeds would be the ideal place to change to Northern Powerhouse Rail for anywhere in the North of England.
  • My estimates, say it could run between London Kings Cross and Edinburgh in around three-and-a-half hours.
  • It would run non-stop between London Kings Cross and Leeds, Leeds and Newcastle and Newcastle and Edinburgh.

It would increase capacity, between the four major destinations on the route; London Kings Cross, Leeds, Newcastle and Edinburgh.

It could start running, once the digital signalling and current improvements to the East Coast Main Line are complete.

London St. Pancras And Leeds

I discussed, Northern Powerhouse Rail’s plan for Sheffield and Leeds in Northern Powerhouse Rail – Connecting Sheffield To HS2 And On To Leeds.

This could see the following new infrastructure.

  • Electrification between Clay Cross North Junction and Sheffield station of the route shared by the Midland Main Line and High Speed Two.
  • Electrification through Sheffield and on to Leeds, via the Wakefield Line
  • New stations for High Speed trains at Rotherham and Barnsley Dearne Valley.

I could see East Midlands Railway taking advantage of this route, with their new Class 810 trains and running a regular Leeds and St. Pancras service.

  • It would call at Wakefield Westgate, Barnsley Dearne Valley, Rotherham and Meadowhall. between Leeds and Sheffield stations.
  • It would take twenty-eight minutes between Leeds and Sheffield, if it met Northern Powerhouse Rail’s objective.
  • Perhaps one of the two tph between London St. Pancras and Sheffield could be extended to Leeds.

As the current time between London St. Pancras and Sheffield, is a few minutes under two hours, I can see a time of comfortably under two-and-a-half hours between London St. Pancras and Leeds.

A Summary Of Journey Times Between London And Leeds

I can summarise my estimates, between London and Leeds.

  • High Speed Two – Direct via Eastern Leg – One hour and twenty-one minutes.
  • High Speed Two – via Manchester – One hour and thirty-six minutes.
  • East Coast Main Line – via Doncaster – One hour and thirty minutes.
  • Midland Main Line – via Derby and Sheffield – Two hours and twenty minutes.

The direct High Speed Two route is the fastest., but others could be viable alternatives for some passengers.

Bradford

Consider.

  • Under current plans Bradford won’t be getting any high speed service from High Speed Two.
  • The best it can get under current plans is several direct services per day, between Bradford Forster Square and London Kings Cross in perhaps two hours.
  • The layout of the city and its two stations doesn’t give good connectivity.

Bradford, Harrogate, Huddersfield and Skipton could probably be served by trains to and from London Kings Cross that join and split at Leeds.

But if Northern Powerhouse Rail goes for a tunnel between Manchester and Leeds with Bradford as an underground station, it could be served by High Speed Two services going between London Euston and Leeds via Manchester.

I would estimate that if London Euston and Leeds via Manchester took around one hour and thirty-six minutes, London Euston and Bradford could take around an hour-and-a-half.

Darlington

I can summarise my estimates, between London and Darlington.

  • High Speed Two – Direct via Eastern Leg – One hour and forty-nine minutes.
  • High Speed Two – via Manchester and Leeds – Two hours and six minutes.
  • East Coast Main Line – via Doncaster – One hour and forty-nine minutes.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle; will speed up East Coast Main Line services to Darlington.

Edinburgh

I can summarise my estimates, between London and Edinburgh.

  • High Speed Two – Direct via Western Leg – Three hours and Forty minutes.
  • High Speed Two – via Manchester and Leeds – Three hours and forty-eight minutes.
  • East Coast Main Line – via Doncaster – Three hours and thirty minutes.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle; will speed up East Coast Main Line services to Newcastle.

Harrogate

Consider.

  • Under current plans Harrogate won’t be getting any high speed service from High Speed Two.
  • The best it can get under current plans is several direct services per day, between Harrogate and London Kings Cross in perhaps two hours.

Bradford, Harrogate, Huddersfield and Skipton could possibly  be served by trains to and from London Kings Cross that join and split at Leeds.

Huddersfield

  • If Huddersfield is served by underground platforms beneath the current Huddersfield station, a lot of what I said for Bradford would apply to Huddersfield.
  • The timings would probably be around an-hour-and-a-half from London Euston.

Bradford, Harrogate, Huddersfield and Skipton could possibly be served by trains to and from London Kings Cross that join and split at Leeds.

Hull

Hull is an interesting destination.

  • Reaching Hull from the current High Speed Two network will need a change at Leeds or another station.
  • Using Northern Powerhouse Rail’s objectives on timings, London Euston and Hull via Manchester on High Speed Two, would be a few minutes under two-and-a-half hours.
  • I strongly feel, that London Kings Cross and Hull via Selby could be reduced to below two hours.

Hull would also make a superb Eastern terminal station for both Northern Powerhouse Rail and a High Speed Two service from London via Manchester and Leeds.

You pays your money and takes your choice.

Middlesbrough

Reaching Middlesbrough from the proposed High Speed Two network will need a change at York or another station.

But a time of two hours and twenty minutes, should be possible using the East Coast Main Line via Doncaster.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle, will speed up East Coast Main Line services to Middlesbrough.

Newcastle

I can summarise my estimates, between London and Newcastle.

  • High Speed Two – Direct via Eastern Leg – Two hours and seventeen minutes.
  • High Speed Two – via Manchester and Leeds – Two hours and thirty-four minutes.
  • East Coast Main Line – via Doncaster – Two hours and sixteen minutes.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle; will speed up East Coast Main Line services to Newcastle.

Nottingham

I will compare average speeds on the Midland Main Line between London St. Pancras and Nottingham and on the East Coast Main Line, between London Kings Cross and Leeds.

Currently.

  • London St. Pancras and Nottingham services, over the 126 mile route, take one hour and fifty minutes. which is an average speed of 69 mph.
  • London Kings Cross and Leeds services, over the 186 mile route, take two hours and thirteen minutes, which is an average speed of 94 mph.

Note.

  1. The two routes are of similar character and are fairly straight with large sections of 125 mph running and quadruple tracks.
  2. The East Coast Main Line to Leeds  is fully electrified, whereas the Midland Main Line is only partially electrified.
  3. Both routes have a small number of stops.
  4. In a few years time, services on both routes will be run by different members of the Hitachi AT-300 train family.

I don’t feel it would be unreasonable to assume that a London St. Pancras and Nottingham service could be run at an average speed of 94 mph, if the Midland Main Line were upgraded to the same standard as the East Coast Main Line.

This could mean a time of around one hour and twenty-one minutes between London St. Pancras and Nottingham, or a saving of twenty-nine minutes.

Is that possible?

  • The new Class 810 trains, will have four engines instead of the normal three for a five-car AT-300 train. Will they be able to be closer to the 125 mph line-speed on diesel power, where it is available on the Midland Main Line.
  • The trains will be able to use electrification between London St. Pancras and Market Harborough.
  • There have been hints, that more electrification may be installed on the Midland Main Line.
  • Hitachi have announced a battery electric version of the AT-300 train called a Regional Battery Train, where one or more of the diesel engines are replaced by battery packs.
  • The new trains will be ready to accept in-cab ERTMS digital signalling, so they could be able to run at up to 140 mph, if the track were to be upgraded.

I certainly feel, that substantial time savings could be possible between London St. Pancras and Nottingham.

Eighty-one minutes would be very convenient, as it would comfortably allow a three hour round trip, which would mean just six trains or more likely pairs of trains would be needed for the current two tph service.

Eighty-one minutes would not be the fifty-two minute service promised by High Speed Two!

But!

  • The new trains are planned to be introduced from 2023.
  • Who knows, when High Speed Two will arrive at the East Midlands Hub station?
  • They won’t need any new substantial infrastructure to replace the current trains.

I also suspect the new trains will have more seats, but, the capacity of the Class 810 train, has not been published.

Nottingham could also be served by a high speed service from London Kings Cross via Grantham, which I estimate would take about one hour and twenty minutes.

Sheffield

A lot of what I said for Nottingham can be applied to Sheffield.

  • Currently, London St. Pancras and Sheffield services, over the 165 mile route, take two hours, which is an average speed of 82.5 mph.
  • High Speed Two is promising a journey time of one hour and twenty-seven minutes.
  • An average speed of 90 mph, would mean a journey time of one hour and fifty minutes.
  • This would allow a four hour round trip, which would mean just eight trains or more likely pairs of trains would be needed for the current two tph service.

It would be very convenient for the operator.

It looks like if pairs of trains were to be run on both the Nottingham and Sheffield routes, that twenty-eight trains would be needed to run both services.

This fits well with a fleet size of thirty-three trains.

The only caveat, is that to get the required journey times, it might be necessary to rebuild and electrify the tracks, between Sheffield and Clay Cross North Junction.

  • These tracks will be shared with the future Sheffield Branch of High Speed Two.
  • It would only be 15.5 miles of double-track to rebuild and electrify.
  • It could be rebuilt to allow 140 mph running. Several minutes could be saved!

The electrification could allow Hitachi’s Regional Battery trains to be able to run the Sheffield service.

These trains would certainly be a way of avoiding the tricky electrification of the Derby and Clay Cross section of the route, which goes through the World Heritage Site of the Derwent Valley Mills.

Sheffield could also be served by a high speed service from London Kings Cross via Doncaster, which I estimate would take about one hour and thirty minutes.

Skipton

Consider.

  • Under current plans Skipton won’t be getting any high speed service from High Speed Two.
  • The best it can get under current plans is several direct services per day, between Skipton and London Kings Cross in perhaps two hours.

Bradford, Harrogate, Huddersfield and Skipton could possibly  be served by trains to and from London Kings Cross that join and split at Leeds.

Sunderland

Reaching Sunderland from the proposed High Speed Two network will need a change at York or another station.

But a time of two hours and thirty minutes, should be possible using the East Coast Main Line via Doncaster.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle, will speed up East Coast Main Line services to Sunderland.

York

I can summarise my estimates, between London and York.

  • High Speed Two – Direct via Eastern Leg – One hour and twenty-four minutes.
  • High Speed Two – via Manchester and Leeds – One hour and forty-two minutes.
  • East Coast Main Line – via Doncaster – One hour and twenty-four minutes.

Improvements on the East Coast Main Line, needed to enable and speed-up High Speed Two services to York, Darlington and Newcastle; will speed up East Coast Main Line services to York.

I believe strongly, that York would be about as fast from London, by either of the direct routes, but both would serve different intermediate destinations.

Conclusion

My first conclusion is a surprising one, but the promised timings from High Speed Two and the current timings in the timetable make it clear.

To achieve the required timings for High Speed Two, major improvements must be made to existing track and these improvements will mean that existing services will be competitive with High Speed Two on time.

These improvements fall into this category.

  • Improving the East Coast Main Line between York and Newcastle, will make East Coast Main Line services to York, Darlington, Durham and Newcastle competitive with High Speed Two services.
  • Improving the East Coast Main Line between York and Newcastle, may also mean that London Kings Cross and Edinburgh will be faster than the High Speed Two service between London Euston and Edinburgh.
  • Electrifying the route shared between Sheffield and Clay Cross North Junction, will speed up London St. Pancras and Sheffield services and make them more competitive with High Speed Two.

I suspect there may be similar mutual improvements on the Western leg of High Speed Two.

Other smaller conclusions from my analysis of the improvements include.

  • These improvements will create some extra capacity on the East Coast and Midland Main Lines, by removing bottlenecks and improving line speeds.
  • Electrification, even if it is only partial or discontinuous, will improve services on the Midland Main Line.
  • Some places like Harrogate, Middlesbrough and Skipton will never be served directly by High Speed Two, but are easily served by East Coast Main Line services from London Kings Cross.
  • Northern Powerhouse Rail is very much part of the North-South capacity for England.
  • In-cab ERTMS signalling will play a large part in increasing capacity and line speeds.

Perhaps in our planning of High Speed Two, we should plan all the routes in the North and Midlands in a much more holistic way.

If we look at the capacity between London and the North, I feel that with the addition of Phase 1 of High Speed Two to Birmingham in 2029-2033 and hopefully Phase 2a soon afterwards, that Phase 2b will not be needed for reasons of speed and capacity until years later.

So, I would pause most construction of the Eastern Leg of High Speed Two until Phase 1 and Phase 2a are complete.

I would make exceptions for the following.

  • Improvements to the shared section of the East Coast Main Line and High Speed Two, between York and Newcastle.
  • Building a high speed connection between Leeds and York for the use of Northern Powerhouse Rail and the East Coast Main Line.
  • Rebuilding and electrification of the shared section of the Midland Main Line and High Speed Two, between Clay Cross North Junction and Sheffield.
  • Improve and electrify the route between Sheffield and Leeds.

But I would continue with the design, as I feel that East of Leeds is very much sub-optimal at the present time.

The route of the Eastern leg of High Speed Two would be safeguarded.

 

 

 

 

December 7, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , | 1 Comment

Northern Powerhouse Rail – Significant Upgrades Of The East Coast Main Line From Leeds To Newcastle (Via York And Darlington) And Restoration Of The Leamside Line

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is significant upgrades to the East Coast Main Line and reopening of the Leamside Line.

Northern Powerhouse Rail’s Objective For The Leeds and Newcastle Route

Wikipedia, other sources and my calculations say this about the trains between Leeds and Newcastle.

  • The distance between the two stations is 106 miles
  • The current service takes around 85 minutes and has a frequency of three trains per hour (tph)
  • This gives an average speed of 75 mph for the fastest journey.
  • The proposed service with Northern Powerhouse Rail will take 58 minutes and have a frequency of four tph.
  • This gives an average speed of 110 mph for the journey.

This last figure of 110 mph, indicates to me that a faster route will be needed.

These are example average speeds on the East Coast Main Line.

  • London Kings Cross and Doncaster – 156 miles – 98 minutes – 95.5 mph
  • London Kings Cross and Leeds – 186 miles – 133 minutes – 84 mph
  • London Kings Cross and York  – 188.5 miles – 140 minutes – 81 mph
  • London Kings Cross and Hull – 205.3 miles – 176 minutes – 70 mph
  • York and Newcastle – 80 miles – 66 minutes – 73 mph

I also predicted in Thoughts On Digital Signalling On The East Coast Main Line, that with full digital in-cab ERTMS signalling and other improvements, that both London Kings Cross and Leeds and York would be two-hour services, with Hull a two-and-a-half service.

  • London Kings Cross and Leeds in two hours would be an average speed of 93 mph.
  • London Kings Cross and York in two hours would be an average speed of 94.2 mph.
  • London Kings Cross and Hull in two-and-a-half hours would be an average speed of 94.2 mph.

I am fairly certain, that to achieve the required 110 mph average between Leeds and Newcastle to meet Northern Powerhouse Rail’s objective of four tph in under an hour will need, at least the following.

  • Full digital in-cab ERTMS signalling
  • Completion of the electrification between Leeds and York.
  • Ability to run at up to 140 mph in places.
  • Significant track upgrades.

It could also eliminate diesel traction on passenger services on the route.

High Speed Two’s Objective For The York and Newcastle Route

At the present time, High Speed Two is not planning to run any direct trains between Leeds and Newcastle, so I’ll look at its proposed service between York and Newcastle instead.

  • Current Service – 80 miles – 66 minutes – 73 mph
  • High Speed Two – 80 miles – 52 minutes – 92 mph

Note.

  1. High Speed Two will be running three tph between York and Newcastle.
  2. Northern Powerhouse Rail have an objective of 58 minutes for Leeds and Newcastle.

High Speed Two and Northern Powerhouse Rail do not not have incompatible ambitions.

Current Direct Leeds And Newcastle Services

These are the current direct Leeds and Newcastle services.

  • TransPennine Express – 1 tph – Liverpool Lime Street and Edinburgh
  • TransPennine Express – 1 tph – Manchester Airport and Newcastle.
  • CrossCountry – 1 tph – Plymouth and Edinburgh

Timings appear to be between 81 and 91 minutes.

What Would A Leeds And Newcastle In Under An Hour Do For London Kings Cross And Edinburgh Timings?

This question has to be asked, as a 58 minute time between Leeds and Newcastle will mean that timings between York and Newcastle must reduce.

York And Newcastle at various average speeds give the following times.

  • 73 mph (current average) – 66 minutes
  • 80 mph – 60 minutes
  • 90 mph – 53 minutes
  • 92 mph – 52 minutes (High Speed Two promise)
  • 100 mph – 48 minutes
  • 110 mph – 44 minutes

If any speed over 90 mph can be averaged between York and Newcastle, this means that with a London and York time of under two hours the following times are possible.

  • London Kings Cross and Newcastle in under three hours. – High Speed Two are promising two hours and seventeen minutes.
  • London Kings Cross and Edinburgh in under four hours. – High Speed Two are promising three hours and forty minutes.

Consider.

  • An InterCity 225 achieved a time of under three-and-a-half hours between London and Edinburgh. in 1991.
  • That record journey was at an average speed of 112 mph.
  • There must be opportunities for speed improvements North of Newcastle.
  • Train and signalling technology is improving.
  • High Speed Two is promising three hours and forty minutes between London and Edinburgh.

I can see a fascinating rivalry between trains on High Speed Two and the East Coast Main Line, developing, about who can be faster between London and Edinburgh.

Current Projects Between Leeds And Newcastle

These projects are in planning or under way on the section of the East Coast Main Line between Leeds and Newcastle.

Phase 2 Of The East Coast Main Line Power Supply Upgrade

Phase 1 between London and Doncaster should have been completed, if the covids allowed and now work can be concentrated on Phase 2 to the North of Doncaster.

This page on the Network Rail web site describes the project. These paragraphs are the introduction to Phase 2.

Phase 2 of the project will involve the installation of feeder and substations along the route, capacity upgrades, new 132kv connection at Hambleton junction and upgrades to existing power supply connections.

The second phase of the project is currently in design stages and dates for carrying out the work are still being finalised.

Phase 2 will be delivering upgraded power to the East Coast Mainline railway between Bawtry and Edinburgh.

This project may not improve speeds on the railway, but it will certainly improve reliability and reduce the use of diesel power.

I do wonder, that as the reliability of the East Coast Main Line increases, this will reduce the need for the electric Class 801 trains, to have diesel engines for when the power supply fails.

It is known, that the Class 803 trains, that are under construction for East Coast Trains, will have only a small battery for emergency use.

A sensible weight saving would surely improve the acceleration and deceleration of the trains.

York to Church Fenton Improvement Scheme

This page of the Network Rail web site, describes the project. These paragraphs introduce the project.

Our work between York and Church Fenton is in preparation for the Transpennine Upgrade, which will provide more capacity and faster journeys between Manchester Victoria and York, via Leeds and Huddersfield.

The five mile stretch between Church Fenton and Colton Junction – the major junction where trains from Leeds join the East Coast Main Line towards York – sees over 100 trains each day, with up to one freight or passenger train passing through every five minutes. This is one of the busiest stretches of railway in the North.

The work will include.

  • Modernising the signalling.
  • Replacing about five miles of track between Holgate (York) and Colton Junction.
  • Completing the eleven miles of electrification between York and Church Fenton stations.

I estimate that when the project is completed, there will be only around thirteen miles of track without electrification between Church Fenton station and Neville Hill TMD in Leeds.

The route between Church Fenton and Garforth stations, is shown in this map clipped from High Speed Two.

Note.

  1. York is just off the North-East corner of the map.
  2. Garforth is in the South-West corner of the map.
  3. Shown in orange is the new route of High Speed Two from East of Leeds towards York.
  4. Shown in blue is existing tracks, that will be used to take High Speed Two Trains to York and further North.
  5. The rail line running North-South on the edge of the map is the Selby Diversion, which opened in 1983 and  was built to avoid possible subsidence from the Selby coalfield.
  6. The pre-Selby Diversion route of the East Coast Main Line goes South from the join of the blue and orange sections of High Speed Two.
  7. At Church Fenton station, this route splits, with one route going West through Micklefield, East Garforth and Garforth stations to Neville Hill TMD and Leeds.
  8. The main road going North-South is the A1 (M).

It seems to me, that High Speed Two’s and Northern Powerhouse Rail’s plans in this area, are still being developed.

  • There has been no decision on the electrification between Church Fenton and Neville Hill TMD.
  • How do Northern Powerhouse Rail trains go between Leeds and Hull?
  • How do Northern Powerhouse Rail trains go between Leeds and York?
  • How do High Speed Two trains go between Leeds and York?

I suspect, when the full plans are published, it will answer a lot of questions.

Darlington Station Remodelling

A remodelling of Darlington station is under consideration.

I outlined this in £100m Station Revamp Could Double Local Train Services.

This was my conclusion in the related article.

I think that this will happen.

    • The Tees Valley Line trains will be greatly improved by this project.
    • Trains will generally run at up to 140 mph on the East Coast Main Line, under full digital control, like a slower High Speed Two.
    • There will be two high speed platforms to the East of the current station, where most if not all of the High Speed Two, LNER and other fast services will stop.
    • There could be up to 15 tph on the high speed lines.

With full step-free access between the high speed and the local platforms in the current station, this will be a great improvement.

It will create a major interchange, where high speed trains from High Speed Two, LNER and Northern Powerhouse Rail will do the following.

  • Approach at 140 mph or more.
  • Perform a controlled stop in the station.
  • Drop and pick-up passengers.
  • Accelerate back up to linespeed.

The station stop will be highly-automated and monitored by the driver.

One of the objectives would be to save time for all fast trains.

Capacity And Other Problems Between Leeds And Newcastle Listed In Wikipedia

These problems are listed in a section called Capacity Problems in the Wikipedia entry for the East Coast Main Line.

The North Throat Of York Station Including Skelton Bridge Junction

On the thirty mile stretch of the East Coast Main Line, between York and Northallerton stations, the route is mainly four tracks.

But three miles North of York there is Skelton Bridge over the River Ouse, which is shown in this Google Map.

Zooming closer, I clipped this second Google Map.

Note.

  1. There are actually two bridges over the River Ouse.
  2. The East bridge is a double-track bridge and is the original stone arch bridge.
  3. The West bridge was added later and I suspect has little architectural merit.
  4. The tracks on both sides of the bridge are extremely complicated.

If you look at the timings, trains seem to take one of two timings between York and Northallerton.

  • 17-18 minutes, which is almost an average speed of 100 mph.
  • 27 minutes, which is 67 mph.

Incidentally, one of Drax’s long biomass trains managed a time of 27 minutes.

Would going faster save any minutes?

  • A 110 mph average would give a time of 16.4 minutes
  • A 120 mph average would give a time of 15 minutes
  • A 125 mph average would give a time of 14.4 minutes
  • A 140 mph average would give a time of 12.9 minutes

On the face of it, it doesn’t appear that there are very large time savings, to be achieved.

On the other hand, if all trains can pass through Skelton Bridge and its complicated junction, without slowing, delays will be minimised and timetables can be faster.

But there is an anomaly in all the express trains that pass through York station. All stop, except those planned for East Coast Trains. In fact, their trains won’t stop between Stevenage and Newcastle.

The obvious solution to the Skelton Bridge problem, is to do what British Rail didn’t have the courage to do, when they electrified the East Coast Main Line in the 1980s. And that is to demolish the bridge and build a stylish modern four-track bridge!

It would eliminate many of the things, that could go wrong and would surely improve reliability. This could help to maintain a higher operating speed.

But would it be allowed by the Planning Authorities and English Heritage?

Hopefully, it doesn’t matter!

  • I am a Control Engineer and mathematical modeller, who has programmed some immensely complex systems in the last fifty-five years.
  • I have also flown light aircraft on instruments for many hours, where you control the plane according to what Air Traffic Controllers and the instruments tell you.

My experience tells me that, it would be possible to control a busy junction, like Skelton Bridge safely, by a well-programmed computer system helping the driver, arrive at the junction at the right time to go straight through.

I also believe that if modern in-cab digital ERTMS signalling can handle twenty-four tph on Thameslink going to and from scores of stations, then it can handle Skelton Bridge Junction.

In Could ERTMS And ETCS Solve The Newark Crossing Problem?, I proposed a similar solution to the problem at Newark.

Use Of The Leamside Line

Wikipedia says this about capacity to the South of Newcastle.

South of Newcastle to Northallerton (which is also predominately double track), leading to proposals to reopen the Leamside line to passenger and freight traffic.

I could have included it in the previous section, but as it such a important topic, it probably deserves its own section.

Looking at maps, reopening is more than a a possibility. Especially, as reopening is proposed by Northern Powerhouse Rail and mentioned in the title of this post.

I discussed the Leamside Line in detail in Boris Johnson Backs Station Opening Which Could See Metro Link To County Durham, which I wrote in June this year.

These are some extra thoughts, that update the original post.

Ferryhill Station

I was prompted to write the related post, by something Boris Johnson said at PMQs and it was mainly about Ferryhill station.

In the latest copy of this document on the Government web site, which is entitled Restoring Your Railway: Successful Bids, a new station at Ferryhill has been successful. Another bid in the same area to restore rail services between Consett and Newcastle has also been successful.

This map shows the East Coast Main Line as it goes North South between Durham and Darlington.

Note.

  1. Ferryhill is in the South-West of the map opposite the sand-pits in the South-East
  2. The East Coast Main Line runs North-South between the village an d the sand-pits.
  3. Follow the railway North and you come to Tursdale, where there is a junction between the East Coast Main Line and the Leamside Line.
  4. The East Coast Main Line goes North-Westerly towards Durham and Newcastle.
  5. The Leamside Line goes North to Washington and Newcastle.
  6. There is also the Stillington Freight Line going South-Easterly to Sedgefield and Stockton from Ferryhill.

Could Ferryhill be a useful interchange to local services connecting to Newcastle, Sunderland and Washington in the North and Hartlepool, Middlesbrough and Stockton in the South?

The Leamside Line As An East Coast Main Line Diversion

I didn’t discuss using the line as a diversion for the East Coast Main Line in my original post, but if the infrastructure is to the required standard, I don’t see why it can’t take diverted traffic, even if it is also used for the Tyne and Wear Metro.

It should be remembered, that to create extra capacity on the East Coast Main Line between Peterborough and Doncaster, the route of the Great Northern and Great Eastern Joint Railway, was upgraded. I first wrote about this line six years ago in Project Managers Having Fun In The East and the route seems to be working well. It is now being augmented by the addition of the £200 million Werrington Dive Under. See Werrington Dive-Under – 8th November 2018, for more details of this project, which will speed up all trains on the East Coast Main Line.

After the undoubted success of the upgrade  of the Great Northern and Great Eastern Joint Railway, surely the team responsible for it, should be given the task of devising a similar plan for the Leamside Line, to take pressure off the East Coast Main Line between Newcastle and Northallerton.

Sharing The Leamside Line

The Tyne and Wear Metro also has its eyes on the Leamside Line for an extension.

It should be noted that the Extension To Wearside, uses the Karlsruhe Model to allow the Metro trains to share with freight and other passenger trains.

The new Stadler trains will probably make this even easier, so I wouldn’t be surprised to see a reopened Leamside Line handling a varied assortment of trains of all types.

The Sunderland Example

Sunderland station is a station, which has both Metro and mainline services from the same platforms.

Could a station at Washington be built to similar principles, so that some long distance services to Newcastle used this station?

A Terminal Station On The Leamside Line

Newcastle station may be a Grade One Listed station, but it is built on a curve and would be a nightmare to expand with more platforms.

Sunderland station is already used as a terminal for London trains, so would it be sensible to provide a terminal at somewhere like Washington?

My Final Thought  On The Leamside Line

Reopen it!

A Few Random Final Thoughts

This post has got me thinking.

Newcastle Station Capacity

I have seen reports over the years that Newcastle station, is lacking in capacity.

  • There could be extra services, as High Speed Two is proposing two tph from London Euston stations and one tph from Birmingham Curzon Street station.
  • There may be extra services because of Northern Powerhouse Rail, which has an objective of four tph from Leeds station.
  • There may be extra services because of new services to Ashington and Blyth.
  • There may be extra services because of new services to Consett.

Note.

  1. The first two services could use two hundred metre long trains.
  2. Some platforms can accept 234 metre long Class 800 trains.
  3. The last two services might use the Metro platforms.

As the station has twelve platforms, I feel with careful operation, that the station will have enough capacity.

This Google Map shows the station.

And this second Google Map shows the station, its position with relation to the Tyne and the lines rail routes to and from the station.

Note.

  1. Trains from the South arrive over the King Edward VII Bridge and enter Newcastle station from the West.
  2. Trains from England to Scotland go through the station from West to East and then go straight on and turn North for Berwick and Scotland.
  3. Next to the King Edward VII Bridge is the blue-coloured Queen Elizabeth II Bridge, which takes the Tyne and Wear Metro across the Tyne, where it uses two platforms underneath Newcastle station.
  4. The next bridge is the High Level Bridge, which connects the East end of the station to the rail network, South of the Tyne. It connects to the Durham Coast Line to Teeside and the Leamside Line.

History has delivered Newcastle a comprehensive track layout through and around Newcastle station.

  • Services from the East can be run back-to-back with services from the West.
  • The Metro and its two underground platforms removes a lot of traffic from the main station.
  • There are seven through platforms, of which at least three are over two hundred metres long.
  • There are four West-facing bay platforms and one facing East.

But most intriguingly, it looks like it will be possible for trains to loop through the station from the South, by perhaps arriving over the King Edward VII bridge and leaving over the High Level bridge. Or they could go the other way.

Could this be why reoopening the Leamside Line is important?

LNER’s Extra Paths

The sentence, from an article entitled LNER Seeks 10 More Bi-Modes, in the December 2020 Edition of Modern Railways   indicates that more capacity will be available to LNER.

Infrastructure upgrades are due to prompt a timetable recast in May 2022 (delayed from December 2021) from which point LNER will operate 6.5 trains per hour, out of Kings Cross, compared to five today.

I suspect that LNER could use the half path to run a one train per two hour (tp2h) service to Hull.

  • Currently, London Kings Cross and Hull takes a few minutes under three hours.
  • Currently, Doncaster and Hull takes around 55 minutes.
  • I have estimated that once full digital in-cab signalling is operational, that London Kings Cross and Hull could take a few minutes under two-and-a-half hours.

The full path to Hull could be shared with Hull Trains to provide an hourly service between London Kings Cross and Hull.

LNER could do something special with the full extra path.

Consider.

  • Some train operating companies have said, that they’ll be looking to attract customers from the budget airlines.
  • There could be a need for more capacity between London Kings Cross and all of Edinburgh, Leeds and Newcastle.
  • Faster services would be attractive to passengers.
  • York and Leeds will be fully electrified or trains could be fitted with batteries to bridge the thirteen mile gap in the electrification.

A limited-stop service between London Kings Cross and Edinburgh via Leeds could be an interesting addition.

  • The train would only stop at Leeds and possibly Newcastle.
  • One objective would be a time under three-and-a-half hours between London Kings Cross and Edinburgh.
  • What time could be achieved between London Kings Cross and Leeds?

It would certainly give High Speed Two a run for its money!

A New Elizabethan

I can remember The Elizabethan, which was a steam-hauled non-stop express between London and Edinburgh between 1953 and 1961.

I have laid out my ideas for a modern express train of the same name in A New Elizabethan.

It could be an interesting concept, to increase capacity between London and Edinburgh.

As I indicated in the previous section, LNER certainly have a path, that could be used to their advantage.

High Speed Two

The East Coast Main Line and High Speed Two have a lot in common.

  • The two routes will share tracks between a junction near Ulleskelf station and Newcastle station.
  • High Speed Two Classic Compatible trains could be based on Hitachi AT-300 train technology.
  • High Speed Two Classic Compatible trains would probably be able to run on the East Coast Main Line between London Kings Cross And Edinburgh.
  • Trains from both routes will share platforms at York, Darlington, Durham and Newcastle stations.
  • I would hope that the signalling systems on both routes are compatible.

From a project management point of view, this commonality means that in an ideal world the new route of both High Speed Two and Northern Powerhouse Rail, and the upgrades to the East Coast Main Line should be planned together.

I believe there are still details on the design of the joint route, that have not been disclosed, or perhaps not even decided.

  • Will between Church Fenton station and Neville Hill depot be electrified?
  • How will Northern Powerhouse Rail connect Leeds and Hull stations?
  • How will Northern Powerhouse Rail connect Leeds and York stations?
  • Will High Speed Two connect Leeds and York stations?
  • What will be the operating speed of the joint section of the East Coast Main Line?
  • What will be the capacity in trains per hour of the joint section of the East Coast Main Line?
  • Will Newcastle station need an extra platform to handle three High Speed Two tph from London Euston

Two projects have been discussed in this post.

  • The unlocking of the bottleneck at Skelton Bridge.
  • The reopening of the Leamside Line.

I feel that these projects are important and will probably be needed for efficient operation of High Speed Two.

Other early projects could include.

  • Upgrading and electrification of the chosen route between Leeds and Hull,
  • Installation of the chosen system of in-cab ERTMS digital signalling on the route.
  • Electrification between Church Fenton station and Neville Hill depot.

I would deliver these and other joint projects early, so that travellers see a positive benefit from High Speed Two before the main work has even started.

High Speed East Coast

I wonder what is the maximum speed of the Class 80x trains, that are the backbone of services on the East Coast Main Line.

Consider.

  • It is known, that with in-cab digital ERTMS  signalling, these trains will be capable of 140 mph, but could they go even faster.
  • High Speed Two Classic Compatible trains will be capable of 225 mph.
  • Will Hitachi’s offering for these trains, be based on the Class 80x trains?

I would think, that it is fairly likely, that the existing Class 80x trains could be updated to an operating speed in the range of 150-160 mph.

In Thoughts On Digital Signalling On The East Coast Main Line, I said this.

The combined affect of both track and signalling improvements is illustrated by this simple calculation.

    • As Dalton-on-Tees is North of Doncaster, the route between Woolmer Green and Doncaster should be possible to be run at 140 mph
    • Woolmer Green and Doncaster stations are 132.1 miles apart.
    • Non-stop York and London Kings Cross trains are currently timed at 70 minutes between Doncaster and Woolmer Green stations.
    • This is an average speed of 113.2 mph.

If 140 mph could be maintained between Doncaster and Woolmer Green, the section of the journey would take 56.6 minutes, which is a saving of 13.4 minutes.

I can do this calculation for higher speeds.

  • 150 mph would take 52.8 minutes
  • 160 mph would take 49.5 minutes
  • 170 mph would take 46.6 minutes
  • 180 mph would take 44 minutes
  • 200 mph would take 39.6 minutes

Note.

  1. Eurostar’s latest Class 374 trains are capable of operating at 200 mph.
  2. A Class 395 train, which is closely related to the Class 80x trains, has attained a record speed of 157 mph.

There may be worthwhile time savings to be made, on some of the straighter sections of the East Coast Main Line.

Other improvements will also be needed.

Note, that I am assuming, that the Digswell Viaduct section would not be updated, as it would cause too much disruption.

I also believe that by using selective joining and splitting at Edinburgh, Leeds and perhaps Doncaster, Grantham, Newark or York, that a very comprehensive network of direct trains to and from London can be built from Grantham Northwards.

Beverley, Bradford, Cleethorpes, Glasgow, Grimsby, Harrogate, Huddersfield, Hull, Lincoln, Middlesbrough, Nottingham, Perth, Redcar, Sheffield, Skipton, Sunderland and Washington could all be served at an appropriate frequency.

  • Some like Bradford, Glasgow, Harrogate, Hull, Lincoln and Middlesbrough would have several trains per day.
  • Others might have a much more limited service.

What sort of timings will be possible.

  • London Kings Cross and Doncaster could be around an hour.
  • London Kings Cross and Leeds could be around one hour and thirty minutes, using the current Doncaster and Leeds time, as against the one hour and twenty-one minutes for High Speed Two.
  • London Kings Cross and York could be around one hour and twenty-three minutes, using the current Doncaster and York time, as against the one hour and twenty-four minutes for High Speed Two.
  • Timings between York and Newcastle would be the same fifty-two minutes as High Speed Two, as the track will be the limitation for both services.
  • High Speed Two’s timing for York and Newcastle is given as fifty-two minutes, with York and Darlington as twenty-five minutes.
  • London Kings Cross and Darlington could be around one hour and forty-nine minutes
  • London Kings Cross and Newcastle could be around two hours and sixteen minutes.
  • London Kings Cross and Edinburgh would be under three-and-a-half hours, as against the proposed three hours and forty-eight minutes for High Speed Two.

High Speed East Coast would be a serious and viable alternative to High Speed Two for the Eastern side of England and Scotland.

Conclusion

This is an important joint project for Northern Powerhouse Rail, High Speed Two and the East Coast Main Line.

Project Management Recommendations

This project divides neatly into several smaller projects..

  • Upgrade the power supply on the East Coast Main Line.
  • Finish the York to Church Fenton Improvement Scheme
  • Remodel Darlington station.
  • Install of in-cab ERTMS digital signalling.
  • Complete the electrification between Neville Hill TMD and York.
  • Solve the problem of Skelton Bridge and its complicated track layout.
  • Reopen the Leamside Line.

Most of these projects are independent of each other and all would give early benefits to the East Coast Main Line.

When complete, we’ll see the following timing improvements.

  • Leeds and Newcastle will drop from 85 minutes to 56 minutes, with an increase in frequency from three to four tph.
  • York and Newcastle will drop from 57-66 minutes to 52 minutes.
  • There could be ten minutes savings on Edinburgh services.

Passengers and operators would welcome this group of projects being started early.

 

 

 

 

November 30, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Northern Powerhouse Rail – Significant Upgrades And Electrification Of The Rail Lines From Leeds And Sheffield To Hull

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is significant upgrades and electrification of the rail lines from Leeds and Sheffield to Hull.

Northern Powerhouse Rail’s Objective For The Leeds and Hull Route

Wikipedia, other sources and my calculations say this about the trains between Leeds and Hull.

  • The distance between the two stations is 51.7 miles
  • The current service takes around 57 minutes and has a frequency of one train per hour (tph)
  • This gives an average speed of 54.4 mph for the fastest journey.
  • The proposed service with Northern Powerhouse Rail will take 38 minutes and have a frequency of two tph.
  • This gives an average speed of 81.6 mph for the journey.

This last figure of nearly 82 mph, indicates to me that a 100 mph train will be able to meet Northern Powerhouse Rail’s objective.

Northern Powerhouse Rail’s Objective For The Sheffield and Hull Route

Wikipedia, other sources and my calculations say this about the trains between Sheffield and Hull.

  • The distance between the two stations is 59.4 miles
  • The current service takes around 80 minutes and has a frequency of one tph.
  • This gives an average speed of 44.6 mph for the fastest journey.
  • The proposed service with Northern Powerhouse Rail will take 50 minutes and have a frequency of two tph.
  • This gives an average speed of 71,3 mph for the journey.

This last figure of over 70 mph, indicates to me that a 90 mph train will be able to meet Northern Powerhouse Rail’s objective.

Services From Hull Station

Hull station is a full interchange, which includes a large bus station.

  • Currently, the station has seven platforms.
  • There appears to be space for more platforms.
  • Some platforms are long enough to take nine-car Class 800 trains, which are 234 metres long.
  • There are some good architectural features.

If ever there was a station, that had basic infrastructure, that with appropriate care and refurbishment, could still be handling the needs of its passengers in a hundred years, it is Hull.

  • It would be able to handle a 200 metre long High Speed Two Classic-Compatible train, tomorrow.
  • It would probably be as no more difficult to electrify than Kings Cross, Liverpool Lime Street, Manchester Piccadilly or Paddington.
  • It would not be difficult to install charging facilities for battery electric trains.

These are some pictures of the station.

Currently, these are the services at the station, that go between Hull and Leeds, Selby or Sheffield.

  • Hull Trains – 7 trains per day (tpd) – Hull and London via Brough, Selby and Doncaster.
  • LNER – 1 tpd – Hull and London via Brough, Selby and Doncaster.
  • Northern Trains – 1 tph – Hull and Halifax via Brough, Selby, Leeds and Bradford Interchange.
  • Northern Trains – 1 tph – Hull and Sheffield via Brough, Gilberdyke, Goole, Doncaster, Rotherham Central and Meadowhall.
  • Northern Trains – 1 tph – Hull and York via Brough and Selby.
  • Northern Trains – 1 tph – Bridlington and Sheffield via Hull, Brough, Goole, Doncaster and Meadowhall.
  • TransPennine Express – 1 tph – Hull and Manchester Piccadilly or Manchester Airport via Brough, Selby, Leeds, Huddersfield and Stalybridge.

Note.

  1. I have included services through Selby, as the station is on the way to Leeds and is a notorious bottleneck.
  2. All services go through Brough.
  3. All trains work on diesel power to and from Hull.
  4. Hull Trains and LNER use Hitachi bi-mode trains, that work most of the route to and from London, using the 25 KVAC overhead electrification.
  5. Northern use a variety of diesel trains only some of which have a 100 mph operating speed.

There would also appear to be freight trains working some of the route between Hull and Brough stations.

Upgrading The Tracks

I very much believe that to meet Northern Powerhouse Rail’s objectives as to time, that the lines to Hull from Leeds and Sheffield must have a 100 mph operating speed.

Hull And Leeds And On To London

This Google Map shows a typical section of track.

Note.

  1. Broomfleet station is in the North-West corner of the map.
  2. Brough station is just to the East of the middle of the map.
  3. Ferriby station is in the South-East corner of the map.

The Hull and Selby Line is fairly straight for most of its route.

The Selby Swing Bridge

The main problem is the Selby swing bridge, which is shown in this Google Map.

Note.

  1. The bridge was opened in 1891.
  2. It is a Grade II Listed structure.
  3. It is a double-track bridge.
  4. It swings through ninety degrees to allow ships to pass through.
  5. It has a low speed limit of 25 mph.
  6. The bridge regularly carries the biomass trains to Drax power station.

This page on the Fairfield Control Systems web site, describes the major refurbishment of the bridge.

  • The bridge structure has been fully refurbished.
  • A modern control system has been installed.
  • The page says the bridge glides to an exact stop.

Network Rail are claiming, it will be several decades before any more work needs to be done on parts of the bridge.

It looks to me, that Network Rail have decided to live with the problems caused by the bridge and automate their way round it, if possible.

Level Crossings

One general problem with the route between Hull and Selby is that it has around a dozen level crossing, some of which are just simple farm crossings.

The main route West from Selby goes to Leeds and it is double track, fairly straight with around a dozen level crossings.

West from Selby, the route to the East Coast Main Line to and from London is also double track and reasonably straight.

But it does have level crossings at Common Lane and Burn Lane.

The Google Map show Burn Lane level crossing, which is typical of many in the area.

Hull And Sheffield

The other route West from Hull goes via Goole and Doncaster.

This Google Map shows the Hull and Doncaster Branch between Goole and Saltmarshe stations.

Note.

  1. The Hull and Doncaster Branch runs diagonally across the map.
  2. Goole and its station is in the South West corner of the map.
  3. The Hull and Doncaster Branch goes leaves the map at the North-East corner and then joins the Selby Line to the West of Gilberdyke station.

This Google Map shows that where the railway crosses the River Ouse there is another swing bridge.

This is the Goole Railway Swing Bridge.

  • The bridge was opened in 1869.
  • The maximum speed for any train is 60 mph, but some are slower.
  • It is a Grade II* Listed structure.
  • In the first decade of this century the bridge was strengthened.
  • It appears to carry a lesser number of freight trains than the Selby bridge

As with the Selby bridge, it appears to be working at a reasonable operational standard.

I’ve followed the line as far as Doncaster and it is fairly straight, mostly double-track with about a half-a-dozen level crossings.

Updating To 100 mph

It looks to my naïve eyes, that updating the lines to an operating speed of 100 mph, should be possible.

But possibly a much larger problem is the up to thirty level crossings on the triangle of lines between Hull, Leeds and Sheffield.

Full ERTMS In-Cab Digital Signalling

This is currently, being installed between London and Doncaster and will allow 140 mph running, which could save several minutes on the route.

The next phase could logically extend the digital signalling as far as York and Leeds.

Extending this signalling to Hull and Sheffield, and all the lines connecting the cities and towns of East Yorkshire could be a sensible development.

It might even help with swing bridges by controlling the speed of approaching trains, so that they arrive at the optimal times to cross.

Electrification

Eventually, all of these routes will be fully electrified.

  • Hull and Leeds via Brough, Selby and Garforth.
  • Hull and Scarborough via Beverley and Seamer.
  • Hull and Sheffield via Brough, Goole, Doncaster and Rotherham.
  • Hull and York via Brough and Selby.
  • York and Scarborough via Seamer.

But there are two problems which make the electrification of the routes to Hull challenging.

  • The Grade II Listed Selby swing bridge.
  • The Grade II* Listed Goole Railway swing bridge.

There will be diehard members of the Heritage Lobby, who will resist electrification of these bridges.

Consider.

  • Both bridges appear to work reliably.
  • Adding the complication of electrification may compromise this reliability.
  • Train manufacturers have developed alternative zero-carbon traction systems that don’t need continuous electrification.
  • Hitachi have developed battery electric versions of the Class 800 and Class 802 trains, that regularly run to and from Hull.
  • Other manufacturers are developing hydrogen-powered trains, that can use both hydrogen and overhead electrification for traction power.

My Project Management experience tells me, that electrification of these two bridges could be the major cost and the most likely cause of delay to the completion of the electrification.

It should also be noted that Network Rail are already planning to electrify these routes.

  • Huddersfield and Dewsbury on the TransPennine Route, which might be extended to between Huddersfield and Leeds.
  • York and Church Fenton

There is also electrification at Doncaster, Leeds and York on the East Coast Main Line, which would probably have enough power to feed the extra electrification.

Hitachi’s Regional Battery Trains

Hitachi and Hyperdrive Innovation are developing a Regional Battery Train.

This Hitachi infographic gives the specification.

Note.

  1. The train has a range of 90 kilometres or 56 miles on battery power.
  2. It has an operating speed of 100 mph on battery power.
  3. Class 800 and Class 802 trains can be converted to Hitachi Regional Battery Trains, by swapping the diesel engines for battery packs.

When running on electrification, they retain the performance of the train, that was converted.

Discontinuous Electrification

I would propose using discontinuous electrification. by electrifying these sections.

  • Hull and Brough – 10.5 miles
  • Hull and Beverley – 13 miles
  • Doncaster and Sheffield – 20 miles
  • Selby and Leeds – 21 miles
  • Selby and Temple Hirst Junction – 5 miles
  • Seamer and Scarborough – 3 miles

This would leave these gaps in the electrification in East Yorkshire.

  • Brough and Doncaster – 30 miles
  • Brough and Selby – 21 miles
  • Brough and Church Fenton – 31 miles
  • Seamer and Beverley – 42 miles
  • Seamer and York – 39 miles

A battery electric train with a range of fifty miles would bridge these gaps easily.

This approach would have some advantages.

  • There would only need to be 72.5 miles of double-track electrification.
  • The swing bridges would be untouched.
  • TransPennine services terminating in Hull and Scarborough would be zero-carbon, once Huddersfield and Dewsbury is electrified.
  • LNER and Hull Trains services to London Kings Cross would be zero-carbon and a few minutes faster.
  • LNER could run a zero-carbon service between London Kings Cross and Scarborough.

But above all, it would cost less and could be delivered quicker.

Collateral Benefits Of Doncaster and Sheffield Electrication 

The extra electrification between Doncaster and Sheffield, would enable other services.

  • A zero-carbon service between London Kings Cross and Sheffield.
  • Extension of Sheffield’s tram-train to Doncaster and Doncaster Sheffield Airport.
  • A possible electric service along the Dearne Valley.

As plans for Sheffield’s rail and tram system develop, this electrification could have a substantial enabling effect.

Hydrogen

This map shows the Zero Carbon Humber pipeline layout.

Note.

  1. The orange line is a proposed carbon dioxide pipeline
  2. The black line alongside it, is a proposed hydrogen pipeline.
  3. Drax, Keadby and Saltend are power stations.
  4. Easington gas terminal is connected to gas fields in the North Sea and also imports natural gas from Norway using the Langeled pipeline.
  5. There are fourteen gas feels connected to Easington terminal. Some have been converted to gas storage.

I can see hydrogen being used to power trains and buses around the Humber.

Conclusion

Discontinuous electrification could be the key to fast provision of electric train services between Leeds and Sheffield and Hull.

If long journeys from Hull were run using battery electric trains, like the Hitachi Regional Battery Train, perhaps hydrogen trains could be used for the local services all over the area.

Project Management Recommendations

I have proposed six sections of electrification, to create a network to allow all services that serve Hull and Scarborough to be run by battery electric trains.

Obviously with discontinuous electrification each section or group of sections to be electrified is an independent project.

I proposed that these sections would need to be electrified.

  • Hull and Brough – 10.5 miles
  • Hull and Beverley – 13 miles
  • Doncaster and Sheffield – 20 miles
  • Selby and Leeds – 21 miles
  • Selby and Temple Hirst Junction – 5 miles
  • Seamer and Scarborough – 3 miles

They could be broken down down into four sections.

  • Hull station, Hull and Brough and Hull and Beverley
  • Doncaster and Sheffield
  • Selby station, Selby and Leeds and Selby and Temple Hirst Junction.
  • Scarborough station and Scarborough and Seamer.

I have split the electrification, so that hopefully none is challenging.

 

 

 

 

 

 

November 27, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , | 1 Comment

Northern Powerhouse Rail – Connecting Sheffield To HS2 And On To Leeds

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is connecting Sheffield to High Speed Two and on to Leeds.

Northern Powerhouse Rail’s Objective For The Sheffield and Leeds Route

Wikipedia, other sources and my calculations say this about the trains between Leeds and Sheffield.

  • The distance between the two stations is 39 miles
  • The current service takes around 40 minutes and has a frequency of one train per hour (tph)
  • This gives an average speed of 58.5 mph for the fastest journey.
  • The proposed service with Northern Powerhouse Rail will take 28 minutes and have a frequency of four tph.
  • This gives an average speed of 84 mph for the journey.

This last figure of 84 mph, indicates to me that a fast route will be needed.

But given experience of 100 mph lines in other parts of the UK, 100 mph trains and infrastructure could make this demanding objective of twenty-eight minutes between Sheffield and Leeds a reality

Connecting Sheffield To High Speed Two

Sheffield is to be accessed from a branch off the Main High Speed Two route to Leeds.

This map clipped from High Speed Two’s interactive map, shows the route of the Sheffield Branch, from where it branches North West from the main Eastern Leg of High Speed Two.

Note.

  1. Orange indicates new High Speed Two track.
  2. Blue indicates track that High Speed Two will share with other services.
  3. The orange route goes North to Leeds, along the M1
  4. The blue route goes North to Chesterfield and Sheffield, after skirting to the East of Clay Cross.
  5. The orange route goes South to East Midlands Hub station.

This second map, shows where the Erewash Valley Line joins the Sheffield Branch near the village of Stonebroom.

Note.

  1. Red is an embankment.
  2. Yellow is a cutting.
  3. The Sheffield Branch goes North-West to Clay Cross, Chesterfield and Sheffield
  4. The Sheffield Branch goes South-East to East Midlands Hub station.
  5. The Sheffield Branch goes through Doe Hill Country Park.
  6. The Sheffield Branch runs alongside the existing Erewash Valley Line, which goes South to Langley Mill, Ilkeston and the Derby-Nottingham area.

The Sheffield Branch and the Erewash Valley Line appear to share a route, which continues round Clay Cross and is shown in this third map.

Note

  1. Doe Hill Country Park is in the South-East corner of the map.
  2. The dark line running North-South is the A61.
  3. Running to the West of the A61 is the Midland Main Line, which currently joins the Erewash Valley Line at Clay Cross North junction.

High Speed Two and the Midland Main Line will share a route and/or tracks from Clay Cross North junction to Sheffield.

This fourth map, shows where the combined route joins the Hope Valley Line to Manchester to the South West of Sheffield.

Note.

  1. Sheffield is to the North East.
  2. Chesterfield is to the South East,
  3. Totley junction is a large triangular junction, that connects to the Hope Valley Line.

These are some timings for various sections of the route.

  • Clay Cross North Junction and Chesterfield (current) – 4 minutes
  • Clay Cross North Junction and Sheffield (current) – 17 minutes
  • Chesterfield and Sheffield (current) – 13 minutes
  • Chesterfield and Sheffield (High Speed Two) – 13 minutes
  • East Midlands Hub and Chesterfield (High Speed Two) – 16 minutes
  • East Midlands Hub and Sheffield (High Speed Two) – 27 minutes

As Class Cross North Junction and Sheffield are 15.5 miles, this means the section is run at an average speed of 53 mph.

Can I draw any conclusions from the maps and timings?

  • There would appear to be similar current and High Speed Two timings between Chesterfield and Sheffield.
  • The various junctions appear to be built for speed.

The Midland Main Line will be electrified from Clay Cross North Junction to Sheffield, so that High Speed Two trains can use the route.

What will be the characteristics of the tracks between Clay Cross North Junction and Sheffield?

  • Will it be just two tracks as it mainly is now or will it be a multi-track railway to separate the freight trains from the high speed trains?
  • Will it have a high enough maximum speed, so that East Midland Railway’s new Class 810 trains can go at their maximum speed of 140 mph?
  • Will it be capable of handling a frequency of 18 tph, which is the maximum frequency of High Speed Two?

Surely, it will be built to a full High Speed Two standard to future-proof the line.

Before finishing this section, I will answer a few questions.

Would It Be Possible For Class 810 Trains Fitted With Batteries To Run Between London St. Pancras And Sheffield?

East Midlands Railway’s new Class 810 trains could be fitted with batteries to become Regional Battery Trains with the specification, given in this Hitachi infographic.

Note.

  1. This would give the trains a range of 90 kilometres or 56 miles on batteries, if a number of diesel engines were exchanged for batteries.
  2. The trains would only be a few mph slower on batteries, than the current Hitachi trains on diesel.
  3. The Class 810 trains have four diesel engines. Is this to enable 125 mph running on diesel?

By perhaps replacing two diesel engines with batteries and using the remaining two diesel engines as range extenders or some other combination, I feel that Hitachi might be able to obtain a longer self-powered range for the train.

Consider.

  • Between Sheffield and Clay Cross North Junction will be fully-electrified and at 15.5 miles, it will be long enough to fully-charge the batteries on the train.
  • Between London St. Pancras and Market Harborough will be fully-electrified and at 83 miles, it will be long enough to fully-charge the batteries on the train.
  • The section between Market Harborough and Clay Cross North Junction is not electrified and is 66 miles.

I feel that Hitachi and their partner; Hyperdrive Innovation can design a battery electric Class 810 train, that can travel between London St. Pancras and Sheffield, without using a drop of diesel.

A great advantage of this approach, is that, as more electrification is added to the Midland Main Line, as it surely will be, the trains will be able to use the wires to reduce journey times.

I believe there are two sections on the Midland Main Line. where traditional electrification is less likely.

  • The bridge at the Southern end of Leicester station is low and would need to be rebuilt causing immense disruption to both road and rail in the city.
  • Between Derby and Alfreton is the World Heritage Site of the Derwent Valley Mills. Will electrification be fought by the heritage lobby?

Both sections may eventually be electrified at some far off date in the future.

Why Is There A Spur Of Electrification At Totley Junction?

This map clipped from High Speed Two’s interactive map, shows the Southern Leg of Totley Junction, where the Hope Valley Line joins the Midland Main Line.

Note that a short length of electrification is shown, between the Midland Main Line and a tunnel on the Southern leg.

This Google Map shows the same area.

Note, that the line disappears into a tunnel.

  1. In Northern Powerhouse Rail -Significant Upgrades And Journey Time Improvements To The Hope Valley Route Between Manchester And Sheffield, I indicated, that running battery electric trains between Manchester and Sheffield would be a possibility and could be a way of meeting Northern Powerhouse Rail’s objectives for the route.
  2. A short length of electrification might help battery electric trains turn out to go South.
  3. I don’t think any passenger trains ever go that way now, but I have seen articles and heard complaints from passengers, that want a better service between Derby and/or Nottingham and Manchester.
  4. It might also help with the decarbonisation of freight trains to and from the quarries.

I also suspect, that if building High Speed Two in Manchester temporarily reduced the capacity of Manchester Piccadilly station, trains could use the Hope Valley Line to get to the city, as they have done previously, with Project Rio.

Accessing The Infrastructure Depot At Staveley

This map clipped from High Speed Two’s interactive map, shows the location of the infrastructure depot at Staveley.

Note.

  1. Chesterfield is shown by the large blue dot.
  2. High Speed Two’s Sheffield Branch runs North from Chesterfield station.
  3. High Speed Two’s Eastern Leg runs down the Eastern side of the map.
  4. Two spurs from East and West go towards each other and would meet to the North of the town of Staveley.

The infrastructure depot will be located where they meet.

The route from the Sheffield Branch uses the Barrow Hill Line, which might be reopened as another passenger route between Chesterfield and Sheffield.

I wrote about this idea in Reinstatement Of The Barrow Hill Line Between Sheffield And Chesterfield.

If the line is being upgraded and electrified as far as Barrow Hill for the Infrastructure Depot, would it be worthwhile to create a new electrified route into Sheffield?

I also wrote in Could East Midlands Railway’s Liverpool And Norwich Service Avoid A Reverse At Sheffield By Using the Barrow Hill Line?, that the Barrow Hill Line might be an alternative route for the Liverpool and Norwich service.

When the railway routes in the area of the Infrastructure Depot are developed, I wouldn’t be surprised to see some routes changed.

Between Sheffield And Meadowhall Stations

One of the original designs for High Speed Two had it calling at Meadowhall station.

This map clipped from High Speed Two’s interactive map, clearly shows High Speed Two running across Sheffield.

Note.

  1. Sheffield station is the big Blue dot in the South-West corner of the map.
  2. The M1 runs across the North-East corner of the map.
  3. The railway between Sheffield and Meadowhall stations already exists.
  4. Sheffield and Meadowhall stations are 3.5 miles apart and trains take seven minutes.

Is there any reason, why High Speed Two trains shouldn’t serve both Sheffield and Meadowhall stations, by just taking the existing line across the city?

Taking The Wakefield Line Towards Leeds

In extending to Meadowhall, High Speed Two’s route seems to be taking the current Wakefield Line.

This map clipped from High Speed Two’s interactive map, clearly shows High Speed Two passing through Sheffield and Rotherham and then going towards Leeds.

Note.

  1. Orange indicates new High Speed Two track.
  2. Blue indicates track that High Speed Two shares with other lines.
  3. The Wakefield Line is shown in blue and has stations at Meadowhall, Swinton, Bolton-upon-Dearne, Goldthorpe and Thurscoe.
  4. The main High Speed Two leg to Leeds is shown in orange.

It looks to me, that High Speed Two are aiming to provide a route, so that trains going to Sheffield can extend the journey to Leeds.

As Leeds will have three tph to and from London, why is this service being extended to Leeds?

I will explore a few reasons why in the next few sub-sections.

It’s Convenient For Running Trains

Consider.

  • High Speed Two are saying London and Sheffield will be one hour and twenty-seven minutes.
  • Northern Powerhouse Rail have an objective of Leeds and Sheffield in twenty-eight minutes.
  • One hour and fifty-five minutes could be a convenient time for a London and Leeds service, as it could be a four hour round trip.

But High Speed Two are saying London and Leeds will be one hour and twenty-one minutes.

It looks to me, that it is a convenient way to serve Meadowhall, Rotherham, Bolton-upon-Dearne, Goldthorpe and Thurscoe stations

High Speed Two Through Rotherham

This map clipped from High Speed Two’s interactive map, clearly shows High Speed Two passing through Rotherham to the North of the Parkgate Shopping Park.

Note.

  1. High Speed Two is the bright blue line running North-East from the Western edge of the map.
  2. The grey blocks are the stores in the Shopping Park.
  3. The Rotherham Parkgate tram-train stop is marked.

This Google Map shows a similar area.

To the East of the Parkgate Shopping Park, is a large brownfield site, as this Google Map shows.

Could Rotherham have a station on the line North of this site?

  • The rail line running SW-NE across this map is drawn in blue on High Speed Two’s interactive map.
  • Rotherham Masborough station used to be in this area.

If High Speed Two is supposed to be a railway for all the people, or at least as many as possible, surely there should be a station in the town.

High Speed Two Through Bolton-upon-Dearne

In July 2019, I wrote a post called Sheffield Region Transport Plan 2019 – A New Station At Barnsley Dearne Valley.

So have High Speed Two taken on this feature of the Sheffield Region Transport Plan 2019, to add another station to their list of destinations?

Approach To Leeds

This map clipped from High Speed Two’s interactive map, clearly shows route High Speed Two will take to approach Leeds from the South East.

Note.

  1. Leeds station is the blue dot in the North West corner of the map.
  2. High Speed Two is shown in orange and continues North to York, where it joins the East Coast Main Line.
  3. Wakefield is in the middle at the bottom of the map and is on the Wakefield Line and the current route for LNER’s expresses from London.

It looks to me, that Leeds and Sheffield will eventually end up with two faster routes between the two cities.

  • An upgraded Wakefield Line
  • A route based on the Southern section of the Wakefield Line and the Eastern leg of High Speed Two route to Leeds.

If High Speed Two’s trains are to be able to get across Sheffield and call at Sheffield, Meadowhall, Rotherham and Barnsley Dearne Valley stations, then these conditions must be met.

  • The trains must be High Speed Two’s Classic-Compatible trains or a train to a similar specification.
  • Some platform lengthening might be needed to allow the two hundred metre long trains to call.
  • The Wakefield Line must be electrified between Sheffield and just North of Goldthorpe station, where it will be able to join the link to the Eastern leg of High Speed Two.

It would probably be sensible to electrify the Wakefield Line all the way to Fitzwilliam station, from where the line is electrified all the way to Leeds.

This would enable the following.

  • Electric trains to run between Sheffield and Leeds via Wakefield Westgate station.
  • Would Northern Powerhouse Rail’s objective of a twenty-eight minute journey be achieved?
  • East Midlands Railway could run their Class 810 trains between London St. Pancras and Leeds under electric power.
  • High Speed Two could serve Leeds before the Northern infrastructure of the Eastern leg of High Speed Two is complete.
  • High Speed Two could offer services to Wakefield, Barnsley and Rotherham via Sheffield.

I can see reasons for early upgrading of the Wakefield Line.

Conclusion

It appears that High Speed Two are planning an electrified route through Sheffield between Clay Cross North Junction on the Midland Main Line and Goldthorpe station on the Wakefield Line.

Once complete it would enable the following.

  • Rotherham and Barnsley to have direct electric services to and from the capital.
  • When East Midlands Railway introduce their new Class 810 trains, the electrification North of Clay Cross North Junction would mean faster services and less running on diesel power.
  • I believe these Class 810 trains could run between London and Sheffield, if their four diesel engines are replaced with batteries, which would power the trains between Clay Cross North Junction and Market Harborough.
  • The electrification at Sheffield would allow battery electric trains to work between Manchester and Sheffield as I outlined in Northern Powerhouse Rail -Significant Upgrades And Journey Time Improvements To The Hope Valley Route Between Manchester And Sheffield.

I think it is a good plan.

Project Management Recommendations

It is my view that the following projects should be started as soon as possible.

  • Electrification between Clay Cross North Junction and Sheffield station.
  • Electrification of the Wakefield Line between Sheffield and Fitzwilliam stations.
  • Provision of new stations at Rotherham and Barnsley Dearne Valley on the Wakefield Line.

These projects could deliver worthwhile improvements in services in a couple of years, rather than the tens of years for High Speed Two.

 

 

 

 

November 24, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Northern Powerhouse Rail – Significant Upgrades And Journey Time Improvements To The Hope Valley Route Between Manchester And Sheffield

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is significant upgrades and journey time improvements to the Hope Valley Line between Manchester and Sheffield.

I shall look at a few of the possibilities for the route.

Northern Powerhouse Rail’s Objective For The Route

Wikipedia, other sources and my calculations say this about the trains between Manchester and Sheffield.

  • The distance between the two stations is 42.6 miles
  • The current service takes 49 to 57 minutes and has a frequency of two trains per hour (tph)
  • This gives an average speed of 52.2 mph for the fastest journey.
  • The proposed service with Northern Powerhouse Rail will take 40 minutes and have a frequency of four tph.
  • This gives an average speed of 63.9 mph for the journey.

This last figure of 63.9 mph, indicates to me that a 100 mph train will be able to meet Northern Powerhouse Rail’s objective.

Current Trains On The Hope Valley Line

In July this year, I went along the Hope Valley Line between Manchester Piccadilly and Dore and Totley stations, which I wrote about in Along The Hope Valley Line – 13th July 2020.

My train was a pair of refurbished Class 150 trains.

These trains can handled the current timetable but they have an operating speed of only 75 mph.

Looking at Real Time Trains for last week, it now appears that Northern are using new three-car Class 195 trains.

These are much better.

  • They are 100 mph trains with much better acceleration.
  • The train was still running the timetable for the slower trains.

With thirteen stops, I suspect that these new trains could be under fifty minutes between Manchester and Sheffield.

Will The Hope Valley Line Be Electrified?

Consider.

  • Currently, the Hope Valley Line is electrified between Manchester Piccadilly and Hazel Grove stations.
  • In the future, the line is likely to be electrified between Sheffield and Dore & Totley stations, in conjunction with rebuilding the Midland Main Line, to the North of Clay Cross North junction for High Speed Two.
  • After the electrification at the Eastern end, just over thirty miles will be without electrification.
  • The Hope Valley Line has an operating speed of 90 mph.

This Hitachi infographic shows the specification of the Hitachi Regional Battery train.

As these are a 100 mph train with a range of 90 km or 56 miles on battery power, these trains could work Manchester and Sheffield in the required time of forty minutes. provided they could be charged at the Sheffield end of the route.

TransPennine’s Class 802 trains can be fitted with batteries to become Regional Battery Trains, so it would appear that TransPennine’s services on this route could go zero-carbon.

In addition Northern, who are the other passenger operator on the route are working with CAF on battery electric trains, as I wrote about in Northern’s Battery Plans,

I don’t believe there are pressing reasons to electrify the Hope Valley Line to allow passenger trains to meet Northern Powerhouse Rail’s objective.

Will Operating Speed On The Hope Valley Line Be Increased?

Under Plans in the Wikipedia entry for the Hope Valley Line, this is said.

Network Rail, in partnership with South Yorkshire ITA, will redouble the track between Dore Station Junction and Dore West Junction, at an estimated cost of £15 million. This costing is based on four additional vehicles in traffic to deliver the option, however, this will depend on vehicle allocation through the DfT rolling stock plan. This work will be programmed, subject to funding, in conjunction with signalling renewals in the Dore/Totley Tunnel area.

Other proposals include a 3,600 feet (1,100 m) loop in the Bamford area, in order to fit in an all-day (07:00–19:00) hourly Manchester–Sheffield via New Mills Central stopping service, by extending an existing Manchester–New Mills Central service. Planning permission for this was granted in February 2018, but delays mean that this will now not be completed until 2023.

These changes to allow three fast trains, a stopping train and freight trains each hour were also supported in a Transport for the North investment report in 2019, together with “further interventions” for the Northern Powerhouse Rail programme.

It would also probably be a good idea, to increase the operating speed of the line to 100 mph where possible.

Effect On Passenger Services

100 mph trains on a track with an operating speed of 100 mph, could show some impressive timings.

On the Great Eastern Main Line, which is a very busy 100 mph double-track railway, 100 mph trains, achieve a 77 mph average for 90 minutes over the 115 miles, between London Liverpool Street and Norwich with a single stop.

A one-stop Manchester and Sheffield service at this speed would take just 33.2 minutes.

The stopping trains would be more of a challenge to get under forty minutes, but at least if they were battery electric trains, they’d have the better acceleration and deceleration of the electric trains.

  • Fifty minutes would be a realistic time.
  • Ten minutes turnround time at each end, would be ideal for charging the batteries and give an efficient two hour round trip.

Efficient timetabling could create a very comprehensive service for the Hope Valley Line.

Freight Trains On The Hope Valley Line

Under Freight in the Wikipedia entry for the Hope Valley Line, this is said.

Over a million tons of cement a year is taken away by rail from Earle’s Sidings at Hope.

That is a very large number of freight trains, all of which are currently hauled by diesel locomotives.

  • Looking at Real Time Trains, there are nearly always two freight trains in every hour of the day.
  • If you look at the routes, they go to a myriad number of destinations.
  • Following the routes between Dore Junction and the quarries to the South of the Hope Valley Line, there are several tunnels.
  • There are numerous quarries in a cluster, all served by their own rail lines.

Electrifying the delivery of the cement and limestone from the quarries would be a large and very expensive operation.

This Google Map shows Earle’s Sidings at Hope.

Perhaps a half-way house solution would be to use diesel to haul trains between the quarries and Earle’s sidings, where the locomotive is changed for an electric one?

  • But that would then mean that all routes from between the Peak District quarries and their destinations would need to be fully-electrified.
  • It should be noted that that the problem of zero-carbon trains, also exists at port and rail freight interchanges, where safe operation with 25 KVAC overhead wires everywhere can be a nightmare.
  • Rail freight companies are unlikely to change their old diesel locomotives for new expensive electric locomotives, until all possible routes are fully electrified.
  • It is also a big problem, all over the world.

Perhaps, what is needed is a self-powered zero-carbon locomotive with sufficient power to haul the heaviest trains?

I believe such a locomotive is possible and in The Mathematics Of A Hydrogen-Powered Freight Locomotive, I explored the feasibility of such a locomotive, which was based on a Stadler Class 68 locomotive.

The zero-carbon locomotive, that is eventually developed, may be very different to my proposal, but the commercial opportunities for such a locomotive are so large, that I’m sure the world’s best locomotive designers are working on developing powerful locomotives for all applications.

Conclusion

Northern Powerhouse Rail’s ambition for Manchester and Sheffield via the Hope Valley Line is simply stated as four tph in forty minutes. But this may be something like.

  • Three fast tph in forty minutes.
  • One stopping tph in perhaps fifty minutes.
  • One freight tph in each direction to and from the quarries that lie to the South of the line.

I didn’t realise how close that the line is to that objective, once the following is done.

  • Introduce 100 mph passenger trains on the route.
  • Improve the track as has been planned for some years.

Note that all the passenger trains, that now run the route; Class 185, 195 and 802 trains, are all 100 mph trains, although they are diesel-powered.

With a length of just under 43 miles, the route is also ideal for battery electric trains to work the passenger services, be the trains be from Hitachi, CAF or another manufacturer, after High Speed Two electrifies the Midland Main Line to the North of Clay Cross North Junction, in preparation for high speed services between London and Sheffield.

I would recommend, that one of High Speed Two’s first Northern projects, should be to upgrade the Midland Main Line between Clay Cross North junction and Sheffield station to the standard that will be required for High Speed Two.

I would also recommend, that the Government sponsor the development of a hydrogen electric locomotive with this specification.

  • Ability to use 25 KVAC overhead or 750 VDC electrification
  • 110 mph operating speed on electrification.
  • Ability to use hydrogen.
  • 100 mph operating speed on hydrogen.
  • 200 mile range on hydrogen.

A locomotive with this specification would go a long way to decarbonise rail freight in the UK and would have a big worldwide market.

Project Management Recommendations

This project divides neatly into three.

  • Perform the upgrades at Dore Junction and add the loop in the Bamford area, as detailed in Wikipedia, which will increase the capacity of the Hope Valley Line.
  • Electrify the Midland Main Line between Clay Cross North junction and Sheffield, as will be needed for High Speed Two. This electrification will allow battery electric trains to run between Manchester and Sheffield and between Sheffield and London.
  • Procurement of the trains. CAF and Hitachi are currently finalising suitable designs for this type of operation.

It would also be helpful, if the freight trains could be hauled by zero-carbon hydrogen electric locomotives, to create a much-improved zero-carbon route between Manchester and Sheffield.

 

 

 

 

 

November 23, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , , , , , , , , | 2 Comments

Northern Powerhouse Rail – A New Line Between Manchester And Leeds Via The Centre Of Bradford

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is a new rail line between Manchester and Leeds via the centre of Bradford.

I shall look at a few of the possibilities for various sections of the route.

Current And Proposed Timings Between Manchester And Leeds

These are the current typical timings between Manchester Victoria and Leeds stations.

  • 55 minutes for 43 miles, which is an average speed of 47 mph.

With Northern Powerhouse Rail, a time of 25 minutes is the objective, which is an average speed of 103.2 mph.

  • As my helicopter flies it is just 35.7 miles, so a 25 minutes journey time would require an average speed of 85.7 mph.

It is obvious that a new much straighter line is needed with an operating speed of at least 100 mph.

One of the best 100 mph lines in the UK  is the Great Eastern Main Line between Liverpool Street and Norwich.

  • It is generally only double-track.
  • The fastest services take 90 minutes for the 115 miles, which is an average speed of 77 mph.
  • It is a busy line with lots of suburban services closer to London and freight trains to and from Felixstowe.

But even a line built to the standard of the Great Eastern Main Line wouldn’t be good enough for Northern Powerhouse Rail’s objective of 25 minutes.

The mathematics tell me, that a new line is needed, built as straight as possible between Manchester and Leeds.

High Speed Two’s Approach To Manchester

This map clipped from High Speed Two’s interactive map, shows the route of High Speed Two as it approaches Manchester Piccadilly station.

The colours of High Speed Two indicate the type of construction.

  • Black is a bored tunnel. Only in the South East corner, where it continues to Manchester Airport.
  • Purple is a tunnel portal.
  • Brown is a track between retaining walls. Used through Manchester Interchange or Airport station.
  • Red is a viaduct.
  • Orange is a box structure

This Google Map shows a similar area.

Are High Speed Two serious about demolishing a large area of Manchester to the North and East of Manchester Piccadilly station?

  • It will cause massive disruption all over the centre of Manchester.
  • How many businesses will be ruined by this plan?
  • How many residents are there in the area?
  • How will trains from the new platforms at Piccadilly station continue to Bradford, Huddersfield, Leeds and Sheffield?
  • Mrs. Merton could have said “Let’s all have a reverse!” And she’d have been joking!
  • You can’t go through the new platforms, as that would mean demolishing most of Manchester City Centre.

What High Speed Two are proposing is complete and utter rubbish!

In Whither HS2 And HS3?, which I wrote in May 2015, I said this.

I do think though that our designs for HS2 are rather dated and don’t take things that are happening or have happened into account.

Crossrail in London has shown that putting a large twin rail tunnel under a major city, is not the problem it once was. Crossrail have also been very innovative in creating stations with the minimum disturbance to existing infrastructure. As an example, the new Whitechapel station for Crossrail has also used a technique called uphill excavation, where you create escalator and lift shafts upwards from the tunnels, rather than traditionally from the surface, which is much more disruptive.

These techniques can revolutionise the construction of HS2.

Take cities like Birmingham, Leeds, Manchester, Newcastle and Sheffield, which have developed and are continually developing extensive local rail, tram and bus networks. So why are we in Birmingham still talking about creating an HS2 station at Curzon Street? Surely, we just dig a very deep pair of HS2 tunnels under the city and then uphill excavate into not only New Street, but Moor Street and Snow Hill as well. The tunnels would be only made as long as necessary, although the underground station could be very large. But it probably wouldn’t be much bigger than the enormous double-ended Liverpool Street/Moorgate station being created for Crossrail.

The great advantage of this method of construction is that you can continue to develop your network of local trains, trams and other transport links, untroubled by the construction of the new station deep below. Anybody, who thinks this is not possible, should spend half-an-hour walking around Whitechapel station, where the Hammersmith and City, District and East London Lines are passing untroubled over the giant hole and through the building site for the new station.

To some the example of Crossrail in London, would not be a good one, as Crossrail is years late. But the tunnelling under London and the excavations for the stations have gone well and were delivered on time.

In the related post, I went on to propose a double-ended underground station in Manchester with connections to both Piccadilly and Victoria stations. It could even have other connections to locations in the City Centre like Piccadilly Gardens.

There’s certainly space for a stylish entrance at the busy tram and bus interchange.

By applying the lessons learned in the building of Crossrail and other projects like Stuttgart 21, which I wrote about in Stuttgart Hauptbahnhof, I’m sure that a massive underground station in Manchester could be built successfully, on time and on budget.

I am not alone in thinking this way. In The Rival Plans For Piccadilly Station, That Architects Say Will ‘Save Millions’, I write about a plan from world-class architects Weston Williamson, who designed the superb new London Bridge station.

This visualisation from Weston Williamson, shows their proposed station.

Note.

  1. In the visualisation, you are observing the station from the East.
  2. The existing railway lines into Piccadilly station are shown in red.
  3. Stockport and Manchester Airport are to the left, which is to the South.
  4. Note the dreaded Castlefield Corridor in red going off into the distance to Oxford Road and Deansgate stations.
  5. The new high speed lines are shown in blue.
  6. To the left they go to Manchester Airport and then on to London, Birmingham and the South, Warrington and Liverpool and Wigan, Preston, Blackpool, Barrow-in-Furness, the North and Scotland.
  7. To the right, they go to Huddersfield, Bradford, Leeds, Hull and the North East, and Sheffield, Doncaster and the East.
  8. Between it looks like  a low-level High Speed station with at least four tracks and six platforms.
  9. The Manchester Mretrolink is shown in yellow.
  10. The potential for over-site development is immense. If the Station Square Tower was residential, the penthouses would be some of the most desirable places to live in the North.

This station would enable improvements to rail services in the North and Scotland.

  • It would be a through station, to allow East to West services, like Liverpool and Hull.
  • Fewer services would have to reverse.
  • All services using the underground station, that went to the West would serve Manchester Airport.
  • TransPennine services like Liverpool and Edinburgh and Liverpool and Scarborough, would use the station and also call at Manchester Airport.
  • TransPennine services like Glasgow and Manchester Airport could be extended to Leeds and Hull.
  • TransPennine services would not need to use the overcrowded Castlefield Corridor.
  • All existing services to the main section of the existing Piccadilly station, could continue operation as now, during the construction and operation of the underground station. Some would eventually be replaced by high speed services using the underground station.

Manchester Airport would have one of the best train services of any airport in the world. It would certainly be on a par with Schiphol.

Careful alignment of the tunnels under Manchester, could also ease the building of the new line between Manchester and Leeds.

Huddersfield And Westtown (Dewsbury)

The only part of an upgraded TransPennine route between Manchester and Leeds, that is in the planning and design phase and visible to the public, is the upgrade between Huddersfield to Westtown (Dewsbury), which is described on this page of the Network Rail web site. This is the introductory paragraph.

We’re proposing an upgrade to a section of railway between Huddersfield and Westtown (Dewsbury) to deliver passenger benefits along the TransPennine railway.

Network Rail provide this very useful map.

This article on Rail Technology Magazine is entitled Network Rail Reveals Detailed £2.9bn Upgrade Plans For TransPennine Route, which gives the major details of the upgrade.

  • Improvement between Huddersfield and Westtown
  • Grade separation or a tunnel at Ravensthorpe
  • Rebuilding and electrification of eight miles of track.
  • Possible doubling the number of tracks from two to four.
  • Improved stations at Huddersfield, Deighton, Mirfield and Ravensthorpe.

This project would be a major improvement to the Huddersfield Line, but I have one problem with this project. – It doesn’t go anywhere near Bradford.

This Google Map shows Bradford, Leeds, Brighouse and Dewsbury.

Note.

  1. Bradford is in the North-West corner of the map, with the red arrow marking Bradford Royal Infirmary.
  2. Leeds is in the North-East corner of the map.
  3. Brighouse is in the South-West corner  of the map.
  4. The red arrow at the bottom of the map marks Dewsbury and District Hospital, with the towns of Morley and Dewsbury to the East.

The route Network rail are improving goes South-Westerly from Leeds and through both Morley and Leeds, before turning to the West and then going South to Huddersfield.

I am left with the conclusion, that Network Rail’s plans may do wonders for travel between Leeds and Huddersfield, but they don’t do anything for Bradford.

But the plans will have positive effects on travellers between Leeds and Manchester.

Eight Miles Of Electrification

Eight miles of electrification may not seem much, but to a Hitachi Regional Battery train, travelling at speed it is a few minutes to add some charge to the batteries, especially if the train stops at Dewsbury and/or Huddersfield stations.

This Hitachi infographic gives the specification for the Hitachi Regional Battery train.

Note.

  1. It has a range of 90 km or 56 miles on battery power.
  2. It can travel at up to 100 mph on battery power.
  3. TransPennine’s Class 802 trains can be converted to Regional Battery trains, by simply swapping the diesel engines for battery packs.

If these trains fully-charged their batteries on the eight miles of electrification, they could do the following.

  • Going East they could easily reach Leeds, which is under ten miles from Dewsbury station. At a pinch they could even reach York, which is thirty-five miles from Dewsbury.
  • Going West they could reach Manchester, which is twenty-six miles from Huddersfield station. At a pinch, they could just about reach Liverpool, which is fifty-seven miles from Huddersfield.

Note that North of York and West of Manchester are both fully electrified.

This eight miles of electrification would enable the following.

  • Several of TransPennine Express services run by Class 802 trains to become all-electric services.
  • Other operators like Northern could use battery electric trains for stopping services along the route.
  • It might even enable some freight trains to run through the area, with hybrid power.

It looks to me, that Network Rail have chosen this section to electrify, so that it gives a lot of benefit to battery electric trains.

Will Services Be Faster Between Huddersfield And Leeds?

I estimate the the straightened track, the better acceleration of electric trains and other improvements would save up to perhaps ten minutes.

Timings between Manchester and Leeds, would probably be around 45 minutes, which is nowhere near Northern Powerhouse Rail’s objective of 25 minutes

The Problem Of Bradford

Bradford has two central stations; Bradford Interchange and Bradford Forster Square. which have no connection between them.

This Google Map shows the two stations.

It is an area crowded with buildings between the two stations.

There is a Wikipedia entry called Bradford Crossrail, where this is said about the reasons for the two stations.

These stations were built in the nineteenth century by different railway companies with an individual, rather than a comprehensive plan for rail development in the city.

The Wikipedia entry also says this about Northern Powerhouse Rail and the city.

The Northern Powerhouse Rail project has also mooted a project to link Leeds and Manchester with a through route at Bradford. Whilst this would either involve a bypass line south of the city and a parkway station at Low Moor or a new route tunnelling through the city centre, neither option mentions connecting the lines from both north and south of the city together.

I will look at the two solutions to connect Northern Powerhouse Rail to the City.

Low Moor Station

The diagram shows the connections between Bradford Interchange, Bradford Low Moor, Huddersfield and Leeds stations.

It would appear that if a connection were to be made between Low Moor and New Pudsey stations. that could be a solution.

This Google Map shows where the lines to Huddersfield and Leeds join outside Bradford Interchange station.

Note,

  1. Bradford Interchange station is to the North.
  2. Bradford Low Moor station is to the South.
  3. New Pudsey station is to the East.

I suspect it would be possible to create a curve that allowed trains to go between  Bradford Low Moor and New Pudsey stations, but I doubt it would be a fast route.

A Bradford Tunnel

This would be the bold option, where all sorts of routes could be possible.

  • It could go under the City Centre in such a way, that it had pedestrian connections to both current stations and important places with a large number of visitors.
  • It could connect to Huddersfield in the West and Leeds in the East.
  • It might even loop under the City Centre, as the Wirral Line does under Liverpool.

A tunnel under the City, would be my preferred solution.

A Tunnel Between Manchester And Leeds

So far, various people or organisations have advocated the following tunnels on the route.

  • High Speed Two are proposing a tunnel between Manchester Airport and Manchester City Centre.
  • Weston Williamson are proposing a Manchester High Speed station underneath Manchester Piccadilly station.
  • A tunnel has been proposed to connect to Bradford City Centre.

I feel strongly, that a tunnel can be built under the Pennines to link Manchester and Leeds.

Rail Tunnels through the Pennines have been dug before, notably at Standedge, Totley and Woodhead.

I answered the question in detail in Will HS2 And Northern Powerhouse Rail Go For The Big Bore? and this was the conclusion of that post.

I believe that my naïve analysis in this post shows that a TransPennine tunnel is possible.

But I believe that the right tunnel could have one big advantage.

Suppose it was built to handle the following.

    • A capacity of eighteen tph, which is the same as High Speed Two.
    • An operating speed of 140 mph or more. The Gotthard Base Tunnel has a maximum operating speed of 160 mph.
    • High Speed Two’s Full-Size trains.
    • The largest freight trains

It would be future proofed for longer than anybody could envisage.

There are also other smaller advantages.

    • It would by-pass a lot of difficult areas.
    • It would cause very little aural and visual disruption.
    • IIf it were designed with care, it would not affect the flora and fauna.
    • As with the Swiss tunnel, it could be dug level, which would save energy and allow trains to run faster.
    • It could be running twelve tph between Leeds and Manchester Airport via Bradford, Huddersfield and Manchester Piccadilly.
    • Existing surface railways at the Eastern end could serve Cleethorpes, Darlington, Doncaster, Edinburgh, Hull, Middlesbrough, Newcastle, Scarborough, Sheffield and York
    • Existing surface railways at the Western end could serve Barrow, Blackpool, Carlisle, Chester, Glasgow, Liverpool. North Wales, Preston and Wigan.

It would be more like Thameslink for the North turned on its side, rather than Crossrail for the North.

Would such a TransPennine tunnel be realisable?

Consider.

  • 3D design software has improved tremendously over the last decade.
  • The Swiss have shown that these long tunnels can be built through solid rock.
  • There is plenty of space to put the tunnel.
  • It doesn’t have to be one continuous tunnel.
  • It might be possible to built it as a base tunnel, which would be low down and level between two valleys on either side of the Pennines.

I think there could be a lot of flexibility on how the tunnel would be designed and built.

Conclusion

A Manchester and Leeds tunnel via Bradford, could be one of the boldest projects ever undertaken in the UK.

I believe that we have the capabilities to build it.

Project Management Recommendations

This is a large project that will take several years.

  • But the Swiss have dug the Gotthard Base Tunnel of a similar size through solid rock in recent years.
  • It would be a political symbol to the North, that Government is serious about levelling up.
  • In thirty years or so, it won’t be found to have been built with inadequate capacity.

Other projects, such as the Huddersfield and Westtown Improvement wukk old the fort, whilst the tunnel is built.

 

November 22, 2020 Posted by | Transport | , , , , , , , , , , , | 17 Comments

Northern Powerhouse Rail – A New Line Between Liverpool And Manchester Via The Centre Of Warrington

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is a new rail line between Liverpool and Manchester via the centre of Warrington.

I shall look at a few of the possibilities for various sections of the line starting at the Manchester end.

High Speed Two And Northern Powerhouse Rail Between Warrington/Lymm And Manchester Airport

This map clipped from High Speed Two’s interactive map, shows the route of High Speed Two in the area between Lymm and Manchester Airport.

Note.

  1. High Speed Two is shown in orange
  2. The blue dot is Manchester Interchange station at Manchester Airport.
  3. High Speed Two goes North to Wigan North Western station.
  4. High Speed Two goes South to Crewe station.
  5. High Speed Two goes East to Manchester and the East.
  6. The East-West Motorway is the M56 with Junction 7/8 in the middle of the map and Junction 9 with the M6, at the Western edge of the map.

This enlarged map shows High Speed Two between Manchester Airport and Junction 7/8 of the M56.

 

The colours of High Speed Two indicate the type of construction.

  • Black is a bored tunnel. Only in the North East corner, where it continues to Manchester.
  • Brown is a track between retaining walls. Used through Manchester Interchange or Airport station.
  • Red is a viaduct.
  • Yellow is a cutting.

This Google Map shows a similar area.

High Speed Two’s tracks will be on the South side of the Motorway and will be shared with Northern Powerhouse Rail.

  • There is likely to be up to twelve trains per hour (tph) in both directions.
  • I would think, that with modern signalling that the trains would be running at 140 mph or more.
  • Between Manchester Airport and Warrington could be a line as between St. Pancras and Ebbsfleet on High Speed One.

This map clipped from High Speed Two’s interactive map, shows the M56 and High Speed Two around Junction 7/8 of the M56.

The colours are as before.

  • The obvious way to build a new rail line between Manchester and Warrington, would surely be to create a rail junction just South of the Motorway junction.
  • A line to Warrington could run along the South side of the Motorway.
  • I also believe that there should be a connection between the High Speed Two lines to Manchester and Wigan North Western, to allow high speed services between Manchester and Barrow, Blackpool, Preston, Windermere and Scotland.

Building the rail junctions around the Motorway junctions would be a good idea for environmental and visual reasons.

Northern Powerhouse Rail would then continue to Junction 9 of the M56 Motorway.

This Google Map, shows the M56 around Junction 9 with the M6.

Note.

  1. The M56 running East-West.
  2. The M6 running North-South.
  3. Lymm services to the North-West of the junction.
  4. Lymm is to the North-East and Warrington is to the North-West of the junction.

Would it be possible for to run South of the M56 and then turn North to run along the Western side of the M6 towards Warrington?

I very much feel, that with modern 3D software, an engineer with expertise in extreme knitting could thread a double-track line through to take a North-Western route towards Warrington.

The Bridge Across The Mersey

If you look at maps of the area, there is a big problem of water between Junction 9 of the M56 and Warrington town centre, with its two stations of Warrington Bank Quay and Warrington Central, both of which have services to Liverpool Lime Street station.

The problem is the Manchester Ship Canal.

I then noticed a bridge to the South East of the town centre, which is shown in this Google Map.

It may look like it has got more than a touch of the dreaded iron moths, but it certainly looks like it was once a double track rail line.

The bridge was on the Warrington and Altrincham Junction Railway, which did what you would expect from the name.

This Google Map shows the track of the railway either side of the bridge.

Note the bridge in the centre of the map and the green scar of the former railway running East-West across the map.

To the East the green scar of the railway can be picked out all the way to M6.

Note.

  1. The bridge is at the West over the Manchester Ship Canal.
  2. The green scar of the Warrington and Altrincham Junction Railway can be followed all the way to the M6,
  3. I think the track is now a footpath, as it is marked on the map with a dotted white line.

I would be interested to know, if it could take a modern double track railway.

This Google Map shows an enlarged view of where the green scar of the Warrington and Altrincham Junction Railway goes under the M6.

Note the dotted white line marking the railway, towards the top of the map.

Would it be possible to design a track layout, where Northern Powerhouse Rail came up the Western side of the M6 and was able to connect to Warrington?

I certainly believe it’s a possibility.

Warrington Bank Quay Station

To the West of the bridge over the Manchester Ship Canal, the Warrington and Altrincham Junction Railway ran through low-level platforms at Warrington Bank Quay station.

This Google Map shows Warrington Bank Quay station.

This picture shows a freight train passing under Warrington Bank Quay station.

Note.

  1. There are four North-South platforms on the West Coast Main Line.
  2. The Warrington and Altrincham Junction Railway passes East-West under the four main platforms.
  3. Low levels platforms used to handle passengers on the East-West lines.
  4. I was looking to the East in the picture.
  5. The tracks continue to the West on the route of the former St. Helens Railway, which is now a freight route.
  6. The map shows the tracks curving sharply round one of the meanders of the River Mersey.

Warrington Bank Quay station is on a congested and tight site, but by using some of the spare railway land, I feel it could rebuilt to be an excellent station for Warrington.

Warrington Bank Quay Station As An Interchange

Warrington Bank Quay station could be an excellent and efficient interchange between High Speed Two and Northern Powerhouse Rail.

There are also local services from the station, which could be useful for some travellers.

Between Warrington Bank Quay Station And Widnes

This Google Map shows the Mersey estuary between Warrington Bank Quay station and Widnes.

Note.

  1. Warrington is in the North-East corner of the map, with Warrington Bank Quay station shown by a red station symbol.
  2. The new Mersey Gateway bridge is in the South-West corner of the map.
  3. The River Mersey meanders between the bridge and Warrington.
  4. Fiddlers Ferry power station can be picked out in the nearest meander of the Mersey to the bridge.
  5. The dark straight line below the river is the Manchester Ship Canal.
  6. There is currently a freight line on the North bank of the river.

This Google Map shows Fiddlers Ferry power station, with the railway between the now-decommissioned power station and the River Mersey.

Note.

  1. Fiddlers Ferry will become an employment site.
  2. It could even be a good place for a depot for Northern Powerhouse Rail.
  3. I think there’s scope to increase the operating speed of the railway along the Mersey.

Could it even be an electrified high speed line with a 125 mph operating speed?

Between Widnes And Liverpool Lime Street

The trains coming from Warrington could join the Liverpool Branch of the West Coast Main Line at Ditton East Junction.

The route between Ditton East Junction and Liverpool Lime Street has the following characteristics.

  • It has four tracks.
  • It is 10.6 miles long.
  • Avanti West Coast’s expresses typically take twelve minutes for the trip without stopping.
  • The stations on the route; Liverpool South Parkway; West Allerton, Mossley Hill and Edge Hill, all have one platform per line.
  • It is fully electrified.
  • Lime Street station has recently been updated with longer platforms and a higher capacity approach to the station.
  • Some local services have already been moved to Merseyrail’s Northern Line.
  • Stopping services on the route have their own platforms.

I believe that with the installation of full digital signalling and a degree of automatic train control, as far as Crewe and Warrington Bank Quay stations, that the following services could be handled.

  • Six tph – Northern Powerhouse Rail – Liverpool and Manchester Airport and Manchester Piccadilly
  • One tph – East Midlands Railway – Liverpool and Nottingham
  • Three tph – High Speed Two – Liverpool and London Euston
  • One tph – High Speed Two – Liverpool and Birmingham Curzon Street
  • Two tph – London North Western – Liverpool and Birmingham and London Euston

Note.

  1. This is only 13 tph.
  2. Avanti West Coast services would be replaced by High Speed Two.
  3. TransPennine Express services would be replaced by Northern Powerhouse Rail
  4. The Liverpool and Nottingham service may or may not go via Ditton East junction.

If the capacity on this branch could be raised to 15 tph, that would be only be a train every four minutes, or half the frequency, that will eventually be operational on Crossrail and Thameslink. It would also be less than the 18 tph frequency of High Speed Two.

Conclusion

This simple exercise has proven to me, that a high speed line could be built between Manchester Airport and Liverpool Lime Street station.

  • Several sections of the route could have an operating speed of 125 mph or more.
  • By running the tracks along the M56 and M6, visual and aural intrusion could be minimised.
  • The line along the Mersey through Warrington could be a valuable part of the route.
  • West of Warrington, much of the infrastructure needed, appears to be in place and it would only need to be upgraded.

There was a large and extremely pleasant surprise at the Liverpool end.

The approach to Liverpool Lime Street is two fast and two slow lines, and I believe, that this section of the route could handle up to say 15 fast trains and six stopping trains per hour, with full digital signalling.

Unlike London and Manchester, I doubt that Liverpool will need a tunnel to access the City Centre.

I also believe that after its refurbishment of the last couple of years, Lime Street could be substantially ready for High Speed Two and Northern Powerhouse Rail.

Project Management Recommendations

This project divides neatly into three.

  1. Between Manchester Airport and Warrington along the route of the M56 and M6.
  2. Reconstruction, upgrading and electrification through Warrington and the rebuilding of Warrington Bank Quay station.
  3. Reconstruction, upgrading and electrification between Warrington and Liverpool.

The first project will be a major one, involving the construction of nearly twenty miles of new electrified railway, with numerous viaducts, bridges and a large junction at High Legh with High Speed Two.

The other two projects would be a lot simpler and would involve turning twenty miles of double-track freight line into a modern electrified railway.

I would construct projects 2 and 3 early in the schedule, as it would give Warrington a new Bank Quay station. A passenger service to Liverpool Lime Street, could also be opened if required.

 

 

 

November 20, 2020 Posted by | Transport | , , , , , , , , , , , , | 9 Comments