The Anonymous Widower

Plans Announced For ‘Low Carbon’ Power Stations In Lincolnshire

The title of this post, is the same as that of this article on the BBC.

This is the introductory paragraph.

Hundreds of jobs could be created after plans were announced to build two “low carbon” power stations in North Lincolnshire.

Last year, I only had one night away from home and that was in Doncaster, from where I explored North East Lincolnshire and wrote Energy In North-East Lincolnshire, where I made a few predictions.

These are my thoughts on my predictions and other points made in the BBC article.

Keadby 1

Keadby 1 is a 734 MW gas-fired power station, that was commissioned in 1996.

Keadby 2

  • Keadby 2 will be a 840 MW gas-fired power station.
  • It will be possible to add Carbon Capture and Storage technology to Keadby 2 to make the plant net-zero carbon.
  • Keadby 2 will be able to run on hydrogen.

Keadby 2 is under construction.

Keadby 3 And Keadby 4

I predicted that two new power stations would be added to the Keadby cluster.

  • When I wrote the other post, SSE were still designing Keadby 3, but had said it would be a 910 MW station.
  • This would mean that Keadby 1, Keadby 2 and Keadby 3 would have a combined capacity of 2484 MW of electricity.
  • Adding a fourth station, which I called Keadby 4, which I proposed to be the same size as Keadby 3 would give a combined capacity of 3394 MW.

This will be more than the planned capacity of the under-construction Hinckley Point C nuclear power station will be able to generate 3200 MW.

The BBC article says this about the plans for Keadby.

One plant would burn natural gas and use carbon capture technology to remove the CO2 from its emissions. The CO2 would then be transported along pipelines before being securely stored in rocks under the North Sea.

The hydrogen power station would produce “zero emissions at the point of combustion”, its developers claimed.

It looks like Keadby will have the power of a Hinckley Point nuclear station, but running on gas.

Carbon Capture And Storage

From what I read on the sseThermal web site and published in Energy In North-East Lincolnshire, it looks like Keadby 2 and Keadby 3 will use carbon capture and storage and Keadby 4 will use hydrogen.

There are plenty of depleted gas fields connected to the Easington terminal that can be used for carbon-dioxide storage.

The Zero Carbon Humber Network

The Zero Carbon Humber is going to be a gas network along the Humber, that will distribute hydrogen to large industrial users and return carbon dioxide for storage under the North Sea.

This map shows the Zero Carbon Humber pipeline layout.

Note.

  1. The orange line is a proposed carbon dioxide pipeline
  2. The black line alongside it, is a proposed hydrogen pipeline.
  3. Drax, Keadby and Saltend are power stations.
  4. Easington gas terminal is connected to around twenty gas fields in the North Sea.
  5. The terminal imports natural gas from Norway using the Langeled pipeline.
  6. The Rough field has been converted to gas storage and can hold four days supply of natural gas for the UK.

I can see this network being extended, with some of the depleted gas fields being converted into storage for natural gas, hydrogen or carbon dioxide.

Enter The Vikings

This article on The Times is entitled SSE and Equinor’s ‘Blue Hydrogen’ Power Plant Set To Be World First.

This is the introductory paragraph.

The world’s first large-scale power station to burn pure hydrogen could be built in Britain this decade by SSE and Equinor to generate enough low-carbon energy to supply more than a million homes.

This second paragraph explains the working of the production of the blue hydrogen.

The proposed power station near Scunthorpe would burn “blue hydrogen”, produced by processing natural gas and capturing and disposing of waste CO2 in a process that has low but not zero emissions. Equinor is already working on plans for a blue hydrogen production facility at Saltend in the Humber.

This may seem to some to be a wasteful process in that you use energy to produce blue hydrogen from natural gas and then use the hydrogen to generate power, but I suspect there are good reasons for the indirect route.

I believe that green hydrogen will become available from the North Sea from combined wind-turbine electrolysers being developed by Orsted and ITM Power, before the end of the decade.

Green hydrogen because it is produced by electrolysis will have less impurities than blue hydrogen.

Both will be zero-carbon fuels.

According to this document on the TNO web site, green hydrogen will be used for fuel cell applications and blue hydrogen for industrial processes.

Blue hydrogen would be able to power Keadby 2, 3 and 4.

I can see a scenario where Equinor’s blue hydrogen will reduce the price of hydrogen steelmaking and other industrial processes. It will also allow the purer and more costly green hydrogen to be reserved for transport and other fuel cell applications.

Using The Carbon Instead Of Storing

The document on the TNO web site has this surprising paragraph.

Hydrogen produced from natural gas using the so-called molten metal pyrolysis technology is called ‘turquoise hydrogen’ or ‘low carbon hydrogen’. Natural gas is passed through a molten metal that releases hydrogen gas as well as solid carbon. The latter can find a useful application in, for example, car tyres. This technology is still in the laboratory phase and it will take at least ten years for the first pilot plant to be realised.

This technical paper is entitled Methane Pyrolysis In A Molten Gallium Bubble Column Reactor For Sustainable Hydrogen Production: Proof Of Concept & Techno-Economic Assessment.

This may be a few years away, but just imagine using the carbon dioxide from power stations and industrial processes to create a synthetic rubber.

But I believe there is a better use for the carbon dioxide in the interim to cut down the amount that goes into long-term storage, which in some ways is the energy equivalent of landfill except that it isn’t in the least way toxic, as carbon-dioxide is one of the most benign substances on the planet.

Lincolnshire used to be famous for flowers. On a BBC Countryfile program a couple of weeks ago, there was a feature on the automated growing and harvesting of tulips in greenhouses.

There are references on the Internet to  of carbon dioxide being fed to flowers in greenhouses to make them better flowers.

So will be see extensive building of greenhouses on the flat lands of Lincolnshire growing not just flowers, but soft fruits and salad vegetables.

Conclusion

The plans of SSE and Equinor as laid out in The Times and the BBC could create a massive power station cluster.

  • It would be powered by natural gas and hydrogen.
  • Blue hydrogen will be produced by an efficient chemical process.
  • Green hydrogen will be produced offshore in massive farms of wind-turbine/electrolysers.
  • It would generate as much electricity as a big nuclear power station.
  • All carbon-dioxide produced would be either stored or used to create useful industrial products and food or flowers in greenhouses.

Do power stations like this hasten the end of big nuclear power stations?

Probably, until someone finds a way to turn nuclear waste into something useful.

 

April 9, 2021 Posted by | Energy, Hydrogen | , , , , , , , , , , | Leave a comment

SSE Goes Global To Reap The Wind

The title of this article on This Is Money is Renewable Energy Giant SSE Launches Plan To Become Britain’s First Global Windfarm Business As it Invests Up To £15bn Over Next Decade.

The title is a good summary of their plans to build wind farms in Continental Europe, Denmark, Japan and the US, in addition to the UK and Ireland.

I can also see the company developing more integrated energy clusters using the following technologies.

  • Wind farms that generate hydrogen rather than electricity using integrated electrolysers and wind turbines, developed by companies like ITM Power and Ørsted.
  • Reusing of worked out gasfields and redundant gas pipelines.
  • Zero-carbon CCGT power stations running on Hydrogen.
  • Lots of Energy storage.

I talked about this type of integration in Batteries Could Save £195m Annually By Providing Reserve Finds National Grid ESO Trial.

In the related post, I talked about the Keadby cluster of gas-fired power stations, which are in large part owned by SSE.

Conclusion

I think that SSE could be going the way of Equinor and Ørsted and becoming a global energy company.

It is also interesting the BP and Shell are investing in renewable energy to match the two Scandinavian companies.

Big Oil seems to be transforming itself into Big Wind.

All these companies seem to lack grid-scale energy storage, although hydrogen can be generated and stored in worked-out gas fields.

So I would expect that some of the up-and-coming energy storage companies like Gravitricity, Highview Power and RheEnergise could soon have connections with some of these Big Wind companies.

 

 

February 14, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , | Leave a comment

Equinor and SSE Renewables’ Dogger Bank Wind Farm Reaches Financial Close

The title of this post, is the same as that of this article on Energy Global.

It is a very matter of fact article to record the fact that SSE and Equinor have raised three billion pounds for the first two sections of their 3.6 GW wind farm on the Dogger Bank, in the middle of the North Sea.

Wikipedia indicates, they will be operational around 2023-2025.

All very boring! But we’ll see a lot more deals like this.

November 27, 2020 Posted by | Energy, Finance | , , , | 1 Comment

Are Floating Wind Farms The Future?

Boris Johnson obviously thinks so, as he said this about floating wind farms at the on-line Tory conference today.

We will invest £160m in ports and factories across the country, to manufacture the next generation of turbines.

And we will not only build fixed arrays in the sea; we will build windmills that float on the sea – enough to deliver one gigawatt of energy by 2030, 15 times floating windmills, fifteen times as much as the rest of the world put together.

Far out in the deepest waters we will harvest the gusts, and by upgrading infrastructure in such places as Teesside and Humber and Scotland and Wales we will increase an offshore wind capacity that is already the biggest in the world.

Just because Boris said it, there is a large amount of comment on the Internet, describing everything he said and floating wind turbines as utter crap.

Wikipedia

The Wikipedia entry for floating wind turbines is particularly informative and gives details on their history, economics and deployment.

This is a paragraph from the Wikipedia entry.

Hywind Scotland has 5 floating turbines with a total capacity of 30 MW, and operated since 2017. Japan has 4 floating turbines with a combined 16 MW capacity.

Wikipedia also has an entry for Hywind Scotland, which starts with this sentence.

Hywind Scotland is the world’s first commercial wind farm using floating wind turbines, situated 29 kilometres (18 mi) off Peterhead, Scotland. The farm has five 6 MW Hywind floating turbines with a total capacity of 30 MW. It is operated by Hywind (Scotland) Limited, a joint venture of Equinor (75%) and Masdar (25%)

Wikipedia, also says this about the performance of Hywind Scotland.

In its first two years of operation the facility has averaged a capacity factor in excess of 50%.

That is good performance for a wind farm.

Hywind

There is more about Hywind on this page of the Equinor web site, which is entitled How Hywind Works.

This is the opening paragraph.

Hywind is a floating wind turbine design based on a single floating cylindrical spar buoy moored by cables or chains to the sea bed. Its substructure is ballasted so that the entire construction floats upright. Hywind combines familiar technologies from the offshore and wind power industries into a new design.

I’ve also found this promotional video on the Equinor web site.

Note that Statoil; the Norwegian government’s state-owned oil company, was renamed Equinor in 2018.

Balaena Structures

In the early 1970s, I did a lot of work for a company called Time Sharing Ltd.

At one point, I ended up doing work for a company in Cambridge started by a couple of engineering professors at the University, which was called Balaena Structures.

They had designed a reusable oil platform, that was built horizontally and then floated out and turned vertically. They couldn’t work out how to do this and I built a mathematical model, which showed how it could be done.

This is said about how the Hywind turbines are fabricated.

Onshore assembly reduces time and risk of offshore operations. The substructures for Hywind Scotland were transported in a horizontal position to the onshore assembly site at Stord on the west coast of Norway. There, the giant spar-structures were filled with close to 8000 tonnes of seawater to make them stay upright. Finally, they were filled with around 5500 tonnes of solid ballast while pumping out approximately 5000 tonnes of seawater to maintain draft.

It sounds like Statoil and Equinor have followed the line of thinking, that I pursued with the Cambridge team.

My simulations of oil platforms, involved much larger structures and they had some other unique features, which I’m not going to put here, as someone might give me a nice sum for the information.

Sadly, in the end Balaena Structures failed.

I actually proposed using a Balaena as a wind power platform in Could a Balaena-Like Structure Be Used As a Wind Power Platform?, which I wrote in 2011.

I believe that their designs could have transformed the offshore oil industry and could have been used to control the Deepwater Horizon accident. I talked about this in The Balaena Lives, which again is from 2011.

Conclusion

It is my view, that floating wind farms are the future.

But then I’ve done the mathematics of these structures!

Did Boris’s advisors, as I doubt he knows the mathematics of oblique cylinders and how to solve simultaneous differential equations, do the mathematics or just read the brochures?

I will predict, that today’s structures will look primitive to some of those developed before 2030.

October 6, 2020 Posted by | Energy | , , , , | Leave a comment