The Anonymous Widower

Thoughts On The Mini-Budget

This article on the BBC is entitled At A Glance: What’s In The Mini-Budget?.

If nothing else KK has whipped up a storm, with the most tax-cutting budget in decades.

But!

According to my calculations in Will We Run Out Of Power This Winter?, the planned offshore wind that will be installed between 2022 and 2027 will be at least 19 GW. About 3 GW of this offshore wind is already producing electricity.

To this must be added 3.26 GW for Hinckley Point C, 2 GW for solar and 0.9 GW for onshore wind in Scotland, which will be developed by 2027.

So we have 25.2 GW for starters.

Following on from this is the 27.1 GW from ScotWind, about 4 GW from the Celtic Sea, 3 GW from Morecambe Bay and 10 GW from Aker’s Northern Horizons. All of these are firm projects and some are already being planned in detail.

These wind and solar farms are the collateral for KK’s borrowing.

The corporate tax changes will hopefully attract world class energy and manufacturing companies to set up UK-domiciled subsidiaries to develop more offshore wind farms and manufacture the turbines and the electrical gubbins close to where they will be installed.

As more wind farms are built, many GW of electricity and tonnes of hydrogen will be exported to Europe.

Note that 1 GW for a day costs around £ 960,000 and for a year costs £350.4 million.

A big benefit of all this electricity, will be that we won’t need to frack.

Technologies like green hydrogen, that will be created by electrolysis will reduce our need for gas.

We might develop a gas field like Jackdaw, to give us gas for a backup with a few gas-fired power stations, for when the wind doesn’t blow, but gas will only have a minor roll.

The force of the maths is with KK!

September 23, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , | 7 Comments

Will Our Gas Supplies Hold Up This Winter?

I am prompted to ask this question because of this article in The Times, which is entitled ‘Really High Gas Prices’ Loom For UK As Europe Faces Winter Rationing.

These are a few thoughts.

UK Gas-Fired Power Station Capacity

This entry in Wikipedia is entitled List Of Natural Gas Power Stations In The United Kingdom.

This statement summarises the capacity.

There are currently 32 active gas fired combined cycle power plants operating in the United Kingdom, which have a total generating capacity of 28.0 GW.

This section is entitled Decline Of Gas For Power In The United Kingdom, where this is said.

In 2016 gas fired power stations generated a total of 127 TWh of electricity. Generation has dropped to 119 TWh in 2017, 115 TWh in 2018, 114 TWh in 2019 and 95 TWh in 2020. The decline is largely due to the increase in renewable sources outweighing the decline of coal, and an overall reduction in demand.

Putting these pictures as a table and applying a simple numerical analysis technique gives the following.

  • 2016 – 127 TWh
  • 2017 – 119 TWh – Drop of 8TWh
  • 2018 – 115 TWh – Drop of 4 TWh
  • 2019 – 114 TWh – Drop of 1 TWh
  • 2020 – 95 TWh – Drop of 19 TWh

In four years the amount of electricity generated each year by gas-fired power stations has dropped by an amazing 8 TWh on average per year.

Factors like the increase in renewables and an overall reduction in demand will still apply.

I wouldn’t be surprised to see a continuous reduction of electricity generated by gas of 8 TWh per year.

Figures like these could be possible.

  • 2021 – 87 TWh
  • 2022 – 79 TWh
  • 2023 – 71 TWh
  • 2024 – 63 TWh
  • 2025 – 55 TWh
  • 2026 – 47 TWh
  • 2027 – 39 TWh

I have stopped these figures at 2027, as one major event should happen in that year, as Hinckley Point C is planned to switch on in June 2027, which will contribute 3.26 GW. or 28.5 TWh per year.

In Will We Run Out Of Power This Winter?, I also summarised the energy that will be produced by the various projects, that were signed off recently in the Contracts for Difference Allocation Round 4′, where I said this.

Summarising the figures for new capacity gives.

  • 2022 – 3200 MW
  • 2023 – 1500 MW
  • 3024 – 2400 MW
  • 2025 – 6576 MW
  • 2026 – 1705 MW
  • 2027 – 7061 GW

This totals to 22442 MW.

Note that a 1 GW power source would generate 8.76 TWh of electricity per year.

 

One problem we may have is too much electricity and as we are not blessed with much storage in the UK, where will be able to put it?

In a strange way, Vlad the Mad may solve the problem, by cutting off Europe’s gas.

Jackdaw Gas Field

This document on the Shell web site is the standard information sheet for the Jackdaw field development.

This is the short description of the development.

The Jackdaw field is an uHPHT reservoir that will be developed with a not permanently
attended WHP. Four wells will be drilled at the Jackdaw WHP. Produced fluids will be
exported via a subsea pipeline to the Shearwater platform where these will be processed
before onward export via the Fulmar Gas Line and the Forties Pipeline System.

The proposed development may be summarised as follows:

  • Installation of a new WHP
  • Drilling of four production wells
  • Installation of a new approximately 31 km pipeline from the Jackdaw WHP to the Shearwater platform
  • Processing and export of the Jackdaw hydrocarbons via the Shearwater host platform

First production expected between Q3 – Q4 2025.

Note.

  1. Production could start in just over three years.
  2. This gas will come ashore at the Bacton gas terminal in Norfolk.
  3. Bacton has two gas interconnectors to Europe; one to Belgium and one to The Netherlands, so is ideally connected to export gas to Europe.

Given the high gas prices, I am sure any company would pull out all the stops to shorten the project development time.

HyDeploy

I described HyDeploy, which is a project to blend up to 20 % of hydrogen into the distributed natural gas in HyDeploy.

In The Mathematics Of Blending Twenty Percent Of Hydrogen Into The UK Gas Grid, I worked how much electricity would be needed for HyDeploy’s target blending of hydrogen.

It was 8.2 GW, but!

  • It would save a lot of carbon emissions.
  • Boilers and other appliances wouldn’t have to be changed, although they would probably need a service.
  • It would significantly cut the amount of natural gas we need.
  • It might even be a product to export in its own right.

I certainly feel that HyDeploy is a significant project.

Gas Imports And Existing Fields

This entry in Wikipedia is entitled Energy in the United Kingdom.

In this section, which is entitled Natural Gas, this is said.

United Kingdom produced 60% of its consumed natural gas in 2010. In five years the United Kingdom moved from almost gas self-sufficient (see North Sea gas) to 40% gas import in 2010. Gas was almost 40% of total primary energy supply (TPES) and electricity more than 45% in 2010. Underground storage was about 5% of annual demand and more than 10% of net imports.

Gasfields include Amethyst gasfieldArmada gasfieldEasington Catchment AreaEast KnaptonEverest gasfield and Rhum gasfield.

Consider.

  • We know that the amount of gas used for generating electricity is reducing , due to the increase in renewables and an overall reduction in demand.
  • The cost of both gas imports and exports are rising.
  • In two years time the Jackdaw gas field should be producing gas.

Would it be sensible to squeeze as much gas out of the existing fields, as by the time they run out, renewables, an overall reduction in demand, the Jackdaw gasfield and other factors will mean that we will have enough gas and electricity for our needs.

July 14, 2022 Posted by | Energy, Hydrogen | , , , , , , | 8 Comments

Shell’s Jackdaw Gas Field Given Go-Ahead By Regulators

The title of this post, is the same as that of this article on the BBC.

These are the first two paragraphs.

Development of a major North Sea gas field has been approved by regulators.

The Jackdaw field, east of Aberdeen, has the potential to produce 6.5% of Britain’s gas output.

This is Greenpeace’s response

But environmental campaigners have condemned the move.

The activist group Greenpeace said it believed the approval could be unlawful and it was considering legal action.

“Approving Jackdaw is a desperate and destructive decision from Johnson’s government, and proves there is no long-term plan,” said Ami McCarthy, a political campaigner for Greenpeace.

I have my thoughts.

The Short Term Problem

We are all paying the high gas price, brought about by Vlad the Mad’s illegal invasion of Ukraine.

On the other hand, I am all for cutting carbon emissions, but stopping the development of the Jackdaw gas field will do nothing to cut total emissions in the short term.

In my view, the only way to cut carbon emissions is to replace the use of natural gas with hydrogen or electricity produced by renewable sources like solar, tidal, wave or wind power.

This change to every heating system and important industries like cement, chemicals, glass and steelmaking to hydrogen and renewable energy is not a short term or low-cost project. Especially whilst we’re still recovering from the pandemic and trying to handle Vlad the Mad.

We will need a supply of natural gas for a few years and if we don’t have enough gas will Greenpeace and their ilk, be happy to see everybody freezing and a large increase in unemployment?

The Government is between a rock and a hard place, where they can either bow to Greenpeace or buy Putin’s bloodstained gas, where there are two alternatives.

  • Buy liquified natural gas (LNG) from countries like Australia, Canada, Qatar or the United States.
  • Develop our own proven resources.

The advantages of taking the second route include.

  • Some of the countries from where gas is available, have bizarre views on human rights and keeping their people safe.
  • Gas is transported over long distances in a liquid form. Liquifying natural gas uses a lot of energy. Is that energy renewable?
  • Countries from where gas is available are thousands of miles away. How much carbon dioxide will be emitted liquifying and transporting it?
  • Gas from our own resources is delivered by pipeline.
  • Development of gas fields like Jackdaw, will surely create employment in the UK.

At a first look, I feel that developing Jackdaw and other similar fields, may well be a sensible option to help us through these difficult times.

Exporting Gas To Europe

If you look at the geographical position, you would feel, that the gas will be landed at St. Fergus gas terminal, which is to the North of Aberdeen.

But no! The gas will be landed at Bacton in Norfolk through the SEAL pipeline, which is 475 km. long

Could this be because Shell want to make sure the South of England gets its gas?

Possibly, but much of the UK’s gas imports arrive at LNG terminals in the South.

But Bacton has other assets, in that it has two undersea gas pipelines to the Continent. One is to Belgium and the other is to the Netherlands.

Surely, if we export our gas to other countries, then it is their business what they do with the carbon dioxide.

Not our’s or Shell’s!

Perhaps, we should develop other proven gas fields, as they will create employment in the UK and valuable exports. It will also help our friends out in Europe, in their time of need!

Will Shell Play The Market?

I have just been informed, that recently, improvements have been made to the pipelines in the area and Jackdaw’s gas could now go to St. Fergus.

This surely would give the gas from Jackdaw three destinations.

  • Scotland via St. Fergus.
  • England via Bacton
  • Europe via Bacton and the undersea pipelines.

So will Shell play the markets?

If in the future, we start to produce massive amounts of green hydrogen, I’m sure Europe, will be happy to buy that instead.

Powering Platforms With Renewable Energy

The BBC article says this.

And it plans also to re-power its offshore platforms with renewable electricity rather than burning gas.

Looking at the map, Jackdaw will not be far from the 2 GW wind farm, that Shell are developing.

Will they build a short interconnector from this wind farm to the gas platforms of Jackdaw and other nearby fields?

Will Shell Produce Hydrogen Offshore?

This article on Gas Processing And LNG is entitled Construction Of World’s Largest PEM Electrolyzer Completed.

This is the first two paragraphs.

Air Liquide has completed the construction of the world’s largest PEM (Proton Exchange Membrane) electrolyzer. Supplied with renewable energy, this unit is now producing up to 8.2 tons per day of low-carbon hydrogen in Bécancour, Québec. With this large-scale investment, the Group confirms its long-term commitment to the hydrogen energy markets and its ambition to be a major player in the supply of low-carbon hydrogen.

The new 20 MW PEM electrolyser, equipped with Cummins technology, is the largest operating unit of its kind in the world and will help meet the growing demand for low-carbon hydrogen in North America. Bécancour’s proximity to the main industrial markets in Canada and the United States will help ensure their supply of low-carbon hydrogen for industrial use and mobility. The commissioning of this electrolysis unit increases by 50% the capacity of Air Liquide’s Bécancour hydrogen production complex.

Note.

  1. This article is about a year old and electrolysers will get larger.
  2. 20 MW of electricity will produce 8.2 tons per day of low carbon or green hydrogen.
  3. It may surprise some, that the electrolyser has been built by Cummins, who are diesel engine manufacturers. They are a company, who appear to have seen the way the wind is blowing and are making sure they lead the revolution.

How much hydrogen could a 2 GW wind farm produce?

  • Wind farms have a capacity factor, which is how much energy they actually produce compared to their rating.
  • Shell’s 2 GW wind farm will be a floating wind farm and these typically have a capacity factor of at least 50 percent.
  • I will assume the capacity factor of 50 percent.

This will give 8,200 tonnes per day of green hydrogen. This is nearly three million tons per year.

How Will The Hydrogen Be Brought Ashore?

The HyDeploy project is investigating blending of hydrogen into our natural gas grid.

  • It appears that up to 25 % of hydrogen can be added without the need to change boilers and appliances.
  • This blending of hydrogen into our natural gas supply, would cut our carbon emissions by a worthwhile amount.

So will we see gas piped to nearby gas platforms like Jackdaw for blending with fresh virgin natural gas?

This would have the following advantages for Shell.

  • They wouldn’t need to install an electric cable to the shore with all its associated onshore and offshore substations.
  • The hydrogen could be brought ashore at either Bacton or St. Fergus gas terminals.
  • Shell could invite other local wind farms to share their electrolyser.
  • Shell would need to new onshore installations.

If Shell get this right, they could cut the project cost.

Will Shell Produce Blue Hydrogen Offshore?

I wonder if Shell have a cunning plan.

  • It is known, that Shell have developed a catalyst-based blue hydrogen process, which splits natural gas into hydrogen and carbon dioxide, with the addition of oxygen from the air.
  • I suspect the process could need a lot of energy to work. But at least a GW from the nearby wind farm will probably be a good start.
  • Could that carbon dioxide be captured and stored in a depleted gas field.
  • The hydrogen could be piped to either Bacton or St. Fergus, as I previously described.

This hybrid method might be a more economic way to produce zero-carbon hydrogen.

Conclusion

I wouldn’t be surprised if Shell will produce hydrogen offshore.

 

June 2, 2022 Posted by | Energy, Hydrogen | , , , , , , , , , , | 4 Comments

UK Energy Exports To Europe At Record High

The title of this post, is the same as that of this article on The Times.

This is the first two paragraphs.

Britain has exported record amounts of gas to Europe so far this year as its liquefied natural gas terminals receive shipments destined for the Continent.

Electricity exports also have surged to unprecedented highs in recent weeks after an unexpected glut of gas pushed down short-term gas prices and resulted in gas-fired power plants generating more for export.

Who’d have thought it, that all those gas pipelines and electricity interconnectors between the UK and the Continent of Europe would be part of the replacementliqui for Russian gas.

According to Wikipedia, we have three liquified natural gas terminals; two at Milford Haven; South Hook and Dragon, and Grain on the Isle of Grain.

Note.

  1. South Hook is Europe’s largest liquified natural gas terminal and is owned by a partnership of the Qataris, ExxonMobil and Elf.
  2. South Hook and Dragon together can provide 25 % of the UK’s natural gas needs.
  3. Grain is owned by National Grid and according to Wikipedia, is in terms of storage capacity it is the largest LNG facility in Europe and the eighth largest in the world.
  4. Grain can supply 20 % of the UK’s natural gas needs.
  5. Grain has a reloading facility, so that gas can be exported.
  6. Grain seems to be continually expanding.
  7. Both Milford Haven and the Isle of Grain have large gas-fired power-stations.

Politicians say we don’t have enough gas storage, but we do seem to have world-class LNG terminals.

I have a couple of extra thoughts.

Blending Natural Gas With Hydrogen

HyDeploy is a project investigated blending hydrogen natural gas to cut carbon emissions. The project is described in this post called HyDeploy.

Surely, these terminals could be places, where hydrogen is blended with our natural gas supply.

  • The terminals are connected to the UK gas network.
  • Both Milford Haven and the Isle of Grain should have access to large amounts of offshore wind energy in the next few years, which could be used to generate green hydrogen.
  • The terminals would need electrolysers to generate the hydrogen.

The Isle of Grain already has a blending capability.

NeuConnect

NeuConnect is an under-development interconnector between the Isle of Grain in Kent and Wilhelmshaven in Germany.

  • It will have a capacity 1.4 GW.
  • All the planning permissions seem to be in place.
  • Prysmian have won a € 1.2 million contract to deliver the interconnector.
  • Arup and German engineering firm Fichtner have formed a joint venture to provide project services for the interconnector.
  • Construction could start this year.

It looks like the Germans will be replacing some of Putin’s bloodstained gas with clean zero-carbon energy from the UK.

Should We Develop More Gas Fields?

There are some gas fields in the seas around the UK, like Jackdaw, that could be developed.

Suppose, we extracted the gas and sent it to the reloading terminal on the Isle of Grain through the gas transmission network, where it could be exported by ship, to the Continent.

The UK would not be increasing its carbon emissions, as that would surely be the responsibility of the end-user.

Should We Develop More Gas Fired Power-Stations?

I believe it is possible to develop carbon-capture technology for gas-fired power stations.

The carbon dioxide would be either used in a beneficial way or stored in perhaps a worked-out gas field under the North Sea.

So long as no carbon dioxide is released into the atmosphere, I don’t see why more gas-fired power stations shouldn’t be developed.

What is happening at Keadby near Scunthorpe would appear to be one model for zero-carbon power generation.

Keadby Power Station

 

This is an existing

Conclusion

We will be exporting more energy to the Continent.

May 20, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , | 1 Comment

Shell Resurrects Plans For Rejected North Sea Gasfield

The title of this post, is the same as that of this article on The Times.

This is the first two paragraphs.

Shell has submitted a revised plan for a North Sea gasfield that was rejected by regulators on environmental grounds last year.

The oil and gas major is seeking to develop the Jackdaw field, about 155 miles east of Aberdeen, which it says could produce 6.5 per cent of UK domestic gas output at peak — enough to heat 1.4 million homes. It hopes to start production in 2025 at the field, which would keep producing until 2033.

Other points in the article include.

  • The platform would be unmanned.
  • One of the problems with the field is that the gas naturally contains a lot of carbon dioxide.
  • Shell plans to capture and store this carbon dioxide.
  • The gas would be brought to shore using a nineteen mile pipeline to the Shearwater platform.

Surprisingly, the Shearwater platform is connected by the 295 mile SEAL pipeline to the Bacton terminal in Norfolk. But then Bacton is connected by the BBL pipeline to the Netherlands.

  • There are depleted gas fields connected to Bacton, that can be used to store the carbon dioxide from the Jackdaw gas field.
  • Shell manage the BBL pipeline.
  • Shell are sitting in the middle with gas, that can be sold to the highest bidder.

It could be good for Shell without a great deal of expenditure on infrastructure.

In the short term, Jackdaw could make up our gas shortage, but as we start to blend wind-produced hydrogen into the gas network, we can export the surplus gas to the Continent. Shell might have plans for other gas fields to participate in the export of British gas to Germany, that has been replaced by wind-produced hydrogen.

It would be an interesting point, as to who would be responsible for the carbon dioxide produced by Jackdaw’s gas, that is burned in Germany. I suspect it will be the Germans.

In the long-term, when Shearwater and Jackdaw have given up all their gas, I wonder if Shell’s plans could be.

  • Surround the platforms serving these fields with floating wind farms.
  • Put a giant electrolyser on the Shearwater platform and bring hydrogen to the shore in the SEAL pipeline.
  • Distribute the hydrogen from Bacton to the UK or through the BBL pipeline to the Continent.

I feel that Shell could do very nicely thank you out of the Jackdaw gas-field.

But it is also a plan, that produces a lot of energy, without emitting vast amounts of carbon dioxide.

 

March 19, 2022 Posted by | Energy, Hydrogen | , , , , , | 1 Comment