The Anonymous Widower

UK Confirms £205 Million Budget To Power More Of Britain From Britain

The title of this post, is the same as that of this press release from the Department of Energy Security And NetZero.

This is the sub title.

UK government confirms budget for this year’s Contracts for Difference scheme as it enters its first annual auction, boosting energy security.

These are the three bullet points.

  • Government announces significant financial backing for first annual flagship renewables auction, boosting Britain’s energy security
  • £170 million pledged for established technologies to ensure Britain remains a front runner in renewables and £10 million ring-fenced budget for tidal
  • Scheme will bolster investment into the sector every year, delivering clean, homegrown energy as well as green growth and jobs

These are my thoughts.

First And Annual

The scheme is flagged as both first and annual!

Does this mean, that each Budget will bring forward a pot of money for renewables every year?

My father, who being a letterpress printer and a Cockney poet would say it did and I’ll follow his lead.

Two Pots

In Contracts for Difference Round 4, there were three pots.

  • Pot 1 – Onshore Wind and Solar
  • Pot 2 – Floating Offshore Wind, Remote Island Wind and Tidal Stream
  • Pot 3 – Fixed Foundation Offshore Wind

This document on the government web site lists all the results.

For Contracts for Difference Round 5, there will be two pots, which is described in this paragraph of the press release.

Arranged across 2 ‘pots’, this year’s fifth Allocation Round (AR5) includes an allocation of £170 million to Pot 1 for established technologies, which for the first time includes offshore wind and remote island wind – and confirms an allocation of £35 million for Pot 2 which covers emerging technologies such as geothermal and floating offshore wind, as well as a £10 million ring-fenced budget available for tidal stream technologies.

It could be described as a two-pot structure with a smaller ring-fenced pot for tidal stream technologies.

Contract for Difference

There is a Wikipedia entry for Contract for Difference and I’m putting in an extract, which describes how they work with renewable electricity generation.

To support new low carbon electricity generation in the United Kingdom, both nuclear and renewable, contracts for difference were introduced by the Energy Act 2013, progressively replacing the previous Renewables Obligation scheme. A House of Commons Library report explained the scheme as:

Contracts for Difference (CfD) are a system of reverse auctions intended to give investors the confidence and certainty they need to invest in low carbon electricity generation. CfDs have also been agreed on a bilateral basis, such as the agreement struck for the Hinkley Point C nuclear plant.

CfDs work by fixing the prices received by low carbon generation, reducing the risks they face, and ensuring that eligible technology receives a price for generated power that supports investment. CfDs also reduce costs by fixing the price consumers pay for low carbon electricity. This requires generators to pay money back when wholesale electricity prices are higher than the strike price, and provides financial support when the wholesale electricity prices are lower.

The costs of the CfD scheme are funded by a statutory levy on all UK-based licensed electricity suppliers (known as the ‘Supplier Obligation’), which is passed on to consumers.

In some countries, such as Turkey, the price may be fixed by the government rather than an auction.

Note.

  1. I would trust the House of Commons Library to write up CfDs properly.
  2. As a Control Engineer, I find a CfD an interesting idea.
  3. If a generator has more electricity than expected, they will make more money than they expected. So this should drop the wholesale price, so they would get less. Get the parameters right and the generator and the electricity distributor would probably end up in a stable equilibrium. This should be fairly close to the strike price.

I would expect in Turkey with Erdogan as President, there are also other factors involved.

Renewable Generation With Energy Storage

I do wonder, if wind, solar or tidal energy, is paired with energy storage, this would allow optimisation of the system around the Contract for Difference.

If it did, it would probably mean that the generator settled into a state of equilibrium, where it supplied a constant amount of electricity.

Remote Island Wind

Remote Island Wind was introduced in Round 4 and I wrote about it in The Concept Of Remote Island Wind.

This was my conclusion in that post.

I must admit that I like the concept. Especially, when like some of the schemes, when it is linked to community involvement and improvement.

Only time will tell, if the concept of Remote Island Wind works well.

There are possibilities, although England and Wales compared to Scotland and Ireland, would appear to be short of islands.

This map shows the islands of the Thames Estuary.

Note.

  1. In Kent, there is the Isle of Sheppey and the Isle of Grain.
  2. Between the two islands is a large gas terminal , a gas-fired power station and an electricity sub-station connecting to Germany.
  3. In Essex, there is Canvey, Foulness and Potton Islands.
  4. There is also the site at Bradwell, where there used to be a nuclear power station.

If we assume that each island could support 200 MW, there could be a GW of onshore wind for London and perhaps a couple of SMRs to add another GW.

This map shows the islands around Portsmouth.

Note.

  1. Hayling Island is to the East of Portsmouth.
  2. Further East is Thorney Island with an airfield.

The Isle of Wight could be the sort of island, that wouldn’t welcome wind farms, although they do make the blades for turbines. Perhaps they should have a wind farm to make the blades even more green.

But going round England and Wales there doesn’t seem to be many suitable places for Remote Island Wind.

I do think though, that Scotland could make up the difference.

Geothermal Energy

This is directly mentioned as going into the emerging technologies pot, which is numbered 2.

I think we could see a surprise here, as how many commentators predicted that geothermal heat from the London Underground could be used to heat buildings in Islington, as I wrote about in ‘World-First’ As Bunhill 2 Launches Using Tube Heat To Warm 1,350 Homes.

Perhaps, Charlotte Adams and her team at Durham University, will capitalise on some of their work with a abandoned coal mine, that I wrote about in Exciting Renewable Energy Project for Spennymoor.

Timescale

This paragraph gives the timescale.

The publication of these notices mean that AR5 is set to open to applications on 30 March with results to be announced in late summer/early autumn 2023, with the goal of building upon the already paramount success of the scheme.

It does look like the Government intends this round to progress at a fast pace.

Conclusion

If this is going to be an annual auction, this could turn out to be a big spur to the development of renewable energy.

Supposing you have a really off-beat idea to generate electricity and the idea place in the world is off the coast of Anglesey.

You will certainly be able to make a bid and know like Eurovision, one auction will come along each year.

 

 

 

March 16, 2023 Posted by | Energy | , , , , , , , , , , , , , , | 1 Comment

UK Round 4 Offshore Wind Winners To Start Paying Option Fees With Lease Agreements Now Signed

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

The Crown Estate has signed Agreements for Lease for all six offshore wind projects selected in the UK’s Round 4 offshore wind seabed leasing. This enables the developers to now further progress their plans and also kicks off the period in which they will be paying annual option fees of almost GBP 900 million to The Crown Estate and HM Treasury.

The article then lists the wind farms.

  • RWE’s Dogger Bank South East & West (3 GW).
  • EnBW and BP’s Morgan and Mona (3 GW).
  • TotalEnergies and Corio Generation’s Outer Dowsing (1.5 GW).
  • Cobra and Flotation Energy’s Morecambe (480 MW).

This is just under 8 GW.

The article then goes on to show what developers will pay to the Crown Estate.

These two paragraphs explain the fees paid.

By signing the Agreements for Lease, which can be in effect for a maximum of ten years, the developers have committed to at least three years of option payments and will pay an annual option fee for each project until they are ready to enter into a lease for the seabed site.

The option payments, totalling some GBP 979 million per year, reduce as a project moves into a lease, or leases, and cease when a lease(s) for the maximum capacity/whole site is granted, at which point developers will move to paying rent.

It looks to me that developers will pay nearly a billion pounds per year for at least a minimum of three years and not more than ten years.

Once a project moves into a lease, rent will be paid.

It seems to be a very profitable occupation to own loads of empty sea!

January 19, 2023 Posted by | Energy | , , , | 1 Comment

Accelerating The Delivery Of Offshore Wind Farms

It is one of Kwasi Kwarteng’s ambitions to accelerate the delivery of offshore wind farms.

In The Growth Plan 2022, these groups of wind farms are mentioned.

  • Remaining Round 3 Projects
  • Round 4 Projects
  • Extension Projects
  • Scotwind Projects
  • INTOG Projects
  • Floating Wind Commercialisation Projects
  • Celtic Sea Projects

My thinking in this post, will probably apply to all of these groups.

These are my thoughts.

Accelerating Delivery Of A Wind Farm

This will have these positive effects.

  • Electricity will be delivered earlier.
  • Customers will have a more secure supply of electricity.
  • The wind farm owner will start to be paid for their electricity.
  • The Crown Estate will start to be paid for their leases. Although, these might start at signing.
  • National Grid will be paid for the transmission of the electricity.
  • An energy storage company could be paid for storing surplus electricity.
  • Construction teams and engineers can move on to the next project.
  • Expensive construction hardware like ship-mounted cranes will no longer be needed.
  • I also suspect that the government will raise some taxes from the various companies involved.

It looks like it’ll be winners all round.

How Will Delivery Be Accelerated?

These are some thoughts.

Overall Project Time

In How Long Does It Take To Build An Offshore Wind Farm?, I came to these conclusions.

  • It will take six years or less from planning consent to commissioning.
  • It will take two years or less from the start of construction to commissioning.

I suspect that as we have been building offshore wind farms for some years, that it will be very difficult to reduce these times significantly.

But as some wind farms take quite a few years to progress from the initial proposal to planning consent, I suspect that improvements to the planning process may speed up the overall construction time of a wind farm.

Project And Resource Management

Good project and resource management will always help.

Better Design And Construction Methods

I always remember in the early days of North Sea Oil, being told by a very experienced project manager that construction of production platforms was accelerated by the availability of larger and more powerful cranes.

Are we approaching the design of the ultimate wind farm? I doubt it, as in the last few months, I’ve seen two very radical new designs.

In Hexicon Wins UK’s First Ever CfD Auction For Floating Offshore Wind, I show this image of one of their TwinHub turbine installations being towed into place.

The TwinHub home page has a title of The First Floating Offshore Wind Project in The Celtic Sea.

This is the description on the page.

The TwinHub offshore wind demonstration project intends to prove how Hexicon’s innovative design with two turbines on one floating foundation can further reduce the Levelized Cost of Energy (also referred to as LCoE) before large scale commercialisation. The TwinHub project is a stepping stone to help kick-start floating wind in the Celtic Sea, an area identified as a hotspot for floating wind by the UK Government. It will pave the path for larger and larger projects to help support The Crown Estates’ ambitious target of 4GW of floating wind in the Celtic Sea.

Scroll the page down and there is a fascinating short video of a pair of wind turbines in operation.

  • It appears that when there is no wind, it automatically goes into a safe parked mode.
  • As the wind rises, one turbine starts up.
  • The second turbine starts up and the float turns so they face the wind.

It appears to be a classic example of disruptive innovation.

I have a feeling that this type of installation might have generation, assembly and cost advantages over a single turbine mounted on a single float.

RCAM Technologies are also creating interesting designs for mounting turbines and energy storage using 3D-printed concrete.

What Ts The UK Government Doing To Accelerate Projects?

This article on offshoreWIND.biz, was published in late September 2022 and is entitled BREAKING: UK Puts Massive Amount Of New Offshore Wind Capacity On Fast Track and this is the first paragraph.

The UK will speed up planning and development consent processes for projects from the recently completed, currently ongoing, and upcoming (floating) offshore wind leasing rounds to bring new energy capacity online faster and facilitate economic growth and job creation.

The article is based on what Kwasi Kwateng said on the 23rd of September about speeding up projects in the 2022 Growth Plan.

A Quick Summary Of Our Wind Energy

The article has this paragraph, which summarises our wind energy.

For the UK, which currently has around 14 GW of offshore wind capacity in operation and 8 GW under construction, the projects from the listed auction rounds could bring well beyond the targeted capacity for 2030, which was recently raised to 50 GW.

I can see the target being raised again to at least 60 GW.

 

September 30, 2022 Posted by | Design, Energy | , , , , , , , , , , , , , , , | Leave a comment

An Update To Will We Run Out Of Power This Winter?

My Methods

Project Timescales For Wind Farms

In How Long Does It Take To Build An Offshore Wind Farm?, I came to these conclusions.

  • It will take six years or less from planning consent to commissioning.
  • It will take two years or less from the start of construction to commissioning.

I shall use these timescales, as any accelerations by the government, will only reduce them.

Dates

If a date is something like 2024/25, I will use the latest date. i.e. 2025 in this example.

The Update

In Will We Run Out Of Power This Winter?, which I wrote in July this year, I did a calculation of how much renewable energy would come on stream in the next few years.

I summarised the amount of new renewable energy coming on stream like this.

  • 2022 – 3200 MW
  • 2023 – 1500 MW
  • 3024 – 2400 MW
  • 2025 – 6576 MW
  • 2026 – 1705 MW
  • 2027 – 7061 GW

This totals to 22442 MW.

But I had made two omissions.

  • Hornsea 3 wind farm will add 2582 MW in 2026/27.
  • Hinckley Point C nuclear power station will add 3260 MW in 2027.

Ørsted have also brought forward the completion date of the Sofia wind farm to 2023, which moves 1400 GW from 2024 to 2023.

The new renewables summary figures have now changed to.

  • 2022 – 3200 MW
  • 2023 – 2925 MW
  • 3024 – 1326 MW
  • 2025 – 6576 MW
  • 2026 – 1705 MW
  • 2027 – 13173 MW

This totals to 28554 MW.

Note.

  1. The early delivery of the Sofia wind farm has increased the amount of wind farms coming onstream next year, which will help the Winter of 2023/2024.
  2. It will also help the Liz Truss/Kwasi Kwarteng government at the next election, that should take place in early 2025.
  3. Hornsea 3 and Hinckley Point C make 2027 a big year for new renewable energy commissioning.

By 2027, we have more than doubled our renewable energy generation.

The Growth Plan 2022

In this document from the Treasury, the following groups of wind farms are listed for acceleration.

  • Remaining Round 3 Projects
  • Round 4 Projects
  • Extension Projects
  • Scotwind Projects
  • INTOG Projects
  • Floating Wind Commercialisation Projects
  • Celtic Sea Projects

I will look at each in turn.

Remaining Round 3 Projects

In this group are the the 1200 MW Dogger Bank B and Dogger Bank C wind farms, which are due for commissioning in 2024/25.

Suppose that as with the Sofia wind farm in the same area, they were to be able to be brought forward by a year.

The new renewables summary figures would change to.

  • 2022 – 3200 MW
  • 2023 – 2925 MW
  • 3024 – 3726 MW
  • 2025 – 5076 MW
  • 2026 – 1705 MW
  • 2027 – 13173 MW

This totals to 28554 MW.

It looks like if Dogger Bank B and Dogger Bank C can be accelerated by a year, it has four effects.

  • The renewables come onstream at a more constant rate.
  • SSE and Equinor, who are developing the Dogger Bank wind farms start to get paid earlier.
  • The UK gets more electricity earlier, which helps bridge the gap until Hornsea 3 and Hinckley Point C come onstream in 2027.
  • The UK Government gets taxes and lease fees from the Dogger Bank wind farms at an earlier date.

Accelerating the remaining Round 3 projects would appear to be a good idea.

Round 4 Projects

According to Wikipedia’s list of proposed wind farms, there are six Round 4 wind farms, which total up to 7026 MW.

Accelerating these projects, is probably a matter of improved government regulations and pressure, and good project management.

But all time savings in delivering the wind farms benefits everybody all round.

This document from the Department of Business, Industry and Industrial Strategy lists all the Contracts for Difference Allocation Round 4 results for the supply of zero-carbon electricity.

Many of these projects are smaller projects and I suspect quite a few are shovel ready.

But as with the big wind farms, there are some projects that can be brought forward to everybody’s benefit.

Norfolk Boreas

Norfolk Boreas wind farm is one of the Round 4 projects.

The wind farm is shown as 1400 MW on Wikipedia.

On the web site, it now says construction will start in 2023, which could mean a completion by 2025, as these projects seem to take about two years from first construction to commissioning, as I showed in How Long Does It Take To Build An Offshore Wind Farm?.

The new renewables summary figures would change to.

  • 2022 – 3200 MW
  • 2023 – 2925 MW
  • 3024 – 3726 MW
  • 2025 – 6476 MW
  • 2026 – 1705 MW
  • 2027 – 11773 MW

This still totals to 28554 MW.

This acceleration of a large field would be beneficial, as the 2025 figure has increased substantially.

I would suspect that Vattenfall are looking hard to accelerate their Norfolk projects.

Extension Projects

I first talked about extension projects in Offshore Wind Extension Projects 2017.

The target was to add 2.85 GW of offshore wind and in the end seven projects were authorised.

These are the best figures I have and they add up to an interim total of 3359 MW.

I suspect that these projects could be easy to accelerate, as the developers have probably been designing these extensions since 2017.

I think it is reasonable to assume that these seven wind farms will add at least 3000 MW, that can be commissioned by 2027.

The new renewables summary figures would change to.

  • 2022 – 3200 MW
  • 2023 – 2925 MW
  • 3024 – 3726 MW
  • 2025 – 6476 MW
  • 2026 – 1705 MW
  • 2027 – 14773 MW

This now totals to 31554 MW.

Accelerating the extension projects would be a good idea, especially, as they were awarded some years ago, so are probably well into the design phase.

ScotWind Projects

I first talked about ScotWind in ScotWind Offshore Wind Leasing Delivers Major Boost To Scotland’s Net Zero Aspirations.

It was planned to do the following.

  • Generate 9.7 GW from six wind farms with fixed foundations.
  • Generate 14.6 GW from ten floating wind farms.

But since then three more floating wind farms with a total capacity of 2800 MW have been added, as I wrote about in Three Shetland ScotWind Projects Announced.

I suspect that some of these projects are ripe for acceleration and some may well be generating useful electricity by 2030 or even earlier.

INTOG Projects

I wrote about INTOG in What Is INTOG?.

I can see the INTOG Projects contributing significantly to our fleet of offshore wind turbines.

I have already found a 6 GW/£30 billion project to decarbonise oil and gas rigs around our shores, which is proposed by Cerulean Winds and described on this web page.

If the other large INTOG projects are as good as this one, then we’ll be seeing some sensational engineering.

Floating Wind Commercialisation Projects

This page on the Carbon Trust website is entitled Floating Wind Joint Industry Programme (JIP).

They appear to be very much involved in projects like these.

The page has this description.

The Floating Wind Joint Industry Programme is a world leading collaborative research and development (R&D) initiative dedicated to overcoming technological challenges and advancing commercialisation of floating offshore wind.

This graphic shows the partners and advisors.

Most of the big wind farm builders and turbine and electrical gubbins manufacturers are represented.

Celtic Sea Projects

The Celtic Sea lies between South-East Ireland, Pembrokeshire and the Devon and Cornwall peninsular.

The Crown Estate kicked this off with press release in July 2022, that I wrote about in The Crown Estate Announces Areas Of Search To Support Growth Of Floating Wind In The Celtic Sea.

This map shows the five areas of search.

One Celtic Sea project has already been awarded a Contract for Difference in the Round 4 allocation, which I wrote about in Hexicon Wins UK’s First Ever CfD Auction For Floating Offshore Wind.

Other wind farms have already been proposed for the Celtic Sea.

In DP Energy And Offshore Wind Farms In Ireland, I said this.

They are also developing the Gwynt Glas offshore wind farm in the UK sector of the Celtic Sea.

  • In January 2022, EDF Renewables and DP Energy announced a Joint Venture partnership to combine their knowledge and
    expertise, in order to participate in the leasing round to secure seabed rights to develop up to 1GW of FLOW in the Celtic Sea.
  • The wind farm is located between Pembroke and Cornwall.

The addition of Gwynt Glas will increase the total of floating offshore wind in the UK section of the Celtic Sea.

  • Blue Gem Wind – Erebus – 100 MW Demonstration project  – 27 miles offshore
  • Blue Gem Wind – Valorus – 300 MW Early-Commercial project – 31 miles offshore
  • Falck Renewables and BlueFloat Energy – Petroc – 300 MW project – 37 miles offshore
  • Falck Renewables and BlueFloat Energy – Llywelyn – 300 MW project – 40 miles offshore
  • Llŷr Wind – 100 MW Project – 25 miles offshore
  • Llŷr Wind – 100 MW Project – 25 miles offshore
  • Gwynt Glas – 1000 MW Project – 50 miles offshore

This makes a total of 2.2 GW, with investors from several countries.

It does seem that the Celtic Sea is becoming the next area of offshore wind around the British Isles to be developed.

How do these wind farms fit in with the Crown Estate’s plans for the Celtic Sea?

I certainly, don’t think that the Crown Estate will be short of worthwhile proposals.

Conclusion

More and more wind farms keep rolling in.

September 29, 2022 Posted by | Energy | , , , , , , , , , , , , , , , , , | 3 Comments

UK CfD Round 4 Offshore Wind Projects Power Forward

The title of this post, is the same as that of this article on offshoreWIND.biz.

These are the first two paragraphs.

All 99 contracts offered through the fourth Allocation Round (AR4) of the UK government’s Contracts for Difference (CfD) scheme have now been signed and returned to Low Carbon Contracts Company (LCCC).

A total of 93 individual projects across Britain will now proceed to work with LCCC to meet the contractual milestones specified in the CfD, supporting projects’ development and the delivery of almost 11 GW of clean energy. The first AR4 projects are due to come online in 2023-24.

It does look like it’s a case of all systems go!

In Will We Run Out Of Power This Winter?, I estimated that these Round 4 projects would come onstream as follows.

  • 2024 – Round 4 Solar – 125.7 MW
  • 2025 – Round 4 Solar – 1958 MW
  • 2025 – Round 4 Onshore Wind – 888 MW
  • 2025 – Round 4 Energy from Waste – 30 MW
  • 2026 – Round 4 Tidal Stream – 5.62 MW
  • 2027 – Round 4 Tidal Stream – 35.2 MW
  • 2027 – Round 4 Floating Offshore Wind – 32 MW
  • 2027 – Round 4 Offshore Wind – 6994 MW

These are totals for the next four years from these contracts.

  • 2024 – 125.7 MW
  • 2025 – 2876 MW
  • 2026 – 5.62 MW
  • 2027 – 7061.2 MW

This is a total of over 10 GW.

August 4, 2022 Posted by | Energy | , , , , | 3 Comments

Will Our Gas Supplies Hold Up This Winter?

I am prompted to ask this question because of this article in The Times, which is entitled ‘Really High Gas Prices’ Loom For UK As Europe Faces Winter Rationing.

These are a few thoughts.

UK Gas-Fired Power Station Capacity

This entry in Wikipedia is entitled List Of Natural Gas Power Stations In The United Kingdom.

This statement summarises the capacity.

There are currently 32 active gas fired combined cycle power plants operating in the United Kingdom, which have a total generating capacity of 28.0 GW.

This section is entitled Decline Of Gas For Power In The United Kingdom, where this is said.

In 2016 gas fired power stations generated a total of 127 TWh of electricity. Generation has dropped to 119 TWh in 2017, 115 TWh in 2018, 114 TWh in 2019 and 95 TWh in 2020. The decline is largely due to the increase in renewable sources outweighing the decline of coal, and an overall reduction in demand.

Putting these pictures as a table and applying a simple numerical analysis technique gives the following.

  • 2016 – 127 TWh
  • 2017 – 119 TWh – Drop of 8TWh
  • 2018 – 115 TWh – Drop of 4 TWh
  • 2019 – 114 TWh – Drop of 1 TWh
  • 2020 – 95 TWh – Drop of 19 TWh

In four years the amount of electricity generated each year by gas-fired power stations has dropped by an amazing 8 TWh on average per year.

Factors like the increase in renewables and an overall reduction in demand will still apply.

I wouldn’t be surprised to see a continuous reduction of electricity generated by gas of 8 TWh per year.

Figures like these could be possible.

  • 2021 – 87 TWh
  • 2022 – 79 TWh
  • 2023 – 71 TWh
  • 2024 – 63 TWh
  • 2025 – 55 TWh
  • 2026 – 47 TWh
  • 2027 – 39 TWh

I have stopped these figures at 2027, as one major event should happen in that year, as Hinckley Point C is planned to switch on in June 2027, which will contribute 3.26 GW. or 28.5 TWh per year.

In Will We Run Out Of Power This Winter?, I also summarised the energy that will be produced by the various projects, that were signed off recently in the Contracts for Difference Allocation Round 4′, where I said this.

Summarising the figures for new capacity gives.

  • 2022 – 3200 MW
  • 2023 – 1500 MW
  • 3024 – 2400 MW
  • 2025 – 6576 MW
  • 2026 – 1705 MW
  • 2027 – 7061 GW

This totals to 22442 MW.

Note that a 1 GW power source would generate 8.76 TWh of electricity per year.

 

One problem we may have is too much electricity and as we are not blessed with much storage in the UK, where will be able to put it?

In a strange way, Vlad the Mad may solve the problem, by cutting off Europe’s gas.

Jackdaw Gas Field

This document on the Shell web site is the standard information sheet for the Jackdaw field development.

This is the short description of the development.

The Jackdaw field is an uHPHT reservoir that will be developed with a not permanently
attended WHP. Four wells will be drilled at the Jackdaw WHP. Produced fluids will be
exported via a subsea pipeline to the Shearwater platform where these will be processed
before onward export via the Fulmar Gas Line and the Forties Pipeline System.

The proposed development may be summarised as follows:

  • Installation of a new WHP
  • Drilling of four production wells
  • Installation of a new approximately 31 km pipeline from the Jackdaw WHP to the Shearwater platform
  • Processing and export of the Jackdaw hydrocarbons via the Shearwater host platform

First production expected between Q3 – Q4 2025.

Note.

  1. Production could start in just over three years.
  2. This gas will come ashore at the Bacton gas terminal in Norfolk.
  3. Bacton has two gas interconnectors to Europe; one to Belgium and one to The Netherlands, so is ideally connected to export gas to Europe.

Given the high gas prices, I am sure any company would pull out all the stops to shorten the project development time.

HyDeploy

I described HyDeploy, which is a project to blend up to 20 % of hydrogen into the distributed natural gas in HyDeploy.

In The Mathematics Of Blending Twenty Percent Of Hydrogen Into The UK Gas Grid, I worked how much electricity would be needed for HyDeploy’s target blending of hydrogen.

It was 8.2 GW, but!

  • It would save a lot of carbon emissions.
  • Boilers and other appliances wouldn’t have to be changed, although they would probably need a service.
  • It would significantly cut the amount of natural gas we need.
  • It might even be a product to export in its own right.

I certainly feel that HyDeploy is a significant project.

Gas Imports And Existing Fields

This entry in Wikipedia is entitled Energy in the United Kingdom.

In this section, which is entitled Natural Gas, this is said.

United Kingdom produced 60% of its consumed natural gas in 2010. In five years the United Kingdom moved from almost gas self-sufficient (see North Sea gas) to 40% gas import in 2010. Gas was almost 40% of total primary energy supply (TPES) and electricity more than 45% in 2010. Underground storage was about 5% of annual demand and more than 10% of net imports.

Gasfields include Amethyst gasfieldArmada gasfieldEasington Catchment AreaEast KnaptonEverest gasfield and Rhum gasfield.

Consider.

  • We know that the amount of gas used for generating electricity is reducing , due to the increase in renewables and an overall reduction in demand.
  • The cost of both gas imports and exports are rising.
  • In two years time the Jackdaw gas field should be producing gas.

Would it be sensible to squeeze as much gas out of the existing fields, as by the time they run out, renewables, an overall reduction in demand, the Jackdaw gasfield and other factors will mean that we will have enough gas and electricity for our needs.

July 14, 2022 Posted by | Energy, Hydrogen | , , , , , , | 8 Comments

Will We Run Out Of Power This Winter?

Someone asked me if we will run out of power, if Vlad the Mad cuts all the gas to Western Europe.

This was my reply.

It appears that this year, 3.2 GW of new offshore wind farms could start producing electricity, followed by similar amounts in both 2023 and 2024.

One of those to come on stream about now is the 1.4 GW Hornsea 2 wind farm!

The follow-up 2.9 GW Hornsea 3, signed a contract last week for delivery in 2026/27.

Moray East in Scotland and Triton Knoll off Lincolnshire, are also scheduled to come on stream this year and they’re around 900 MW each.

As someone, who used to write project management software, I hope the companies building these fields have enough resources, in terms of people, boats, cranes and money. But as the companies are all the Shells of the wind industry, I would hope they have got their sums right.

What About The Contracts for Difference Awarded In Allocation Round 4?

We are currently fighting two wars at the moment.

  • The main war in Ukraine, where we are giving that unfortunate country all the help we can.
  • The secondary war in the UK against energy prices.

Would it help our cause in both wars, if we produced more energy?

  • More renewable energy would reduce our dependence on imported gas.
  • The gas saved could go to Europe.
  • Europe would not be buying Vlad the Mad’s bloodstained gas.
  • Replacing gas with solar and wind power might reduce energy prices.

If I put myself in the position of a struggling farmer with a contract for difference to build a solar farm on a poor field, I would want that farm to be earning money as soon as possible.

  • Now that I have the contract can I start assembling that solar farm?
  • Similar arguments can probably be used for onshore wind, which must be easier to assemble, than offshore wind.
  • I don’t think that the hard-pressed energy suppliers would bother, if they received some quality cheap electricity earlier than they expected.
  • Obviously, all the cables and the substations would need to be in place.

So I think that it is reasonable to assume, that energy might ramp up quicker than expected.

It could even be more front-loaded, if all the installers got a shift on.

Every little helps!

New Renewable Energy In 2023?

These wind farms are scheduled for commissioning in 2023.

  • Neart Na Gaoithe – 450 MW
  • Sofia Offshore Wind Farm – 1400 MW
  • Seagreen Phase 1 – 1075 MW

We could see 2925 MW of offshore wind power commissioned in 2023.

New Renewable Energy In 2024?

These renewable energy sources are scheduled for commissioning in 2024.

  • Dogger Bank A – 1200 MW
  • Round 4 Solar – 125.7 MW
  • Dogger Bank B – 1200 MW
  • Dogger Bank C – 1200 MW

Note, where a windfarm is given a commissioning date of 2023/24  in Wikipedia , I will put it in 2024.

We could see  3726 MW of renewable energy commissioned in 2024.

New Renewable Energy In 2025?

These renewable energy sources are scheduled for commissioning in 2025.

  • Moray West – 1200 MW
  • Round 4 Solar – 1958 MW
  • Round 4 Onshore Wind – 888 MW
  • Round 4 Energy from Waste – 30 MW
  • Vanguard Boreas Phase 1 – 1400 GW

We could see  6476 MW of renewable energy commissioned in 2025.

New Renewable Energy In 2026?

These renewable energy sources are scheduled for commissioning in 2026.

  • East Anglia 1 North – 800 MW
  • East Anglia 2 – 900 MW
  • Round 4 Tidal Stream – 5.62 MW

We could see  1705 MW of renewable energy commissioned in 2026.

New Renewable Energy In 2027?

These renewable energy sources are scheduled for commissioning in 2027.

  • Round 4 Tidal Stream – 35.2 MW
  • Round 4 Floating Offshore Wind – 32 MW
  • Round 4 Offshore Wind – 5594 MW
  • Hornsea 3 Offshore Wind – 2852 MW
  • Hinckley Point C Nuclear – 3,260 MW

We could see  13173 MW of renewable energy commissioned in 2027.

Too Much Electricity!

Summarising the figures for new capacity gives.

  • 2022 – 3200 MW
  • 2023 – 2925 MW
  • 3024 – 3726 MW
  • 2025 – 6476 MW
  • 2026 – 1705 MW
  • 2027 – 11773 MW

This totals to 28554 MW.

One problem we may have is too much electricity and as we are not blessed with much storage in the UK, where will be able to put it?

In a strange way, Vlad the Mad may solve the problem, by cutting off Europe’s gas.

We have a few interconnectors, where we can export the electricity to allow the Belgians, Dutch, French and the Germans to have a shower.

It looks like construction may be starting soon for another interconnector. NeuConnect will have a capacity of 1.4 GW between the Isle of Grain and Wilhelmshaven.

Conclusion

If I was the German Chancellor, I’d do everything in my power to accelerate the construction of NeuConnect!

July 10, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , , , , , , , | 24 Comments

2.2 GW Of Solar Farms To Be Installed In The UK

This document from the Department of Business, Industry and Industrial Strategy lists all the Contracts for Difference Allocation Round 4 results for the supply of zero-carbon electricity that were announced yesterday.

There were sixty-six solar power projects, that totalled up to 2.2 GW, which gives an average size of 33.3 MW.

  • Many complain that we don’t have enough sun in this country, so surely solar farms totalling up to 2.2 GW is an astonishing figure.
  • For a comparison, Hinckley Point C will supply 3.26 GW.
  • In Cleve Hill Solar Park, I wrote about the largest, which will be a 350 MW solar farm with a 700 MWh battery.
  • Sixty-one are in England, two are in Wales and surprisingly three are in Scotland, So being that far North isn’t as bad for solar power, as you might think.
  • It looks like 251.38 MW are proposed to be installed in 2023/24 and 1958.03 MW in 2024/25.

The Wikipedia entry for Solar Power In The United Kingdom, gives these numbers.

UK solar PV installed capacity at the end of 2017 was 12.8 GW, representing a 3.4% share of total electricity generation. Provisionally, as of the end of January 2019 there was 13,123 MW installed UK solar capacity across 979,983 installations. This is an increase of 323 MW in slightly more than a year. A new record peak generation from photovoltaics was set at 9.68 GW on 20 April 2020.

How many people correctly predicted that the UK would be be generating so much energy from the sun?

How Many Of These Solar Farms Will Be Co-located With Batteries Or Wind Farms?

Consider.

  • Cleve Hill Solar Park will be a 350 MW solar farm, that is co-located with a 700 MWh battery.
  • Is it significant that the battery could supply 350 MW for two hours?
  • It also connects to the grid at the same substation, that connect the London Array offshore wind farm.
  • As substations are complicated and probably expensive bits of electrical gubbins, sharing a substation is probably a good idea to save costs.

I hope that companies like wind and solar farm developers, the National Grid and Network Rail talk a lot to each other, so that efficient infrastructure is developed.

Conclusion

Over the years 2023 to 2025, we should develop these solar farms at a rate of around 0.7 GW per year.

Can we sustain that rate in the future or will we run out of land?

 

July 10, 2022 Posted by | Energy, Energy Storage | , , | 6 Comments

Cleve Hill Solar Park

This document from the Department of Business, Industry and Industrial Strategy lists all the Contracts for Difference Allocation Round 4 results for the supply of zero-carbon electricity that were announced yesterday.

There were sixty-six solar power projects, that totalled up to 2.2 GW, which gives an average size of 33.3 MW.

I looked at the list and found the following.

  • All contracts had the same strike price of £45.99 per MWh.

The largest solar farm with a contract is Cleve Hill Solar Park.

  • ,Cleve Hill Solar Park received a contract for 112 MW.
  • According to Wikipedia, the solar park will have a battery of 700 MWh.
  • Will the battery enable the solar park to supply 112 MW on a twenty-four seven basis?
  • According to Wikipedia, solar farms have a capacity factor of about 10 % in the UK.
  • The Cleve Hill Solar Park will have a capacity of 350 MW.
  • On a typical day, it will generate 350 * 24 *0.1 = 840 MWh
  • The Contract for Difference mechanism  means they get the strike price for each MWh of electricity up to the level in the contract, which is 112 MW.
  • I suspect that for several months of the year, the solar park will be able to supply 112 MW to the grid.
  • I do feel that overnight and on sunless winter days, the system will provide a lot less electricity.
  • This page on the EMR web site explains Contract for Difference mechanism.

This extract from Wikipedia, describes, the solar park’s connection to the National Grid.

Across the marsh run the 400kV powerlines of the national grid. They are supported by eight 40m pylons. There is a large 150/400kV electricity substation at Cleve Hill, serving the London Array offshore wind farm that lies to the north beyond the mouth of the Thames Estuary. The output from the Solar Farm will use this substation to connect to the grid. Here, a battery array will placed, that will charge from the sunlight during the day and release the energy at night when it is needed.

I can build a table showing the earnings on a per day and per year basis, against average output.

  • 20 MW – £22,076.20 per day – £8,057,448 per year
  • 50 MW  – £55,188 per day – £20,143,620 per year
  • 70 MW – £77,263.20 per day – £28,201,068 per year
  • 100 MW  – £110,376 per day – £40,287,240 per year
  • 112 MW – £123,621.12 per day – £45,121,708.80 per year

Note.

  1. I have assumed the year is 365 days.
  2. As a time-expired Control Engineer, I know that the battery can be optimised to supply the electricity, when it is needed and the price is highest.
  3. I wouldn’t be surprised to see co-operation between the London Array and Cleve Hill Solar Farm, as on a sunless but windy day, there may be scope to store excess wind energy in the battery for later release.

On this brief look, it appears that owning a solar farm, can be a nice little-earner.

Thoughts On The Battery

Consider.

  • According to Wikipedia, the solar park will have a battery of 700 MWh.
  • One of the largest lithium batteries in the UK is the one at Clay Tye in Essex, which is just under 200 MWh.

I suspect that lithium ion batteries will not be used.

Highview Power are building a 250 MWh battery in Manchester.

  • This battery will be able to supply 50 MW.
  • The batteries use liquid air as an energy storage medium.
  • The company says the design can be extended up to a GWh by adding more tanks for the liquid air.
  • The only fossil fuels used in Highview’s batteries is probably some lubricating oil.

I feel that a Highview battery or something similar would be an ideal solution at Cleve Hill Solar Farm.

I should be noted that the London Array is a 630 MW wind farm, so the London Array and Cleve Hill Solar Farm have a combined nameplate capacity of 980 MW.

I feel there is a case for a larger battery at the substation, to give the grid an almost-guaranteed GW all day.

It would be large than most if not all gas-fired power stations.

It could be used to balance the grid.

The controlling software would optimise the finances by buying and selling electricity at the right time.

July 9, 2022 Posted by | Energy, Energy Storage | , , , , | 6 Comments

Orbital Marine Power Awarded Two CfDs As Part Of UK Government Renewable Energy Auction

The title of this post, is the same as that of this news item on the Orbital Marine Power web site.

This is the heart of the news item.

Orbital, the renewable energy company focused on the development and global deployment of its pioneering floating tidal stream turbine technology, has been awarded two contracts for difference (CfDs) in the UK Allocation Round 4 (AR4) process.

This is a significant milestone in the company’s growth, with these CfDs underpinning the delivery of multi-turbine projects in Eday, Orkney.

Capable of delivering 7.2MW of predictable clean energy to the grid once completed, these Orbital tidal stream energy projects can power to up to 7,200 homes, supporting the UK’s security of supply, energy transition and broader climate change objectives.

This positive outcome also means Orbital can make a transformative investment in its UK supply chain, with around 150 jobs expected to be created through the manufacture and installation phase alone. On a jobs per MW installed basis, this would represent an unprecedented level of UK role creation for the construction phase of a renewable energy project.

It is good to see tidal power taken seriously.

The Strike Price For Tidal Stream Energy

Consider.

  • Four contracts have been awarded for tidal stream energy.
  • All have strike price of £178.54 per MWh of electricity.
  • This may seem high, as all large wind farms have a strike price of only £37.35 per MWh of electricity.

On the other hand, there is a level playing field for all tidal stream energy developers. Just as there is for large wind farm developers, who have to live with £37.35 per MWh of electricity.

I think it will incentivise the developers and give them a reward for their technology.

All these strike prices are also mapped out for fifteen years, when trying to raise money for your tidal stream gubbins, you will know exactly where you stand.

I’ll give the Department of Business, Energy and Industrial Strategy, at least four out of five for their strike price regime!

July 8, 2022 Posted by | Energy | , , | Leave a comment