The Anonymous Widower

Record Levels Of Lithium In Geothermal Water At United Downs Project

The title of this post, is the same as that of this article on Think Geoenergy.

This paragraph explains it all.

Geothermal Engineering Ltd (GEL), the company behind the UK’s first deep geothermal electricity power plant, is today announcing record levels of lithium in its geothermal waters. Recent, third party tests have revealed that there are more than 250 milligrams per litre (‘mg/L’) in the fluid which is the highest concentration ever discovered in geothermal fluids anywhere in the world.

The article also says.

  • The magnesium levels are low, which eases processing.
  • Up to four thousand tonnes of lithium could be produced per year locally.

The article is certainly worth a read.

August 14, 2021 Posted by | Energy, World | , , , | Leave a comment

Energy Storage System For Dominica

This title of this post is taken a section of this round-up article on pv magazine.

This is said.

A $50 million hurricane-resistant battery energy storage system is coming to the Caribbean island of Dominica through an investment by the UAE-Caribbean Renewable Energy Fund. The project includes a 5 MW/2.5 MWh battery energy storage system.

The system is intended to stabilize the electricity grid and deliver reserve power and frequency control to the extreme weather-prone nation.

Dominica is building a 7 MW geothermal plant to help drive the country’s energy mix to 51% renewables. One government program enables foreign investors to obtain Dominica’s citizenship in exchange for a $100,000 investment to the Economic Diversification Fund, or $200,000 into pre-approved luxury real estate that supports Dominica’s ecotourism.

Dominica uses the investments for energy security, infrastructure, and housing as it aims to be one of the world’s first climate-resilient nations, as pledged by the government after Hurricane Maria hit the island in 2017.

The UAE-CREF initiative is financed by the Abu Dhabi Fund for Development, the UAE’s national entity for international development aid. The fund is a partnership between the Ministry of Foreign Affairs and Cooperation and Masdar, which is leading project design and implementation. In March 2019, the first three renewable energy projects were inaugurated.

Dominica is an island in the Eastern Caribbean, with a population of about 72,000.

This description is from Wikipedia.

It is the youngest island in the Lesser Antilles, and in fact it is still being formed by geothermal-volcanic activity, as evidenced by the world’s second-largest hot spring, called Boiling Lake.

I think that this could be a very good development and a model for other small islands with a friendly volcano underneath.

 

May 12, 2021 Posted by | Energy, Energy Storage | , | 7 Comments

Do BP And The Germans Have A Cunning Plan For European Energy Domination?

The headline of this post may be slightly tongue in cheek, but I believe that a plan is being hatched.

Preamble

I’ll start with a preamble, where I’ll outline some of the factors behind what may be happening.

Decarbonisation

It is generally accepted by most people that there is a need to decarbonise everything we do.

And large oil companies like Shell, BP and others are starting to move in the same direction.

Hydrogen

Using hydrogen instead of fossil fuels is becoming one of the major routes to decarbonisation.

Hydrogen can be used for the following.

  • Provide power for cars, buses, trucks, trains, locomotives and ships.
  • Hydrogen can be used in steelmaking instead of coking coal.
  • As a chemical feedstock to make ammonia, fertiliser and a large range of petrochemicals.
  • I believe that hydrogen could be a viable fuel to power aircraft over thousands of miles.

Hydrogen will become the most common zero-carbon fuel.

Hydrogen  And Natural Gas

In many applications hydrogen can replace natural gas, so for large users of natural gas, hydrogen offers a route to decarbonisation.

But hydrogen can also be mixed up to a level of around twenty percent in natural gas for partial decarbonisation of applications like space heating. Most industrial uses, boilers and appliances can be made to work very successfully with this mixture.

I grew up in the 1950s with coal gas, which according to Wikipedia had this composition.

  • hydrogen 50%
  • methane 35%
  • carbon monoxide 10%
  • ethylene 5%
  • When we changed over in the 1970s, all my appliances were converted.

This is the UK government description of natural gas.

It contains primarily methane, along with small amounts of ethane, butane, pentane, and propane. Natural gas does not contain carbon monoxide. The by-products of burning natural gas are primarily carbon dioxide and water vapour. Natural gas is colourless, tasteless and odourless.

As with the conversion from coal-gas to natural gas, conversion from Natural gas to a hydrogen/natural  gas mixture and eventually to hydrogen, will be a relatively painless process.

Note that carbon monoxide is a nasty poison and is not contained in either natural gas or hydrogen.

Green Hydrogen And Electrolysis Of Water

Green hydrogen is hydrogen produced exclusively from renewable energy sources.

Typically green hydrogen is produced by electrolysis of water using electricity produced by hydro, solar, tidal or wind.

The largest factory building electrolysers is owned by ITM Power.

  • It is located in Rotherham.
  • The factory has the capacity to build 1 GW of electrolysers in a year.
  • Typical electrolysers have a capacity of several MW.

Ryse Hydrogen are building an electrolyser at Herne Bay, that  will consume 23 MW of solar and wind power and produce ten tonnes of hydrogen per day.

Blue Hydrogen

‘Blue hydrogen is produced through a production process where carbon dioxide is also produced then subsequently captured via carbon capture and storage. In many cases the carbon dioxide is stored in depleted gas fields, of which we have plenty in the North Sea. Over the last few years, research has been ongoing into using the carbon dioxide. Applications in horticulture and agriculture, carbon structures and sustainable aviation fuel are being developed.

Shell have also developed the Shell Blue Hydrogen Process, where the carbon is extracted from methane as carbon dioxide and then stored or used.

CO2 In Greenhouse Horticulture

This paper from The Netherlands is called CO2 In Greenhouse Horticulture.

Read it and you might believe me, when I say, we’ll eat a lot of carbon in the form of tomatoes, salads and soft fruit. We’ll also buy flowers grown in a carbon-dioxide rich atmosphere.

Hydrogen As An Energy Transfer Medium

Every kilogram of natural gas when it burns releases energy, as it does in your boiler or gas hob. So it transfers energy in the form of gas from the gas well or storage tank to your house.

Electricity can also be transferred from the power station to your house using wires instead of pipes.

Hydrogen is being put forward as a means of transferring energy over hundreds of miles.

  • Electricity is converted to hydrogen, probably using an electrolyser, which would be powered by zero-carbon electricity.
  • The hydrogen is transferred using a steel pipe.
  • At the destination, the hydrogen is either distributed to end-users, stored or used in a gas-fired power station, that has been modified to run on hydrogen, to generate electricity.

It sounds inefficient, but it has advantages.

  • Long underwater cables have energy losses.
  • Electrical connections use a lot of expensive copper.
  • Re-use of existing gas pipes is possible.
  • Oil and gas companies like BP and their contractors have been laying gas pipes on land and under water for decades.

If hydrogen has a problem as an energy transfer medium, it is that it us difficult to liquify, as this statement from Air Liquide illustrates.

Hydrogen turns into a liquid when it is cooled to a temperature below -252,87 °C. At -252.87°C and 1.013 bar, liquid hydrogen has a density of close to 71 kg/m3. At this pressure, 5 kg of hydrogen can be stored in a 75-liter tank.

To transport, larger quantities of hydrogen by ship, it is probably better to convert the hydrogen into ammonia, which is much easier to handle.

The Germans and others are experimenting with using liquid ammonia to power large ships.

Hydrogen As An Energy Storage Medium

The UK has a comprehensive National Transmission System for natural gas with large amounts of different types of storage.

This section of the Wikipedia entry is entitled Natural Gas Storage and lists ten large storage facilities in salt caverns and depleted onshore gas fields. In addition, several depleted offshore gas fields have been proposed for the storage of natural gas. Rough was used successfully for some years.

I can certainly see a network of hydrogen storage sites being developed both onshore and offshore around the UK.

Iceland

With its large amount of hydro-electric and geothermal energy, Iceland can generate much more electricity, than it needs and has been looking to export it.

The UK is probably the only country close enough to be connected to Iceland to buy some of the country’s surplus electricity.

There has been a proposal called Icelink, that would build an electrical interconnector with a capacity of around a GW between Iceland at the UK.

But the project seems to have stalled since I first heard about it on my trip to Iceland in 2014.

Could the engineering problems just be too difficult?

The Waters Around The Northern Parts Of Great Britain

Look at a map of the UK and particularly Great Britain and there is a massive area of water, which is not short of wind.

Between Norway, Denmark, Germany, The Netherlands, the East Coast of England, the Northern Coasts of Scotland and Iceland, there are only a few islands.

  • The Faroes
  • The Orkneys
  • The Shetlands

To be complete we probably must include hundreds of oil and gas rigs and platforms and the Dogger Bank.

  • Oil and gas companies probably know most there is to know about these waters.
  • Gas pipelines connect the production platforms to terminals at Sullom Voe and along the East Coast from St. Fergus near Aberdeen to Bacton in Norfolk.
  • Many of the oil and gas fields are coming to the end of their working lives.

I believe that all this infrastructure could be repurposed to support the offshore wind industry.

The Dutch Are Invading The Dogger Bank

The Dogger Bank sits in the middle of the North Sea.

  • It is roughly equidistant from Norway, Denmark, the Netherlands and the UK.
  • The Western part is in UK territorial waters.
  • The Eastern part is mainly in Dutch territorial waters.

On the UK part, the Dogger Bank Wind Farm is being developed.

  • The turbines will be between 78 and 180 miles from the shore.
  • It could have a capacity of up to 5 GW.
  • It would be connected to East Yorkshire or Teesside.

On their side of the Dogger Bank, the Dutch are proposing the North Sea Wind Power Hub.

  • It is a collaboration between the Dutch, Germans, and Danes.
  • There have been reports, that up to 110 GW of turbines could be installed.
  • It will be connected to the Dogger Bank Wind Farm, as well as The Netherlands.

It is also planned that the connections to the Dogger Bank will create another interconnector between the UK and the Continent.

The Shetland Islands

The Shetland Islands are the only natural islands with a large oil and gas infrastructure in the waters to the North of Great Britain.

They have a large gas and oil terminal at Sullom Voe.

  • Oil is transported to the terminal by pipelines and tanker.
  • Oil is exported by tanker.
  • Gas is imported from oil and gas fields to the West of the islands through the West of Shetland Pipeline.
  • The gas-fired Sullom Voe power station provide about 80 MW of power to the islands.

This document on the APSE web site is entitled Future Hydrogen Production In Shetland.

It describes how the Shetland Islands can decarbonise and reposition themselves in the energy industry to be a major producer of hydrogen.

It gives these two facts about carbon emissions in the Shetlands Islands and Scotland.

  • Annual per capita CO2 emissions in the Shetland Islands are 17 tonnes.
  • In Scotland they are just 5.3 tonnes.

By comparison, the UK average is 5.55 and Qatar is 37.29.

Currently, the annual local market for road, marine and domestic fuel calculated
at around £50 million.

These are the objectives of the Shetland’s plan for future hydrogen production.

  • Supply 32TWh of low carbon hydrogen annually, 12% of the expected UK total requirement, by 2050
  • Provide more than 3GW of wind generated electrical power to Shetland, the UK grid, generating green hydrogen and electrification of the offshore oil and gas sector
  • Enable all West of Shetland hydrocarbon assets to be net zero by 2030 and abate 8Mt/year CO2 by 2050
  • Generate £5bn in annual revenue by 2050 and contribute significantly to the UK Exchequer.

They also envisage removing the topsides of platforms, during decommissioning of mature East of Shetland
oil fields and repurposing them for hydrogen production using offshore wind.

That is certainly a powerful set of ambitions.

This diagram from the report shows the flow of electricity and hydrogen around the islands, terminals and platforms.

Note these points about what the Shetlanders call the Orion Project.

  1. Offshore installations are electrified.
  2. There are wind turbines on the islands
  3. Hydrogen is provided for local energy uses like transport and shipping.
  4. Oxygen is provided for the fish farms and a future space centre.
  5. There is tidal power between the islands.
  6. There are armadas of floating wind turbines to the East of the islands.
  7. Repurposed oil platforms are used to generate hydrogen.
  8. Hydrogen can be exported by pipeline to St. Fergus near Aberdeen, which is a distance of about 200 miles.
  9. Hydrogen can be exported by pipeline to Rotterdam, which is a distance of about 600 miles.
  10. Hydrogen can be exported by tanker to Rotterdam and other parts of Europe.

It looks a very comprehensive plan!

The German Problem

Germany has an energy problem.

  • It is a large energy user.
  • It has the largest production of steel in Europe.
  • It prematurely shut some nuclear power stations.
  • About a quarter of electricity in Germany comes from coal. In the UK it’s just 1.2 %.
  • It is very reliant on Russian natural gas.
  • The country also has a strong Green Party.
  • Germany needs a lot more energy to replace coal and the remaining nuclear.
  • It also needs a lot of hydrogen to decarbonise the steel and other industries.

Over the last few months, I’ve written these articles.

Germany seems to have these main objectives.

  • Increase their supply of energy.
  • Ensure a plentiful supply of hydrogen.

They appear to be going about them with a degree of enthusiasm.

BP’s Ambition To Be Net Zero By 2050

This press release from BP is entitled BP Sets Ambition For Net Zero By 2050, Fundamentally Changing Organisation To Deliver.

This is the introductory paragraph.

BP today set a new ambition to become a net zero company by 2050 or sooner, and to help the world get to net zero. The ambition is supported by ten aims

The ten aims are divided into two groups.

Five Aims To Get BP To Net Zero

These are.

  1. Net zero across BP’s operations on an absolute basis by 2050 or sooner.
  2. Net zero on carbon in BP’s oil and gas production on an absolute basis by 2050 or sooner.
  3. 50% cut in the carbon intensity of products BP sells by 2050 or sooner.
  4. Install methane measurement at all BP’s major oil and gas processing sites by 2023 and reduce methane intensity of operations by 50%.
  5. Increase the proportion of investment into non-oil and gas businesses over time.

I would assume that by gas, they mean natural gas.

Five Aims To Help The World Get To Net Zero

These are.

  1. More active advocacy for policies that support net zero, including carbon pricing.
  2. Further incentivise BP’s workforce to deliver aims and mobilise them to advocate for net zero.
  3. Set new expectations for relationships with trade associations.
  4. Aim to be recognised as a leader for transparency of reporting, including supporting the recommendations of the TCFD.
  5. Launch a new team to help countries, cities and large companies decarbonise.

This all does sound like a very sensible policy.

BP’s Partnership With EnBW

BP seemed to have formed a partnership with EnBW to develop offshore wind farms in the UK

Their first investment is described in this press release from BP, which is entitled BP Advances Offshore Wind Growth Strategy; Enters World-Class UK Sector With 3GW Of Advantaged Leases In Irish Sea.

This is the first five paragraphs.

bp and partner EnBW selected as preferred bidder for two highly-advantaged 60-year leases in UK’s first offshore wind leasing round in a decade.

Advantaged leases due to distance from shore, lower grid cost, synergies from scale, and faster cycle time.

Projects expected to meet bp’s 8-10% returns aim, delivering attractive and stable returns and integrating with trading, mobility, and other opportunities.

Annual payments expected for four years before final investment decisions and assets planned to be operational in seven years.

In the past six months bp has entered offshore wind in the UK – the world’s largest market – and the US – the world’s fastest-growing market.

Note.

  1. EnBW are Energie Baden-Wuerttemberg AG, who, according to Wikipedia, are the third largest utilities company in Germany.
  2. It also appears, that EnBW have developed wind farms.

BP have issued this infographic with the press release.

Note.

  1. The lease areas don’t appear to be far from the Morecambe Bay gas field.
  2. The Morecambe Bay gas field is coming to the end of its life.
  3. The Morecambe Bay gas field is connected to the Rampside gas terminal at Barrow-in-Furness.
  4. At peak production 15 % of the UK’s natural gas came from Morecambe Bay.

I just wonder, if there is a cunning plan.

Could the platforms be repurposed to act as electrical hubs for the wind turbines?

  • 3GW of electricity would produce 55 tonnes of hydrogen per day.
  • The hydrogen would be exported to the Rampside gas terminal using the existing pipelines.
  • There may be savings to be made, as HVDC links are expensive.
  • BP either has the engineering to convert the platforms or they know someone who does.
  • Would the industrial complex at Barrow-in-Furnace and the nearby Sellafield complex have a use for all that hydrogen?
  • Or would the hydrogen be used to fuel Lancashire’s buses and trucks on the M6.

It certainly looks to me, that it could be a possibility, to bring the energy ashore as hydrogen.

BP Seeking Second Wind Off Scotland

The title of this section, is the same as that of this article in The Times.

These are the first two paragraphs.

BP is preparing to bid for the rights to build wind farms off Scotland as it signals no let-up in expansion after a £900 million splurge on leases in the Irish Sea.

The London-based oil giant caused waves in February by offering record prices to enter the UK offshore wind market through a Crown Estate auction of seabed leases off England and Wales.

As I said earlier.

  • The Shetland Islands are developing themselves as a giant hydrogen factor.
  • There are pipelines connecting platforms to the Sullom Voe Terminal.
  • There are plans to convert some of the redundant platforms into hydrogen production platforms.
  • The islands will be developing ways to export the hydrogen to the South and Europe.

BP also operates the Schiehallion oil and gas field to the West of the Shetlands, which is connected to the Sullom Voe Terminal by the West of Shetland pipeline.

Could BP and EnBW be coming to the party?

They certainly won’t be arriving empty-handed.

Does BP Have Access To Storage Technology?

I ask this question because both the Morecambe Bay and Shetland leases could be built with co-located depleted gas fields and offshore electrolysers.

So could hydrogen gas be stored in the gas fields?

I think it could be a possibility and would mean that hydrogen would always be available.

Could Iceland Be Connected To Schiehallion Via A Gas Pipeline?

I estimate that Iceland and Schiehallion would be about six hundred miles.

This wouldn’t be the longest undersea gas pipeline in the world as these two are longer.

The Langeled pipeline cost £1.7 billion.

Conclusion

I think there’s more to the link-up between BP and EnBW.

I am fairly certain, that BP are thinking about converting some redundant gas platforms into hubs for wind turbine, which use the electricity to create hydrogen, which is then exported to the shore using existing gas pipelines and onshore terminals.

Could it be said, that BP will be recycling oil and gas platforms?

I feel that the answer is yes! Or at least maybe!

The answer my friend is blowing in the wind!

May 6, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , , | Leave a comment

The Earth’s Energy: Switching Geothermal Power On

The title of this post is the same as that of this article on Power magazine.

This must-read article talks about the awakening of geothermal power, which even featured in Rolling Stone magazine last year.

This is a paragraph of the article.

The U.S. Department of Energy (DOE) lists a number of benefits offered by geothermal resources. Among them is that geothermal energy can provide baseload power, regardless of weather conditions. Geothermal power plants are also generally compact, using less land per GWh (404 m2) than coal (3,642 m2), wind (1,335 m2), or solar photovoltaic (3,237 m2) power plants, according to a study cited by the DOE.

The dinosaur brigades, who feel renewable power is only an intermittent source and a total waste of money, are always going on about baseload power. So could geothermal provide it?

The article also talks about Chevron and BP investing $40 million in Eavor Technologies, a Canadian geothermal company. This is said of their investment.

Big Oil is an especially important partner for the geothermal industry because “not only do they bring money and motivation,” Redfern said, they bring expertise “in global operations and project management, and knowledge of the subsurface and how you mitigate risks.”

It sounds like sensible diversification to me for Big Oil. It’s a bit like INEOS diversifying into hand-sanitiser during the pandemic, as they make the stuff and only needed to add a bottling plant. If you have the expertise use it!

This paragraph sums up how we bring geothermal to the world by drilling deeper.

To truly unlock the potential of geothermal energy, the industry must develop better drilling techniques that can “mine heat at much deeper depths,” said Vinod Khosla, an entrepreneur, investor, and co-founder of Sun Microsystems. Today, geothermal companies typically drill to depths of about five kilometers at most. “If we [can] go to 15 to 20 kilometers … then we will have limitless heat everywhere on the planet, or most places on the planet, with geothermal. And that would expand the market for geothermal 100-fold,” said Khosla, who describes himself as being “very, very bullish on geothermal.”

Khosla believes that new drilling techniques will get us to these awesome depths and has put his money, where his mouth is.

Read the article.

February 23, 2021 Posted by | Energy | , | Leave a comment

Ecotricity Seals 10-year Agreement To Take Geothermal Power From Cornish Plant

The title of this post, is the same as that of this article on Energy Live News.

This is the first two paragraphs

British utility Ecotricity has sealed a power purchase agreement (PPA) to buy geothermal electricity from Geothermal Engineering Limited.

The ten-year PPA will see a minimum of 3MWh of baseload electricity produced by the United Downs demonstration project in Cornwall being distributed to power the equivalent of 10,000 homes every year.

The article also says that this is the first time geothermal electricity has been produced and sold in the UK.

The remarkable thing, is that the same site will be used by Cornish Lithium for a pilot plant to extract lithium.

It does look like the Cornish will both have their cake and eat it!

As rum is also going to be matured using more of the energy, as I wrote about in And Now Geothermal Rum From Cornwall!, they’ll also be able to drink it as well!

January 7, 2021 Posted by | Energy | , , , , , | 2 Comments

Scotland’s Mines To Be At Centre Of Green Energy Renaissance

The title of this post, is the same as that of this article on the Glasgow Herald.

The article is a good explanation of the pros and cons of using the heat stored in disused coal mines, to heat hones and businesses.

September 22, 2020 Posted by | Energy | , , , | Leave a comment

Why Canada’s Geothermal Industry Is Finally Gaining Ground

The title of this post, is the same as that of this article on the Narwhal.

When I think of Canada, I don’t think hot rocks and volcanoes.

But read the article and this Wikipedia article, which is entitled Geothermal Power In Canada, that adds more flesh.

This is an interesting paragraph.

At present, Canada remains the only major country in the Pacific Rim that is not producing electricity from its geothermal resources. This is despite the fact that the colder it is outside, the more electricity a geothermal power plant can produce. This is because the larger the temperature differentials between the geothermal resource and the ambient air temperature, the more efficiently geothermal plants operate. This makes geothermal power ideal for cold northern countries.

Iceland is certainly blessed, with mountains, volcanoes, hot rocks and cooler weather.

In 2016, sixty-five per cent of Iceland’s electricity and space heating was from geothermal sources.

I took the pictures on a summer holiday In July.

It looks like if the articles on the Narwhal and Wikipedia are to be believed, Canada could exploit a lot of geothermal energy resources.

Canada though will have the advantages of not being first.

The technology has already developed in countries like Iceland, the United States and the Philippines.

A lot of the skills needed is available in Canada’s oil industry.

We’re even seeing oilfield services companies like Schlumberger moving into geothermal energy. I wrote about that in Schlumberger New Energy And Thermal Energy Partners Form Geothermal Development Company STEP Energy.

We shouldn’t forget the potential for geothermal energy in the UK. We’re looking seriously in Cornwall and already extracting heat from the Underground in Islington, using similar techniques.

See Drilling Starts For ‘Hot Rocks’ Power In Cornwall and Bunhill 2 Energy Centre.

Conclusion

Geothermal energy would appear to have a high capital cost, but should return a fixed income year-on-year.

For this reason, I believe that funding for viable geothermal schemes, will be easier to obtain, as we improve the engineering and the returns increase.

So expect more geothermal schemes in the future.

 

September 16, 2020 Posted by | Energy | , , , , | Leave a comment

Schlumberger New Energy And Thermal Energy Partners Form Geothermal Development Company STEP Energy

The title of this post, is the same as that of this article on World Oil.

This is the introductory paragraph.

Schlumberger New Energy, a new Schlumberger business, and Thermal Energy Partners (TEP) have entered into an agreement to create STEP Energy, a geothermal project development company. STEP Energy will leverage its partners’ expertise to develop efficient and profitable geothermal power generation projects, providing an opportunity to support a reliable supply of clean energy.

Schlumberger are one of the big beasts of the oil industry and are generally described as an oilfield services company.

This agreement could be significant as from my knowledge of the geothermal and oil extraction businesses, they have a lot of technology in common.

The last paragraph of the article is definitely significant.

The new company’s first project is the 10-MW Nevis Geothermal Power Project on the Caribbean island of Nevis, which will enable the island to transition to 100% zero-emission renewable energy for its power supply. STEP Energy has additional opportunities to expand production in the Eastern Caribbean and in North and South America.

How many other places in the world can follow the example of Nevis?

Geothermal Power

The Wikipedia entry for Geothermal Power is worth a read.

These points are from the first paragraph.

  • Geothermal electricity generation is currently used in 26 countries.
  • Geothermal heating is in use in 70 countries
  • As of 2015, worldwide geothermal power capacity amounts to 12.8 GW.
  • 3.55 GW are installed in the United States.
  • Countries generating more than 15 percent of their electricity from geothermal sources include El Salvador, Kenya, the Philippines, Iceland, New Zealand, and Costa Rica.
  • The greenhouse gas emissions of geothermal electric stations are on average 45 grams of carbon dioxide per kilowatt-hour of electricity, or less than 5 percent of that of conventional coal-fired plants.
  • As a source of renewable energy for both power and heating, geothermal has the potential to meet 3-5% of global demand by 2050.
  • With economic incentives, it is estimated that by 2100 it will be possible to meet 10% of global demand.

There is also an informative section on the Economics of geothermal power, where this is said.

Drilling accounts for over half the costs, and exploration of deep resources entails significant risks.

That sounds like areas, where Schlumberger have lots of expertise and experience.

Geothermal Power In The UK

The Wikipedia entry for Geothermal Energy In The United Kingdom is also worth a read.

In a section named Potential, these points are made.

  • The resource is widely spread around the UK with ‘hotspots’ in Cornwall, Weardale, Lake District, East Yorkshire, Lincolnshire, Cheshire, Worcester, Dorset, Hampshire, Northern Ireland and Scotland;
  • Cost reduction potential is exceptionally high;
  • Deep geothermal resources could provide 9.5GW of baseload renewable electricity – equivalent to nearly nine nuclear power stations – which could generate 20% of the UK’s current annual electricity consumption;
  • Deep geothermal resources could provide over 100GW of heat, which could supply sufficient heat to meet the space heating demand in the UK;
  • Despite this significant potential, the UK support regime is uncompetitive with other European countries.

Perhaps, we should get our act together?

Conclusion

It looks to me, that Schlumberger are doing the right thing for the planet.

Will they be followed by the other oilfield services companies, who in the next decades could see their traditional market shrinking?

August 28, 2020 Posted by | Energy | , , | 1 Comment

Hawaii’s Renewable Tender To Deliver Major Solar And Storage Push

The title of this post, is the same as that of this article on PVTech.

This is the introductory paragraph.

The largest renewable tender in Hawaii’s history has chosen its winners, contracting a solar and storage pipeline that exceeds anything the US state has ever seen.

The article gives a lot of information about the order and Hawaii’s energy.

  • A fleet of 400 MW of solar panels and 3 GWh of energy storage will be installed, with some running in 2022.
  • Another fleet of 260 MW of solar panels and 1 GWh of energy storage is in the pipeline, for delivery in 2021.
  • The strike price appears to be 9.38 US dollar cents per KWh or $93.80 per MWh. We’re paying £92.50 per MWh for electricity at Hinckley Point C nuclear power station.
  • Hawaii aims to be full-powered by renewable energy by 2045.
  • Two fossil-fuel plants will shut by 2024.

From this document on the Hawaii State Energy Office, I have found that in 2018, these renewable energy sources contributed to the state’s electricity.

  • Geothermal sources – 2.9%
  • Wind – 4.9%
  • Hydro – 0.9%
  • Biomass – 2.8%
  • Small-scale solar – 9.3%
  • Utility-scale solar – 3.9%

These add up to 24.7%.

I’ll be interested to see, what the percentage will be in 2024!

May 19, 2020 Posted by | Energy, Energy Storage | , , | Leave a comment

Engie Partners Innovate UK For £4 Million Energy Transition Competition

The title of this post is the same as this article on Current News.

  • This is an interesting link-up between the UK Government Agency; Innovate UK and the French energy giant; Engie.
  • Wikipedia defines energy transition as a long-term structural change in energy systems.
  • It is the first time Innovate UK has secured overseas private funding.
  • It aims to fund the very best of \british innovation in clean growth innovation.
  • Grants of between £100,000 and £1.2 million will be awarded.
  • There appears to be no mention of Brexit!

It looks to me, like a very strong endorsement of British innovation and the British energy industry by the French.

I also think, that if there is one industry where the British and the French should be linked, it is energy.

The UK has the following energy sources and resources.

  • Offshore and onshore oil and gas.
  • Redundant gas fields for carbon capture and storage.
  • Offshore and onshore wind.
  • Large areas of sea for offshore wind.
  • We have 8,183 MW of installed offshore wind capacity, which is the largest in the world.
  • The possibilities of tidal and wave power from a long Western coast.
  • Vast experience in building off-shore structures in some of the worst weather on the planet.
  • Interconnectors to Norway and Iceland to import their surplus geothermal and hydroelectric energy.

Could we become a renewable-energy powerhouse?

The French have the following.

  • Nuclear power, some of which will need replacing.
  • Only 500 MW of offshore wind.
  • More solar power than we have.
  • Easy connection to North Africa for solar power.

But in some ways, most important is the several interconnectors between the UK and France, with more planned.

Conclusion

Between the UK and France, with help from Ireland, Spain and Portugal, can develop a massive Western European renewable energy powerhouse, backed  by the following, non-renewable or external sources.

  • French nuclear power.
  • North African solar.
  • Icelandic geothermal power
  • Icelandic hydro-electric power
  • Norwegian hydro-electric power

It should be noted that in a few years, the UK will have joined Iceland, Norway and North Africa outside of the European Union.

I believe that Sovereign Wealth Funds, Hedge Funds, Pension Funds, Insurance Companies and other individuals, groups and organisations will increasingly see renewable energy as good places for long-term investment of their funds.

The two big problems are as follows.

  • What happens when all these renewable energy sources are producing more energy than we can use?
  • What happens when there is an energy deficit?

Energy storage is the solution, but the amount needed is massive.

In Airport Plans World’s Biggest Car Parks For 50,000 Cars, I looked at the mathematics in using car parks for electric cars for energy storage.

These are a few figures.

  • Electric Mountain is the UK’s largest electricity storage scheme with a capacity of 9.1 GWh.
  • The largest battery in the world is the Bath County Pumped Storage Station with a capacity of 24 GWh, which works on similar principles to Electric Mountain.
  • Building another Electric Mountain would cost £1350 million, if we could find somewhere to put it.

But supposing half the 35.5 million cars and light goods vehicles in the UK were replaced by new electric vehicles containing a battery of around 20 kWh, that would be a total storage of 355 GWh or nearly forty Electric Mountains.

Conclusion

Harnessing all of these batteries will be an enormous challenge, but it will be ideas like this, that will enable the world to go carbon neutral by 2050.

But I don’t think we’ll ever see Trump or Xi Jinping in an electric limousine..

 

June 21, 2019 Posted by | World | , , , , , , , , , , , , | Leave a comment