The Anonymous Widower

Rolls-Royce To Develop mtu Hydrogen Electrolyser And Invest In Hoeller Electrolyser

The title of this post, is the same as that of this press release from Rolls-Royce.

These are the three main points in the press release.

  • Holdings in start-up companies in northern Germany secure Rolls-Royce Power Systems access to key green hydrogen production technology.
  • Electrolysis systems for several megawatts of power.
  • First demonstrator in 2023 using a Hoeller stack.

This is the introductory paragraph to the deal.

Rolls-Royce is entering the hydrogen production market and acquiring a 54% majority stake in electrolysis stack specialist Hoeller Electrolyzer, whose innovative technology will form the basis of a new range of mtu electrolyzer products from its Power Systems division. Hoeller Electrolyzer, based in Wismar, Germany, is an early-stage technology company that is developing highly efficient polymer electrolyte membrane (PEM) stacks, under the brand name Prometheus, for the cost-effective production of hydrogen.

This page on the Hoeller Electrolysis web site gives details of Prometheus.

  • Hoeller are planning small, medium and large electrolyser modules, the largest of which is rated at 1.4 MW.
  • Load changes of between 0 and 100 % within seconds.
  • Cold start capability.
  • It will produce 635 Kg/day.
  • They are talking of a cost of 4€/Kg.

It all sounds good to me.

This paragraph is from the press release.

Founded in 2016, Hoeller Electrolyzer has positioned itself, with Prometheus, as one of the few highly specialized expert players in the field of high-efficiency PEM electrolysis stacks. Its founder, Stefan Höller, has more than a quarter of a century’s experience of developing electrolysis technology and has already registered 14 patents connected with Prometheus. Particularly high efficiency is promised by special surface technologies for the bipolar plates which significantly reduce the use of expensive precious metals platinum and iridium as catalysts, as well as increased output pressure.

I know a small amount about electrolysis and feel that Rolls-Royce may have got themselves a high-class deal.

Rolls-Royce’s large German presence in companies like mtu, will also help to smooth any doubts about the deal.

This paragraph indicates a shared belief.

Rolls-Royce and Hoeller Electrolyzer are united by a shared belief in the opportunity of zero-carbon energy – both for power supply and the propulsion of heavy vehicles. With decades of experience and systems expertise, Rolls-Royce is going to develop a complete electrolyzer system and has a global sales and service network, which opens up the potential for significant worldwide sales.

But perhaps, this is the most significant paragraph of the press release.

Armin Fürderer, who heads up the Net Zero Solutions business unit of Power Systems, said: “We’re going to launch electrolyzers with several megawatts of power right from the start. A total output of over 100 megawatts is conceivable by combining several electrolyzers.”

A quick search of the Internet, indicates that 100 MW is the size of the world’s largest electrolysers.

Applications

I can see applications for these large electrolysers.

Rolls-Royce Power Systems

This is a sentence from the press release.

Hoeller Electrolyzer, whose innovative technology will form the basis of a new range of mtu electrolyzer products from its Power Systems division.

The Rolls-Royce Power Systems web site, has this mission statement.

The Power Systems Business Unit of Rolls-Royce is focused on creating sustainable, climate neutral solutions for drive, propulsion and power generation.

In Rolls-Royce Makes Duisburg Container Terminal Climate Neutral With MTU Hydrogen Technology, I describe one of Rolls-Royce Power Systems projects.

The title of this post, is the same as this press release from Rolls-Royce.

This is the first sentence.

Rolls-Royce will ensure a climate-neutral energy supply at the container terminal currently under construction at the Port of Duisburg, Germany.

There is also this Rolls-Royce graphic, which shows the energy sources.

It would appear batteries,  combined heap and power (CHP), grid electricity, hydrogen electrolyser, hydrogen storage and renewable electricity are being brought together to create a climate-neutral energy system.

Note.

  1. The system uses a large hydrogen electrolyser.
  2. I suspect the hydrogen will be generated by off-peak electricity and local renewables.
  3. Hydrogen will probably power the container handling machines, ships, trucks, vehicles and other equipment in the port.

Hydrogen appears to be used as a means of storing energy and also for providing motive power.

I would suspect, the ultimate aim is that the port will not emit any carbon dioxide.

Other ports like Felixstowe and Holyhead seem to be going the hydrogen route.

Refuelling Hydrogen Buses and Charging Electric Buses

If you look at the Duisburg system, I can imagine a similar smaller system being used to refuel hydrogen buses and charge electric ones.

  • The hydrogen electrolyser would be sized to create enough hydrogen for a day or so’s work.
  • Hydrogen would be generated by off-peak electricity and local renewables.
  • If an operator bought more buses, I’m certain that the architecture of the electrolyser would allow expansion.
  • Hydrogen fuel cells would boost the electricity supply, when lots of buses needed to be charged.
  • Any spare hydrogen could be sold to those who have hydrogen-powered vehicles.
  • Any spare electricity could be sold back to the grid.

It should be noted that manufacturers like Wrightbus have developed a range of hydrogen and electric buses that use the same components. So will we see more mixed fleets of buses, where the best bus is assigned to each route?

I have used buses as an example, but the concept would apply to fleets of cars, trucks and vans.

Green Hydrogen

Large efficient electrolysers will surely be the key to producing large quantities of green hydrogen in the future.

It appears that about 55 MWh is needed to produce a tonne of green hydrogen using existing electrolysers.

The Hoeller electrolyser appears to be about 53 MWh, so it is more efficient.

Green Hydrogen From An Onshore Wind Farm

If you look at the average size of an onshore wind farm in the UK, a quick estimate gives a figure of 62 MW. I shouldn’t expect the figure for much of the world is very different, where you ignore the gigafarms, as these will distort the numbers.

An appropriately-sized electrolyser could be added to onshore wind farms to provide a local source of hydrogen for transport, an industrial process or a domestic gas supply for a new housing estate.

A single 5 MW wind turbine with a capacity factor of around 30 % would produce around 680 Kg of green hydrogen per day.

Green Hydrogen From An Offshore Wind Farm

There are basic methods to do this.

Put the electrolyser onshore or put the electrolyser offshore and pipe the hydrogen to the shore.

I think we will see some innovative configurations.

In ScotWind N3 Offshore Wind Farm, I described how Magnora ASA are developing the ScotWind N3 wind farm.

The floating turbines surround a concrete floater, which in the future could contain an electrolyser and tankage for hydrogen.

The ScotWind N3 wind farm is designed to be a wind farm rated at 500 MW.

I can see an electrolyser on the floater, of an optimal size to make sure all electricity is used.

Pink Hydrogen

Pink hydrogen, is zero-carbon hydrogen produced using nuclear-generated electricity.

There are industrial processes, like the making of zero-carbon chemicals, concrete and steel, that will require large quantities of zero-carbon green or pink hydrogen.

Rolls-Royce are developing the Rolls-Royce SMR, which will be a 470 MW small modular nuclear reactor.

One of these placed near to a steel works and coupled to one or more 100 MW electrolysers could provide enough zero-carbon electricity and hydrogen to produce large quantities of zero-carbon green steel.

Manufacturing

Rolls-Royce and their subsidiaries like mtu, seem to be extensive users of advanced manufacturing techniques and I would expect that they can improve Hoeller’s manufacturing.

Research And Development

The press release says this about the founder of Hoeller.

Its founder, Stefan Höller, has more than a quarter of a century’s experience of developing electrolysis technology and has already registered 14 patents connected with Prometheus.

If Rolls-Royce can develop and support Stefan Höller and his team, development could easily go to a higher level.

Conclusion

I think that Rolls-Royce have taken over a company, that will in the end, will design excellent efficient electrolysers.

 

 

 

June 29, 2022 Posted by | Hydrogen | , , , , , , , , , , , , , , | 1 Comment

Could Rolls-Royce SMRs Be The Solution To Europe’s Gas Shortage?

Of all the offshore wind farms, that I’ve looked at recently, I find Magnora’s ScotWind N3 wind farm the most interesting.

I wrote about it in ScotWind N3 Offshore Wind Farm.

I said this.

In any design competition, there is usually at least one design, that is not look like any of the others.

In the successful bids for the ScotWind leases, the bid from Magnora ASA stands out.

  • The company has an unusual home page on its offshore wind web site.
  • This page on their web site outlines their project.
  • It will be technology agnostic, with 15MW turbines and a total capacity of 500MW
  • It will use floating offshore wind with a concrete floater
  • It is estimated, that it will have a capacity factor of 56 %.
  • The water depth will be an astonishing 106-125m
  • The construction and operation will use local facilities at Stornoway and Kishorn Ports.
  • The floater will have local and Scottish content.
  • The project will use UK operated vessels​.
  • Hydrogen is mentioned.
  • Consent is planned for 2026, with construction starting in 2028 and completion in 2030.

This project could serve as a model for wind farms all round the world with a 500 MW power station, hydrogen production and local involvement and construction.

I very much like the idea of a concrete floater, which contains a huge electrolyser and gas storage, that is surrounded by an armada of giant floating wind turbines.

These are my thoughts.

Floating Concrete Structures

To many, they may have appear to have all the buoyancy of a lead balloon, but semi-submersible platforms made from concrete have been used in the oil and gas industry for several decades.

Kishorn Yard in Scotland was used to build the 600,000-tonne concrete Ninian Central Platform,in 1978. The Ninian Central Platform still holds the record as the largest movable object ever created by man.

The Ninian Central Platform sits on the sea floor, but there is no reason why a semi-submersible structure can’t be used.

Electrolysers

There is no reason, why a large electrolyser, such as those made by Cummins, ITM Power or others can’t be used, but others are on the way.

  • Bloom Energy are working on high temperature electrolysis, which promises to be more efficient.
  • Torvex Energy are developing electrolysis technology that used sea water, rather than more expensive purified water.

High Temperature Electrolysis

High temperature electrolysis needs a heat source to work efficiently and in Westinghouse And Bloom Energy To Team Up For Pink Hydrogen, I described how Bloom  Energy propose to use steam from a large nuclear power station.

Offshore Nuclear Power

I’ve never heard of offshore nuclear power, but it is not a new idea.

In 1970, a company called Offshore Power Systems was created and it is introduced in its Wikipedia entry like this.

Offshore Power Systems (OPS) was a 1970 joint venture between Westinghouse Electric Company, which constructed nuclear generating plants, and Newport News Shipbuilding and Drydock, which had recently merged with Tenneco, to create floating nuclear power plants at Jacksonville, Florida.

Westinghouse’s reactor was a 1.150 MW unit, which was typical of the time, and is very similar in size to Sizewell B.

The project was cancelled before the reactors were towed into position.

Nuclear Knowledge Has Improved

Consider.

  • In the fifty years since Offshore Power Systems dabbed their toes in the water of offshore nuclear power, our knowledge of nuclear systems and engineering has improved greatly.
  • The offshore oil and gas industry has also shown what works impeccably.
  • The floating offshore wind industry looks like it might push the envelop further.
  • There has been only one nuclear accident at Fukushima, where the sea was part of the problem and that disaster taught us a lot.
  • There have been a large number of nuclear submarines built and most reached the planned end of their lives.
  • Would a small modular nuclear reactor, be safer than a large nuclear power plant of several GW?

I would suggest we now have the knowledge to safely build and operate a nuclear reactor on a proven semi-submersible platform, built from non-rusting concrete.

An Offshore Wind Farm/Small Modular Reactor Combination Producing Hydrogen

Consider.

  • A typical floating offshore wind farm is between one and two gigawatts.
  • A Rolls-Royce small modular reactor is sized to produce nearly 0.5 GW.
  • The high temperature electrolyser will need some heat to achieve an optimum working temperature.
  • Spare electricity can be used to produce hydrogen.
  • Hydrogen can be stored platform.
  • Hydrogen can be sent ashore using existing gas pipes.
  • Hydrogen could even be blended with natural gas produced offshore to create a lower-carbon fuel.
  • It would also be possible to decarbonise nearby offshore infrastructure.

A balance between wind and nuclear power can be obtained, which would provide a steady output of energy.

Conclusion

There are a large numbers of possibilities, to locate a Rolls-Royce small modular reactor close to a wind farm to use high temperature electrolysis to create green hydrogen, which can be used in the UK or exported through the gas network.

June 23, 2022 Posted by | Energy, Hydrogen | , , , , , , , , , , , , , | 2 Comments

Nuclear-Enabled Hydrogen – How It Helps To Reach Net Zero

The title of this post, is the same as that of this article on Power Engineering.

These are the first two paragraphs.

Nuclear enabled hydrogen is zero carbon, has low cost energy input, is large scale and offers co-location synergy and energy system connectivity.

With the revival of interest in nuclear energy, interest is growing in the potential for nuclear-enabled hydrogen, otherwise sometimes known as ‘pink’ hydrogen, to meet the anticipated demand for hydrogen at scale.

The article is certainly a must-read.

Topics covered include.

  • Co-location of pink hydrogen production with industrial clusters, where heat can also be provided.
  • The production of hydrogen on a large scale.
  • The use of high temperature electrolysis, using steam from the nuclear plant.

I particularly like the idea of combining a small modular nuclear reactor with high temperature electrolysis to generate hydrogen for local industry like a steelworks or chemical plant.

June 17, 2022 Posted by | Energy, Hydrogen | , , , , , | Leave a comment

Westinghouse And Bloom Energy To Team Up For Pink Hydrogen

The title of this post, is the same as that of this article on Hydrogen Fuel News.

This is the introductory paragraph.

Westinghouse Electric Company and Bloom Energy Corporation have announced that they have signed a letter of intent together for the production of pink hydrogen in the commercial nuclear power market.

Note.

  1. Westinghouse Electric Company is an American builder of nuclear power stations.
  2. Bloom Energy Corporation make a solid-oxide electrolyser.
  3. Pink hydrogen is green hydrogen produced using nuclear power.

Figures on the Bloom web site, claim that their electrolysers could be upwards of twelve percent more efficient than PEM electrolysers, as produced by companies like ITM Power.

Bloom Energy Vice President of Hydrogen Business Rick Beuttel, is quoted as saying this.

We are proud Westinghouse has turned to Bloom and our solid oxide technology to supercharge the clean hydrogen economy. Solid oxide technology is well suited for nuclear applications, efficiently harnessing steam to further improve the economics of hydrogen production. High temperature electrolysis is already garnering attention and accolades as a cost-effective and viable solution to create low-cost, clean hydrogen, which is critical to meeting aggressive decarbonization goals.

It sounds that by integrating the nuclear power station and the electrolyser, there are cost savings to be made.

Conclusion

I think this could turn out to be a significant development.

Some countries, like Iceland, Indonesia, New Zealand, Philippines and the United States, who can generate large amounts of electricity and steam from geothermal energy, Bloom’s technology must surely be a way of electrolysing hydrogen.

June 11, 2022 Posted by | Energy, Hydrogen | , , , , , , , | 2 Comments

Torvex Energy

Hydrogen And Chlorine Production At ICI Mond Division in The 1960s.

In my time in the late 1960s, when I worked For ICI Mond Division, I spent time in the Castner-Kellner works trying fairly unsuccessfully to develop an analyser to detect mercury-in-air in the Castner-Kellner process, that created chlorine and hydrogen from brine.

The process is not a nice one as it uses a mercury cathode and Wikipedia says this about safety.

The mercury cell process continues in use to this day. Current-day mercury cell plant operations are criticized for environmental release of mercury leading in some cases to severe mercury poisoning (as occurred in Japan). Due to these concerns, mercury cell plants are being phased out, and a sustained effort is being made to reduce mercury emissions from existing plants.

ICI felt that a mercury-in-air analyser would help to make the plant safer.

But ICI did have an alternative way to produce the chlorine they needed for selling as a gas or liquid or using as a base chemical for products like disinfectants, bleaches and dry cleaning fluids, without the use of mercury.

It was only a small plant and I was taken their once.

As with the Castner-Kellner process, it used a series of electrolyser cells.

  • These were smaller and had a tub, with a concrete lid.
  • The anode and cathode and the pipes collecting the hydrogen and the chlorine went through the lid.
  • They were rebuilt regularly.
  • As with the Castner-Kellner process, brine is electrolysed.
  • The process was old and probably dated from before the Castner-Kellner process.

But of course as there was no mercury, the hydrogen and chlorine were pure and could be used for certain types of manufacture like pharmaceuticals.

Torvex Energy

This article on Hydrogen Fuel News is entitled Stockton R&D Firm Unveils New Hydrogen From Seawater Production Process.

These are some points from the article.

  • Torvex Energy, a Stockton research and development company, recently unveiled a new technique for producing hydrogen from seawater.
  • This unique method of producing hydrogen from seawater does not result in oxygen gas emissions.
  • As such, it is clearly quite different from more traditional water electrolysis methods used for producing green H2.
  • The team behind the production method call it an environmentally friendly technique.
  • There is no desalination process.
  • The firm has patents pending on this unique form of electrochemical process.
  • It worked with the Material Processing Institute to establish proof of concept for this purpose.

I originally felt that Torvex Energy may have updated the ancient ICI process, that I saw over forty years ago, but when I asked the company, they said it was different.

It now appears that they haven’t, which means they must have found a totally new process.

There is certainly an ongoing patent application with a number of gb1900680.8.

How Efficient Is The Torvex Energy Process?

This will be key and there is nothing on their web site or on the Internet to indicate, if the Torvex Energy process is more or less efficient than traditional electrolysis.

Offshore Hydrogen Production

The main application for the Torvex Energy process must surely be in the production of hydrogen offshore.

  • A fleet of floating wind turbines could surround a mother platform with a Torvex Energy process.
  • The hydrogen could then be sent ashore in a pipeline.
  • If there to be a handy depleted gas field, the this could be used to store the gas.

Depending on the efficiency of the Torvex Energy process, this could be a more cost-effective way to bring energy ashore, as gas pipelines can be more affordable, than HVDC electrical links. Especially, if pipeline already exists.

Conclusion

Torvex Energy would have appeared to have made a major breakthrough in the production of hydrogen.

 

April 17, 2022 Posted by | Energy, Hydrogen | , , , , , , , , | 3 Comments

Hysata – Electrolyser Breaks Efficiency Records, Enabling World-Beating Green Hydrogen Cost

The title of this post, is the same as that of this article on Hydrogen Central.

These three paragraphs explain what Hysata have achieved.

Hysata – electrolyser breaks efficiency records, enabling world-beating green hydrogen cost.

Hysata’s world-leading hydrogen electrolyser technology has been recognised on the global stage with ground-breaking research published in top tier peer-reviewed scientific journal Nature Communications.

The research confirms Hysata’s ‘capillary-fed electrolysis cell’ can produce green hydrogen from water at 98% cell energy efficiency, well above International Renewable Energy Agency’s (IRENA) 2050 target and significantly better than existing electrolyser technologies, enabling a hydrogen production cost well below A$2/kg (US$1.50/kg).

Note.

  1. Hysata are an Australian company.
  2. The research and its results have have met the gold standard of pier review in a respected journal.

Their efficiency levels would appear to be breathtaking.

I have some more information and a couple of thoughts.

The Technology

This article on New Atlas is entitled Record-Breaking Hydrogen Electrolyzer Claims 95% Efficiency, gives a full overview of the technology.

It does appear that Hysata have shown tremendous attention to detail to raise the efficiency.

The Efficiency

In Can The UK Have A Capacity To Create Five GW Of Green Hydrogen?, I said the following.

Ryze Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

The electrolyser will consume 552 MWh to produce ten tonnes of hydrogen, so creating one tonne of hydrogen needs 55.2 MWh of electricity.

55.2 MWh/tonne is 55.2 kWh/kg.

Hysata are claiming on their web site, that their electrolysers have 95% efficiency, which is 41.5 kWh/kg.

  • A megawatt of electricity at Herne Bay will produce 18.1 Kg of hydrogen.
  • A megawatt of electricity in a Hysata electrolyser will produce 24.1 Kg of hydrogen.

That is 33 % more.

 

March 28, 2022 Posted by | Hydrogen | , , | 2 Comments

Fortescue Starts Building Hydrogen Electrolyser Plant That Will Double Global Production

The title of this post, is the same as that of this article on RenewEconomy.

These are the first two paragraphs.

Fortescue Future Industries has begun construction of what it says will be the world’s largest electrolyser manufacturing facility in Gladstone, Queensland, the first stage of a massive plant that could also make wind turbines, solar panels, batteries and cables.

Fortescue Future Industries, the newly created green energy part of Andrew Forrest’s iron ore empire Fortescue Metals, and a key component of his massive and highly ambitious green hydrogen plans, says the firsts electrolysers will roll off the factory floor in 2023.

Production is to be at a level of 2 GW per year.

February 27, 2022 Posted by | Hydrogen | , | Leave a comment

Is There A Need For A Norfolk-Suffolk Interconnector?

The coast of East Anglia from the Wash to the Haven Ports of Felixstowe, Harwich and Ipswich is becoming the Energy Coast of England.

Starting at the Wash and going East and then South, the following energy-related sites or large energy users are passed.

Bicker Fen Substation

Bicker may only be a small hamlet in Lincolnshire, but it is becoming increasingly important in supplying energy to the UK.

Nearby is Bicker Fen substation, which connects or will connect the following to the National Grid.

  • The 26 MW Bicker Fen onshore windfarm.
  • The 1,400 MW interconnector from Denmark called Viking Link.
  • The proposed 857 MW offshore wind farm Triton Knoll.

This Google Map shows the location of Bicker Fen with respect to The Wash.

Bicker Fen is marked by the red arrow.

The Google Map shows the substation.

It must be sized to handle over 2 GW, but is it large enough?

Dudgeon Offshore Wind Farm

The Dudgeon offshore wind farm is a 402 MW wind farm, which is twenty miles off the North Norfolk coast.

  • It has 67 turbines and an offshore substation.
  • It is connected to the shore at Weybourne on the coast from where an underground cable is connected to the National Grid at Necton.
  • It became operational in Oct 2017.
  • Equinor and Statkraft are part owners of the windfarm and this is the home page of the wind farm’s web site.
  • Equinor is the operator of the wind farm.

This Google Map shows the location of Weybourne on the coast.

Note.

  1. Weybourne is in the middle on the coast.
  2. Sheringham is on the coast in the East.
  3. Holt is on the Southern edge of the map almost South of Weybourne.

This second map shows the location of the onshore substation at Necton, with respect to the coast.

Note.

  1. The Necton substation is marked by a red arrow.
  2. Holt and Sheringham can be picked out by the coast in the middle.
  3. Weybourne is to the West of Sheringham.
  4. Necton and Weybourne are 35 miles apart.

Digging in the underground cable between Necton and Weybourne might have caused some disruption.

Looking at Weybourne in detail, I can’t find anything that looks like a substation. So is the Necton substation connected directly to Dudgeon’s offshore substation?

Sheringham Shoal Offshore Wind Farm

The Sheringham Shoal offshore wind farm is a 316.8 MW wind farm, which is eleven miles off the North Norfolk coast.

  • It has 88 turbines and two offshore substations.
  • As with Dudgeon, it is connected to the shore at Weybourne on the coast.
  • But the underground cable is connected to an onshore substation at Salle and that is connected to the National Grid at Norwich.
  • It became operational in Sept 2012.
  • Equinor and Statkraft are part owners of the windfarm and this is the home page of the wind farm’s web site.
  • Equinor is the operator of the wind farm.

This second map shows the location of the onshore substation at Salle, with respect to the coast.

Note.

  1. The Salle substation is marked by a red arrow.
  2. Holt, Weybourne and Sheringham can be picked out by the coast in the middle.
  3. Weybourne is to the West of Sheringham.
  4. Salle and Weybourne are 13.5 miles apart.

Could the following two statements be true?

  • As the Sheringham Shoal wind farm was built first, that wind farm was able to use the shorter route.
  • It wasn’t built large enough to be able to handle the Dudgeon wind farm.

The statements would certainly explain, why Dudgeon used a second cable.

Extending The Dudgeon And Sheringham Shoal Wind Farms

Both the Dudgeon And Sheringham Shoal web sites have details of the proposed join extension of both wind farms.

This is the main statement on the Overview page.

Equinor has been awarded an Agreement for Lease by the Crown Estate, the intention being to seek consents to increase the generating capacity of both the Sheringham Shoal Offshore Wind Farm and the Dudgeon Offshore Wind Farm.

They then make three points about the development.

  • Equinor is proposing a joint development of the two projects with a common transmission infrastructure.
  • As part of the common DCO application, the Extension Projects have a shared point of connection at the National Grid Norwich Main substation.
  • These extension projects will have a combined generating capacity of 719MW which will make an important contribution to the UK’s target of 30GW of electricity generated by offshore wind by 2030.

This statement on the Offshore Location page, describes the layout of the wind farms.

The Sheringham Shoal Offshore Wind Farm extension is to the north and the east of the existing wind farm, while its Dudgeon counterpart is to the north and south east of the existing Dudgeon Offshore Wind Farm site. The proposed extension areas share the boundaries with its existing wind farm site.

They then make these two important points about the development.

  • Equinor is seeking to develop the extension project with a joint transmission infrastructure. A common offshore substation infrastructure is planned to be located in the Sheringham Shoal wind farm site.
  • The seabed export cable which will transmit the power generated by both wind farm extensions will make landfall at Weybourne.

There is also this map.

Note.

  1. The purple line appears to be the UK’s ten mile limit.
  2. The Sheringham Shoal Extension is outlined in red.
  3. The Dudgeon Extension is outlined in blue.
  4. The black lines appear to be the power cables.

I suspect the dotted blue lines are shipping routes sneaking their way through the turbines.

This statement on the Onshore Location page, describes the layout of the offshore and onshore cables.

A new seabed export cable will bring the electricity generated by both the Sheringham Shoal and Dudgeon Offshore Wind Farm extensions to shore at Weybourne, on the coast of Norfolk.

They then make these two important points about the development.

  • From there a new underground cable will be installed to transmit that power to a new purpose built onshore substation, which will be located within a 3km radius of the existing Norwich main substation, south of Norwich. This will be the National Grid network connection point for the electricity from both wind farm extensions.
  • The power will be transmitted from landfall to the substation using an HVAC system which eliminates the need for any relay stations along the onshore cable route.

There is also this map.

It will be a substantial undertaking to build the underground cable between Weybourne and South of Norwich.

Bacton Gas Terminal

The Bacton gas terminal is a complex of six gas terminals about ten miles East of Cromer.

  • It lands and processes gas from a number of fields in the North Sea.
  • It hosts the UK end of the BBL pipeline to The Netherlands.
  • It hosts the UK end of the Interconnector to Zeebrugge in Belgium.
  • The Baird and Deborah fields, which have been developed as gas storage, are connected to the gas terminal. They are both mothballed.

This Google Map shows the location of the terminal.

Note.

  1. The Bacton gas terminal is marked by a red arrow.
  2. Sheringham is in the North West corner of the map.
  3. Cromer, Overstrand, Trimingham and Mundesley are resort towns and villages along the coast North of Bacton.

This second map shows the Bacton gas terminal in more detail.

Would you want to have a seaside holiday, by a gas terminal?

Norfolk Boreas And Norfolk Vanguard

Norfolk Boreas and Norfolk Vanguard are two wind farms under development by Vattenfall.

  • Norfolk Boreas is a proposed 1.8 GW wind farm, that will be 45 miles offshore.
  • Norfolk Vanguard is a proposed 1.8 GW wind farm, that will be 29 miles offshore.

This map shows the two fields in relation to the coast.

Note.

  1. The purple line appears to be the UK’s ten mile limit.
  2. Norfolk Boreas is outlined in blue.
  3. Norfolk Vsnguard is outlined in orange.
  4. Cables will be run in the grey areas.

This second map shows the onshore cable.

Note.

  1. The cables are planned to come ashore between Happisburgh and Eccles-on-Sea.
  2. Bacton gas terminal is only a short distance up the coast.
  3. The onshore cable is planned to go from here across Norfolk to the Necton substation.

But all of this has been overturned by a legal ruling.

This article on the BBC is entitled Norfolk Vanguard: Ministers Wrong Over Wind Farm Go-Ahead, Says Judge.

These are the first four paragraphs.

A High Court judge has quashed permission for one of the world’s largest offshore wind farms to be built off the east coast of England.

The Norfolk Vanguard Offshore Wind Farm was granted development consent in July by the Secretary of State for Business, Energy and Industrial Strategy (BEIS).

But Mr Justice Holgate overturned the decision following legal action from a man living near a planned cable route.

A Department for BEIS spokeswoman said it was “disappointed by the outcome”.

I bet the spokeswoman was disappointed.

Vattenfall and the BEIS will go back to the drawing board.

But seriously, is it a good idea to dig an underground cable all the way across Norfolk or in these times build a massive overhead cable either?

Perhaps the solution is to connect the Norfolk Boreas And Norfolk Vanguard wind farms to a giant electrolyser at Bacton, which creates hydrogen.

  • The underground electricity cable across Norfolk would not be needed.
  • Bacton gas terminal is only a few miles up the coast from the cable’s landfall.
  • The UK gets another supply of gas.
  • The hydrogen is blended with natural gas for consumption in the UK or Europe.
  • A pure hydrogen feed can be used to supply hydrogen buses, trucks and other vehicles, either by tanker or pipeline.
  • Excess hydrogen could be stored in depleted gas fields.

The main benefit though, would be that it would transform Bacton gas terminal from a declining asset into Norfolk’s Hydrogen Powerhouse.

Great Yarmouth And Lowestoft

Great Yarmouth Outer Harbour and the Port of Lowestoft have not been the most successful of ports in recent years, but with the building of large numbers of wind farms, they are both likely to receive collateral benefits.

I wouldn’t be surprised to see the support ships for the wind farms switching to zero-carbon power, which would require good electrical connections to the ports to either charge batteries or power electrolysers to generate hydrogen.

Sizewell

Sizewell has only one nuclear power station at present; Sizewell B, but it could be joined by Sizewell C or a fleet of Small Modular Reactors (SMR).

The Sizewell Overhead Transmission Line

Sizewell also has a very high capacity overhead power line to Ipswich and the West.

I doubt, it would be possible to build an overhead transmission line like this today.

Sizewell And Hydrogen

EdF, who own the site are involved with Freeport East and may choose to build a large electrolyser in the area to create hydrogen for the Freeport.

East Anglia Array

The East Anglia Array will be an enormous wind farm., comprising up to six separate projects.

It will be thirty miles offshore.

It could generate up to 7.2 GW.

The first project East Anglia One is in operation and delivers 714 MW to a substation in the Deben Estuary, which connects to the Sizewell high-capacity overhead power line.

Most projects will be in operation by 2026.

Freeport East

As the Freeport develops, it will surely be a massive user of both electricity and hydrogen.

Problems With The Current Electricity Network

I don’t believe that the current electricity network, that serves the wind farms and the large energy users has been designed with the number of wind farms we are seeing in the North Sea in mind.

Every new windfarm seems to need a new connection across Norfolk or Suffolk and in Norfolk, where no high-capacity cables exist, this is stirring up the locals.

There is also no energy storage in the current electricity network, so at times, the network must be less than efficient and wind turbines have to be shut down.

Objections To The Current Policies

It is not difficult to find stories on the Internet about objections to the current policies of building large numbers of wind farms and the Sizewell C nuclear power station.

This article on the East Anglia Daily Times, which is entitled Campaigners Unite In Calling For A Pause Before ‘Onslaught’ Of Energy Projects ‘Devastates’ Region is typical.

This is the first paragraph.

Campaigners and politicians have called on the Government to pause the expansion of the energy industry in Suffolk, which they fear will turn the countryside into an “industrial wasteland” and hit tourism.

The group also appear to be against the construction of Sizewell C.

I feel they have a point about too much development onshore, but I feel that if the UK is to thrive in the future we need an independent zero carbon energy source.

I also believe that thousands of wind farms in the seas around the UK and Ireland are the best way to obtain that energy.

Blending Hydrogen With Natural Gas

Blending green hydrogen produced in an electrolyser  with natural gas is an interesting possibility.

  • HyDeploy is a project to investigate blending up to 20 % of green hydrogen in the natural gas supply to industrial and domestic users.
  • Partners include Cadent, ITM Power, Keele University and the Health and Safety Executive.
  • Natural gas naturally contains a small amount of hydrogen anyway.
  • The hydrogen gas would be distributed to users in the existing gas delivery network.

I wrote about HyDeploy in a post called HyDeploy.

Thje only loser, if hydrogen were to be blended with natural gas would be Vlad the Poisoner, as he’d sell less of his tainted gas.

An Interconnector Between Bicker Fen And Freeport East

I believe that an electricity interconnector between at least Bicker Fen and Freeport East could solve some of the problems.

My objectives would be.

  • Avoid as much disruption on the land as possible.
  • Create the capacity to deliver all the energy generated to customers, either as electricity or hydrogen.
  • Create an expandable framework, that would support all the wind farms that could be built in the future.

The interconnector would be a few miles offshore and run along the sea-bed.

  • This method of construction is well proven.
  • It was used for the Western HVDC Link between Hunterston in Scotland and Connah’s Quay in Wales.
  • Most wind farms seem to have existing substations and these would be upgraded to host the interconnector.

Connections en route would include.

Dudgeon Offshore Wind Farm

The interconnector would connect to the existing offshore substation.

Sheringham Shoal Wind Farm

The interconnector would connect to the existing offshore substation.

Dudgeon and Sheringham Shoal Extension Offshore Wind Farms

These two wind farms could be connected directly to the interconnector, if as planned, they shared an offshore substation in the Sheringham Shoal Extension offshore wind farm.

Bacton Gas Terminal

I would connect to the Bacton Gas Terminal, so that a large electrolyser could be installed at the terminal.

The hydrogen produced could be.

  • Stored in depleted gas fields connected to the terminal.
  • Blended with natural gas.
  • Exported to Europe through an interconnector.
  • Supplied to local users by truck or pipeline.

After all, the terminal has been handling gas for over fifty years, so they have a lot of experience of safe gas handling.

Norfolk Boreas And Norfolk Vanguard

These two wind farms could be connected directly to the interconnector, if they shared an offshore substation.

It would also help to appease and silence the objectors, if there was no need to dig up half of Norfolk.

Great Yarmouth And Lowestoft

It might be better, if these ports were supplied from the interconnector.

  • Either port could have its own electrolyser to generate hydrogen, which could be.
  • Used to power ships, trucks and port equipment.
  • Liquefied and exported in tankers.
  • Used to supply local gas users.
  • Hydrogen could be supplied to a converted Great Yarmouth power station.

Both Great Yarmouth and Lowestoft could become hydrogen hub towns.

Sizewell

This site has a high-capacity connection to the National Grid. This connection is a big eyesore, but it needs to run at full capacity to take electricity from the Energy Coast to the interior of England.

That electricity can come from Sizewell B and/or Sizewell C nuclear power stations or the offshore wind farms.

East Anglia Array

There would probably need to be a joint offshore substation to control the massive amounts of electricity generated by the array.

Currently, the only wind farm in operation of this group is East Anglia One, which uses an underground cable connection to the Sizewell high-capacity connection to the Bullen Lane substation at Bramford.

Freeport East, Ipswich And Bullen Lane Substation

This Google Map shows the area between Ipswich and the coast.

Note.

  1. Sizewell is in the North-East corner of the map.
  2. Felixstowe, Harwich and Freeport East are at the mouth of the rivers Orwell and Stour.
  3. The Bullen Lane substation is to the West of Ipswich and shown by the red arrow.

I would certainly investigate the possibility of running an underwater cable up the River Orwell to connect the Southern end of the interconnector Between Bicker Fen And Freeport East.

This Google Map shows the Bullen Lane Substation.

It looks impressive, but is it big enough to handle all the electricity coming ashore from the offshore wind farms to the East of Suffolk and the electricity from the power stations at Sizewell?

Conclusion

I believe there are a lot of possibilities, that would meet my objectives.

In addition, simple mathematics says to me, that either there will need to be extra capacity at both Bicker Fen and Bullen Lane substations and onward to the rest of the country, or a large electrolyser to convert several gigawatts of electricity into hydrogen for distribution, through the gas network.

 

 

January 30, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , , , , | 6 Comments

Catalyst Capital Makes First Move In GBP 300m Battery Storage Strategy

The title of this post, is the same as that of this article on Renewables Now.

This is the first paragraph.

Fund manager Catalyst Capital has acquired a site to build a 100-MW battery in Yorkshire, northern England, in the first of a series of planned deals under a GBP-300-million (USD 406.1m/EUR 358.9m) strategy to develop diversified UK battery energy storage systems (BESS) facilities.

£300 million, says to me that the finance industry, now finds battery storage to be a worthwhile investment.

Skelton Grange Power Station

This Google Map shows the location of the Skelton Grange power station site, where the battery will be developed.

And this second Google Map shows the site in more detail.

Note that there is still a sub-station on the site.

The article states that planning permission was received in 2021 and they hope to have the facility on-line in the first quarter of this year.

That appears quick to me. Is it because the electrical connection already in situ?

It should also be noted, that the battery output of 100 MW is much less than that of the former coal-fired power station in the mid-1980s, which was at last 480 MW.

I also wonder, if the site could host a hydrogen fuelling station for buses.

  • It is not far from the centre of Leeds.
  • It has a good connection to the National Grid.
  • An electrolyser like the one built by ITM Power at Tyseley Energy Park uses 3 MW of electricity to produce around 1.5 tonnes of hydrogen per day.

I also feel that the site could host a wind turbine up to about 10 MW.

Conclusion

Catalyst Capital seems to have made a big entry into the market. They won’t be the last to do this, as the returns are there and the battery storage is needed.

January 8, 2022 Posted by | Energy, Energy Storage, Finance, Hydrogen | , , , , , | 2 Comments

Why Use A Hydrogen Pipeline Rather Than A Electricity Cable To Bring Electricity Ashore From A Windfarm?

A comment to the post entitled Siemens Gamesa Partners On Offshore Wind-to-Hydrogen, was as follows.

Trying to get my head around this concept. Build an electrolysis plant in the North Sea and run a hydrogen pipeline to shore, rather than generating electricity and transferring the power by undersea cable to a shore based electrolysis plant. Can it really be better technically and economically? Someone convince me.

The reasons probably all come down to saving money and hassle.

Reusing Existing Infrastructure

Supposing, you have an offshore gas field, which is on the point of being worked out.

  • It has a well-maintained platform on top.
  • It has a pipe to an onshore terminal that handles the natural gas and distributes it to end-users.

Supposing the following are possible.

  • Building a large wind farm in the vicinity of the platform.
  • Using the gas field for hydrogen storage.
  • Converting the gas terminal from natural gas to hydrogen.
  • The end-users can convert to hydrogen.

In some cases the end-users might even prefer hydrogen to natural gas, to help their own decarbonisation.

I would suspect that there will be a sound economic case to use hydrogen, where wind farms are developed, in the same areas as worked-out gas fields.

  • Platform demolition costs are deferred.
  • No HVDC link is needed, with an expensive converter station at the shore end.
  • The new system comes with energy storage.

The only extra cost might be that an offshore electrolyser is more expensive than an onshore one.

Engineering Resources

The engineering resources needed for a gas pipeline are different to those needed for an electrical system.

But because gas pipelines are a declining industry, they will be readily available.

Less Planning Hassle

There have been some objections to the development of wind farm terminals by Nimbies.

If a terminal is converted from natural gas to hydrogen, I suspect there will be fewer objections.

Better Control Of Wind Farms

There have been stories of wind farms having to be switched off because there is no-one to buy the electricity.

If some form of offshore hydrogen storage is possible, then the electricity can be used to generate hydrogen, which can be piped ashore, when it is needed.

It Won’t Be One Type Fits All

I suspect we’ll see some hybrid systems and other innovative engineering.

Conclusion

I believe that in a drive to cut costs, we’ll see a lot of energy brought ashore as hydrogen gas.

I

 

January 8, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , | 5 Comments