The Anonymous Widower

Novac Djokovic Is Screwed, Glued And Tattooed By The BBC

This article on the BBC is entitled Novak Djokovic: Doubts Over Timing Of Covid Test.

This is the introductory paragraph.

BBC research has cast doubt on the timing of the positive Covid test Novak Djokovic used to enter Australia to try to compete in the Australian Open.

The BBC have done some impeccable research on the tests and their dates.

Read it, as nothing they did was difficult, once they had details of all the tests.

As my old company accountant would say.

Novac Djokovic Is Screwed, Glued And Tattooed.

But then the accountant had ways of making money and numbers talk and perform!

In my life, I’ve had three accountants as friends and all have shown me simple ways to detect fraud.

One even showed me how to dress up a spreadsheet, so that a banker would believe it. As he had been Chief Accountant of one the most famous names in British industry, I always wrote my software to his rules.

January 28, 2022 Posted by | Computing, Sport | , , , , | 8 Comments

Hydrogen Refuelling Station For Vehicles Lands At Teesside Airport

The title of this post, is the same as that of this article on the Northern Echo.

This is the introductory paragraph.

A refuelling station that will serve hydrogen-powered vehicles based in the Tees Valley is now up and running at Teesside Airport as part of a £2.5million region-wide trial.

A selection of vehicles and equipment is being trialled, including some for the emergency services.

The trial will be overseen by Teesside University.

The University also runs the Tees Valley Hydrogen Innovation Project, which is described on this page on the University web site.

January 28, 2022 Posted by | Hydrogen, Transport/Travel | , , , , , | Leave a comment

Expansion Plan To Take World’s Biggest Battery Storage Project To 3GWh Capacity

The title of this post, is the same as that of this article on Energy Storage News.

These are the first two paragraphs.

Plans to nearly double the output and capacity of the world’s biggest battery energy storage system (BESS) project to date have been announced by its owner, Vistra Energy.

The Texas-headquartered integrated utility and power generation company said it wants to add another 350MW/1,400MWh BESS to the Moss Landing Energy Storage Facility in California’s Monterey Bay.

The project is based at the Moss Landing Power Plant, which was once the largest power plant in the state of California, with a generation capacity of 2560 MW.

There appear to be three phases.

  • Phase 1 is 300MW/1,200MWh and went online at the end of 2020
  • Phase 2 is 100MW/400MWh and went online in August 2021.
  • Phase 3 will be 350MW/1,400MWh.

This gives a maximum power output of 750 MW and prospective total capacity of 3 GWh. At full power, the battery could supply 750 MW for four hours.

For comparison, the two Scottish batteries I talked about in Amp Wins Consent For 800MW Scots Battery Complex, have a combined output of 800 MW and a total capacity of 1600 MWh, which would give a full power run of two hours.

Could the difference be that Scotland has 9.3 GW of installed windpower, whereas the much larger California has only 6 GW?

Both Scotland and California also have some pumped storage power stations.

This all shows the complex integrated nature of electricity networks.

January 28, 2022 Posted by | Energy, Energy Storage | , , , , , | Leave a comment

ITM Power’s 24MW Electrolyser Sale to Yara

The title of this post, is the similar to that of this press release from ITM Power. I just added a few words.

These are the first three paragraphs.

ITM Power (AIM: ITM), the energy storage and clean fuel company, is pleased to provide details of the sale of a 24MW electrolyser to Linde Engineering contained in the Company’s Half Year Report issued yesterday. The electrolyser is to be installed at a site operated by Yara Norge AS (“Yara”) located at Herøya outside Porsgrunn, about 140 km southwest of Oslo. The site covers an area of approximately 1.5 square kilometres and is the largest industrial site in Norway. The Porsgrunn site produces 3 million tons of fertiliser per year.

The hydrogen required for ammonia production is currently produced from SMR. Yara intends to start replacing this grey hydrogen with green hydrogen produced from renewable energy and electrolysis. The 24MW system supplying 10,368 kg/day of hydrogen will account for approximately 5% of the plant’s consumption and serve as a feasibility study for future upscaling. Yara has received a grant of up to NOK 283m (£23.6m,pending ESA approval) from Enova SF, a Government funding body, to invest in green solutions for hydrogen used for industrial purposes in Norway.

The electrolyser equipment is due to be ready for shipment from ITM Power in Q4 2022 with revenue realised in the Company’s 2022/2023 financial year.

These are my thoughts.

The Size Of The Electrolyser

A 24 MW electrolyser, that produces 10,368 Kg of hydrogen/day may sound a large device.

This is an extract from the press release.

In January 2021, the Company received an order for the world’s then largest PEM electrolyser of 24MW from Linde. In October 2021, the Company, with Linde, announced the deployment of a 100MW electrolyser at Shell’s Rhineland refinery, following the start-up of an initial 10MW facility at the site.

It appears that ITM Power have built one before and one four times the size has been ordered.

What Size Of Electrolyser Would Yara Need To Fully Decarbonise Ammonia Production?

According to the press release, a 24 MW electrolyser will produce five percent of the plant’s consumption, which means that a 480 MW electrolyser will be needed, if Yara use an ITM electrolyser to produce all their hydrogen.

Will manufacture of an electrolyser of this size be a problem for ITM Power?

The press release says this about electrolyser production.

ITM Power operates from the world’s largest electrolyser factory in Sheffield with a capacity of 1GW (1,000MW) per annum, with the announced intention to build a second UK Gigafactory in Sheffield with a capacity of 1.5GW expected to be fully operational by the end of 2023. The Group’s first international facility, expected to have a capacity of 2.5GW per annum, is intended to be operational by the end of 2024, bringing total Group capacity to 5GW per annum.

It also says that the company has raised £250m to accelerate expansion.

The Delivery Date

The delivery date of the electrolyser is stated as Q4 2022.

I find this rather quick, which makes me believe that one of the reasons for the success of ITM Power is their production process.

How Much Ammonia Is Produced Worldwide?

This is an extract from this publication from the Royal Society, which is entitled Ammonia: Zero-Carbon Fertiliser, Fuel And Energy Store.

Current global ammonia production is about 176 million tonnes per year and is predominantly achieved through the steam reforming of methane to produce hydrogen to feed into ammonia synthesis via the Haber Bosch process.

Ammonia production is a highly energy intensive process consuming around 1.8% of global energy output each year (steam methane reforming accounts for over 80% of the energy required) and producing as a result about 500 million tonnes of carbon dioxide (about 1.8% of global carbon dioxide emissions)2,3,4. Ammonia synthesis is significantly the largest carbon dioxide emitting chemical industry process. Along with cement, steel and ethylene production, it is one of the ‘big four’ industrial processes where a decarbonisation plan must be developed and implemented to meet the netzero carbon emissions target by 2050.

It looks like Linde and ITM Power have a fairly simple plan to decarbonise world ammonia production. And they have started with one of the easier targets; Yara in the very environmentally-correct Norway.

I estimate that to produce 176 million tonnes of green ammonia will need over 28 GW of electrolyser capacity.

Conclusion

If Linde and ITM Power can persuade the world, that their technology is the way to go, then they’ve got it made.

January 28, 2022 Posted by | Hydrogen | , , , , , , | Leave a comment