The Anonymous Widower

The Economic Case For Hydrogen In Domestic Heating

The title of this post, is the same as that of this article on The Chemical Engineer.

The Wikipedia entry for The Chemical Engineer has this introductory paragraph.

The Chemical Engineer is a monthly chemical engineering technical and news magazine published by the Institution of Chemical Engineers (IChemE). It has technical articles of interest to practitioners and educators, and also addresses current events in world of chemical engineering including research, international business news and government policy as it affects the chemical engineering community. The magazine is sent to all members of the IChemE and is included in the cost of membership. Some parts of the magazine are available free online, including recent news and a series of biographies “Chemical Engineers who Changed the World”, although the core and the archive magazine is available only with a subscription. The online magazine also has freely available podcasts.

It is a source on the Internet, where anything non-scientifically correct will be unlikely to appear.

The article has two introductory sub-headings.

Despite its thermodynamic disadvantages, global energy technology specialist Thomas Brewer believes hydrogen has an economic and efficient role in domestic heating. It forced him to deviate from his usual mantra of ‘efficiency above all else’ to get there, though

The work of decarbonisation by chemical engineers is about how we can cost effectively enable our organisations’ transition away from fossil fuels. This requires foresight. A decision chemical engineers make on a project with a 20-year lifespan will still be operational in 2045, when in most global locations, internal combustion engine (ICE) vehicles will probably be in the minority and grid electricity will be mostly renewable.

This is the first actual paragraph.

It is unsurprising, therefore, that chemical engineers are researching and debating the prospects of the future of energy availability from renewables, and the likely role and cost of hydrogen. There is much public noise surrounding the conversation about heat pumps vs hydrogen for domestic heating. I have noticed how few articles are written from an unbiased perspective, how very few reports talk about the whole solution, and authors avoid quantifying the financial impact of their proposed solution. I couldn’t find an unbiased study with any financial logic, so, I built a model to assess the options, for my own interests. I found the results so intriguing that I wanted to share them.

In other words, let the data do the talking and accept what it tells you.

These are some extracts from the article.

On Curtailment

The article says this on curtailment of wind energy, because you are generating too much.

Efficient electrical energy storage is expensive, which has traditionally led renewable system designers to include curtailment as a part of their design. Curtailment involves oversizing the wind supply to be higher than the grid connection to reduce the need for as much energy storage, and deliberately wasting the occasional electrical excess. The system design becomes an economical balance between oversizing the renewable generation and paying for additional electrical storage. Within the UK grid in 2023, curtailment is a small factor. As electrification and wind power become more mainstream, the financial decision between investing in excess wind vs electrical storage will lead curtailment to become a more significant factor.

Curtailment is to me a practice, that should be consigned to the dustbin of history.

To eliminate it, as much storage as is needed storage must be provided.

Eliminate Naked Flames In The Kitchen

The article says this about eliminating naked gas flames (natural gas or hydrogen) in the kitchen.

Figure 1 shows that the recommended standard of hydrogen gas installation if removing kitchen gas cooking would result in less injuries than the existing natural gas installation if cooking were converted to induction heating. Kitchen leaks are more likely than boiler leaks due to the number of valves and connections, regardless of the gas type. NOx emissions in the home because of naked flames in the kitchen are also of concern to the health of the occupants and hydrogen naked flames have a higher NOx emission than natural gas; another reason to eliminate naked flame cooking.

When I was financing the development of what became the Respimat inhaler, I did my due scientific diligence and found research from a Russell Group University, that naked flames (including smoking) were a cause of asthma, especially in children.

My recommendation is that, at an appropriate time in the near future, you replace your gas cooker with an electric one. My ginger-haired Glaswegian friend, who is a chef, who’s had Michelin stars would recommend an electric induction cooker.

Pumped Storage

The article says this about building more pumped storage.

The pumped storage assumption is based on the SSE proposal for Coire Glas, a 30 GWh £1.5bn storage system in Scotland which will more than double the UK’s current pumped storage capacity. The capital cost of this pumped storage system is about £50/kWh which will be delivered at about 80% efficiency. Pumped storage is a good balance between low cost and high efficiency. However, it requires natural resources. The Mott MacDonald report, Storage cost and technical assumptions for BEIS (Department for Business, Energy and Industrial Strategy) suggests the equivalent of four Coire Glas-scale installations in the UK by 2050. The model optimistically assumes that ten more similar additional Coire Glas-size pumped storage schemes could be installed.

This page on the Strathclyde University web site, gives these GWh figures for the possible amounts of pumped-storage that can be added to existing hydroelectric schemes.

Strathclyde’s total for extra storage is over 500 GWh.

Distributed Batteries

The article says this about distributed batteries.

A distributed battery assumption could be configured with multiple 10 kWh batteries which typically cost about £3,000 installed, near or in homes with a heat pump. This could be coupled with larger battery storage systems like the £30m Chapel Farm 99 MWh battery installation near Luton, commissioned in 2023. The small battery systems at each home are similar to the proposed virtual power plants using electric vehicle battery capacity to help balance the grid. Placing these batteries at locations with grid limitations could reduce the costs of upgrading the grid system. This is a more expensive energy storage scheme than pump storage and for the purposes of the model it is assumed that battery storage schemes are limitless. In both cases cited, the cost is £300/kWh. Battery efficiency varies significantly with temperature, and typically ranges from about 90% to 97%. As the system design needs to be focused on the coldest periods, the model is optimistically assuming 93% efficiency, which would require many of the batteries to be in a heated environment.

New lower-cost alternative batteries are also being developed.

Hydrogen Generation

The article says this about hydrogen generation.

Alternatively, the electricity generated from wind energy could be used in the electrolysis of water to produce hydrogen. While the fully installed electrolysis equipment costs about £2,100/kW, hydrogen storage in specially built cylinders is relatively cheap at about £23/kWh. The model, however, assumes salt mine storage which the US DoE in their report, Grid Energy Storage Technology Cost, calculate at a total system cost for hydrogen of $2/kWh. Electrolysis is the least efficient energy storage option, with a conversion efficiency of 75%, including compression. The waste heat from this conversion loss is useful for industrial heating, or in a district heating system. This has been ignored for simplicity.

Pumped storage, distributed batteries and hydrogen electrolysers distributed all over the UK, will mop up all the spare electricity and release it to heat pumps and for charging cars as necessary.

The hydrogen will be used for heating, to decarbonise difficult-to-decarbonise industries and provide fuel for hydrogen-powered vehicles, railways and shipping.

Curtailment will be a thing of the past.

The UK Offshore Wind Potential

The article says this about the UK offshore wind potential.

The UK government target for wind generation by 2030 is 50 GW. The UK offshore wind potential is reliable and available and has been estimated to be as high as 2,200 GW. There are, however, a few low wind periods that can last for several days.

I am not going to argue with 2,200 GW, but I will say that a lot of that will be used to generate hydrogen offshore.

Conclusions

This is the article’s main conclusion.

A wind-based supply for heating will mean that large quantities of potentially unused electricity will be available for more than 90% of the year, for potentially very low cost. While this could appear wasteful, it provides further synergistical opportunities for the decarbonisation of other interruptible energy duties, such as production of hydrogen for road transport or supplying heat via heat pumps for interruptible industries.

The sensitivity analysis shows that these conclusions are robust even with significant variation in the assumptions on equipment cost, efficiency, and other electricity source options.

This is also said about the most cost-effective solution.

A cost-effective national heat pump-only solution is about £500bn (50%) more expensive than a hydrogen-only boiler solution. The most cost-effective system is a combination of the two, £100bn cheaper than the hydrogen-only solution, and £600bn cheaper than the heat pump-only solution.

A cost-effective national heat pump-only solution has a system efficiency 40% lower than the hydrogen-only solution, requiring more than 750 GW of installed wind capacity. A hydrogen boiler solution requires less than 500 GW but the most efficient system, however, is a combination of the two.

The conclusions mean that everybody will be able to use the most appropriate solution for their circumstances for both heating their housing or powering their vehicles, as there will be massive supplies of affordable electricity and hydrogen.

How Will Everything Be Paid For?

Just as Germany and others built its industry on cheap Russian gas, it will now choose to use the plentiful and reliable UK electricity and hydrogen to rebuild its industry.

February 6, 2024 Posted by | Energy, Hydrogen | , , , , , | 1 Comment

A New Future Beckons For Scotland’s Historic Canals

The title of this post is the same as that as this article on The Herald.

This is the sub-heading.

Scotland’s canals, created for the industrial revolution but in recent times focused more on leisure than industry, are finding a new purpose as a different revolution, this time a green one, gets underway

The article was found by my Google Alert for the Coire Glas project, which is one of the UK’s largest green projects.

The article describes how Scotland’s canals are helping a green revolution and is well worth a read.

January 31, 2024 Posted by | Energy, Energy Storage, Transport/Travel | , , , | Leave a comment

Price Framework Paves Way For Vast Electricity Storage Scheme

The title of this post, is the same as that of this article on The Times.

This is the sub-heading.

SSE welcomes step forward in plans to build the £1.5bn Coire Glas hydroelectric project

These two paragraphs outline the article.

Ministers have provisionally agreed to a power pricing framework that could pave the way for more pumped storage hydroelectricity projects in Britain, including a gigantic £1.5 billion scheme from SSE that is starting to take shape in the Scottish Highlands.

The Department for Energy Security and Net Zero said it intended to develop a “cap and floor” pricing mechanism that would advance the Coire Glas storage project being developed by SSE, the energy company, and could unlock further pumped storage power stations.

Coire Glas will be one of the largest renewable power projects ever built in the UK.

  • It will have a power output of 1.5 GW, which is comparable with some of the large wind farms in the North Sea or four gas-fired power station or Rolls-Royce SMRs.
  • It will be able to store 30 GWh of electricity and provide 1.5 GW for twenty hours.
  • Coire Glas has a web site.
  • Coire Glas will more than double pumped storage hydroelectric capacity in the UK.

Bath County Pumped Storage Station in Virginia, US claims to be the world’s largest battery, but Coire Glas will be able to store more electricity.

You wait decades for one of these monsters to come along in the UK and SSE also have another on the way.

  • Loch Sloy hydroelectric power station is the largest conventional hydroelectric power station in the UK.
  • It has an output of 152 MW.
  • It opened in 1950 and was largely built by German and Italian prisoners-of-war.

SSE plan to convert Loch Sloy power station into a pumped storage hydroelectric power station.

  • It will be able to store 25 GWh of electricity.
  • Loch Sloy will be the upper lake.
  • Loch Lomond will be the lower lake.
  • The existing dam, upper lake, pipes and powerhouse will be retained.
  • The developments have a web page.

The project is aimed at a commissioning date of 2028.

This paragraph explains how the ‘cap and floor’ mechanism works.

In the scheme, operators would be guaranteed a minimum level of revenue, while consumers would be protected by a price ceiling, above which surplus revenue would be returned to them.

And these two paragraphs give SSE’s reaction.

Finlay McCutcheon, 46, director of onshore Europe at SSE, said the pricing framework was welcome news. He said that a deal for Coire Glas was needed by the end of this year to secure a firm investment decision by early 2026. Planning for the project started in 2007.

“Given the time taken to reach this point, much work is now needed to ensure an effective mechanism is finalised and put in place as early as possible to enable Coire Glas to take final investment decisions and move into construction,” he said.

I believe that the negotiations between the Government and SSE will lead to a monster on Loch Lochy and another one on Loch Lomond.

Conclusion

There are also these pumped storage hydroelectric  schemes under development.

  • Balliemeanoch Pumped Hydro – 1.5 GW/45 GWh
  • Balmacaan Pumped Hydro – 600 MW/15-20 GWh
  • Corrievarkie Pumped Hydro – 1.5 GW/14.5 GWh
  • Fearna Pumped Hydro – 1.8 GW/37 GWh
  • Glenmuckloch Pumped Hydro – 400 MW/1.6 GWh
  • Loch Earba Pumped Storage Hydro – 900MW/33 GWh
  • Loch Kemp Pumped Storage Hydro – 300MW/9 GWh
  • Loch Na Cargeach/Red John Pumped Storage Hydro – 450 MW/2.8 GWh

These total up to 7.4 GW/100+ GWh.

This page on the Strathclyde University web site, gives these GWh figures for the possible amounts of pumped-storage that can be added to existing schemes.

  • Errochty – 16
  • Glasgarnock – 23
  • Luichart – 38
  • Clunie – 40
  • Fannich – 70
  • Rannoch – 41
  • Fasnakyle – 78
  • Tummel – 38
  • Ben Lawers – 12
  • Nant – 48
  • Invermoriston – 22
  • Invergarry – 41
  • Quoich – 27
  • Sloy – 20

That is a total of 514 GWh.

Scotland will be the Saudi Arabia of energy storage.

 

 

 

January 11, 2024 Posted by | Energy, Energy Storage | , , , , , , , , , , , , , , , , , , , | 11 Comments

Building Inside Mountains: Global Demand For Pumped Hydroelectric Storage Soars

The title of this post, is the same as that of this article on Construction-Europe.

This is the sub-heading.

Pumped hydroelectric storage plants around the world have been secretly storing electricity in remote mountain lakes for the last century. But the switch to renewable energy sources is prompting a surge in new construction.

These two paragraphs introduce the article.

Looking out over the ragged beauty of the Scottish Highlands, Coire Glas, a horseshoe-shaped valley holding a clear mountain lake above the shores of Loch Lochy, seems like an unlikely spot to build a megaproject.

In this remote location, surrounded by clumps of pine trees, a team of construction workers from contractor Strabag are tunnelling their way through the rock which they hope will form part of a vast new power storage facility.

The article is a must-read that talks about pumped storage hydroelectricity in general and SSE Renewables’s 1500MW/30 GWh Coire Glas power station in particular.

The Future Of Pumped Hydroelectric Storage

These two paragraphs from the article give a glimpse into the future.

According to the International Energy Agency, global pumped storage capacity is set to expand by 56% to reach more than 270 GW by 2026, with the biggest growth in India and China.

Current pumped storage megaprojects currently in construction include the Kannagawa Hydropower Plant near Minamiaki in Japan which when fully completed in 2032 is expected to have a total installed capacity of 2,820MW; and Snowy Hydro 2.0 in New South Wales, Australia, which is currently expected to complete in 2028.

Note.

  1. I can count two Indian and ninety Chinese systems under construction. All have a capacity of upwards of one GW.
  2. The Kannagawa Hydropower Plant appears to be the largest with a capacity of 2.82 GW. The Japanese are keeping quiet about the storage capacity.
  3. The Snowy Hydro 2.0 has a capacity of 2 GW and a storage capacity of 350 GWh.
  4. The Wikipedia entry for Snowy Hydro 2.0 states that it is the largest renewable energy project under construction in Australia.

Against this onslaught of massive systems, SSE Renewables are pitching the 1500MW/30 GWh Coire Glas and the 252MW/25 GWh Loch Sloy systems.

Pumped hydroelectric storage will have a big part to play in decarbonising the world. Even in little old and relatively flat UK.

 

 

December 11, 2023 Posted by | Energy | , , , , , , , | 2 Comments

National Grid To Accelerate Up To 20GW Of Grid Connections Across Its Transmission And Distribution Networks

The title of this post, is the same as that of this press release from National Grid.

These four bullet points, act as sub-headings.

  • Connection dates of 10GW of battery projects accelerated at transmission level, and 10GW of capacity unlocked at distribution level, both part of the Electricity System Operator (ESO)’s connections five-point plan.
  • Battery energy storage projects connecting to the transmission network to be offered new connection dates averaging four years earlier than their current agreement.
  • The accelerated 20GW equates to the capacity of six Hinkley Point C nuclear power stations.
  • Work is part of ongoing collaborative industry efforts, together with Ofgem and government, to speed up and reform connections.

This is the opening paragraph.

National Grid is accelerating the connection of up to 20GW of clean energy projects to its electricity transmission and distribution networks in England and Wales as part of ongoing collaborative work across industry.

As I write this, the UK is generating 38.5 GW of electricity, so another 20 GW will be a large increase in capacity.

I shall look at what National Grid are proposing in sections.

10 GW Of Battery Power

These two paragraphs, outline the plan for 10 GW of battery power.

On its transmission network, 19 battery energy storage projects worth around 10GW will be offered dates to plug in averaging four years earlier than their current agreement, based on a new approach which removes the need for non-essential engineering works prior to connecting storage.

The new policy is part of National Grid’s connections reform initiative targeting transmission capacity, spearheaded by the ESO – which owns the contractual relationship with connecting projects – and actioned jointly with National Grid Electricity Transmission (ET), the part of the business which designs and builds the transmission infrastructure needed in England and Wales to plug projects in.

It looks to me that someone has been doing some serious mathematical modelling of the UK’s electricity network.

Fifty years ago, I provided the differential equation solving software, that enabled the Water Resources Board to plan, where reservoirs and pipelines were to be built. I have no idea how successful it was, but we don’t seem to have any serious water supply problems, except when there is equipment failures or serious drought.

But modelling water and electrical networks is mathematically similar, with rainfall, pipelines and reservoirs in the water network and power generation, transmission lines and batteries and pumped storage hydroelectricity in the electricity network.

I’d be interesting to know what software was used to solve the mathematical model.

I certainly agree with the solution.

Two of our modern sources of renewable energy; solar and wind are not very predictable, but cost a lot of capital investment to build.

So it is very wrong not to do something positive with any excess electricity generated. And what better place to put it than in a battery, so it can be retrieved later.

The earlier, the batteries come on stream, the earlier, the batteries can save all the excess electricity.

So moving the plug in dates for battery storage four years earlier is a very positive thing to do.

A simple calculation shows that for 10 GW, we would need nineteen batteries of about 526 MW.

Ideally, like power stations, they would be spread around the country.

Could Pumped-Storage Hydroelectricity Be Used?

The largest battery in the UK is the Dinorwig pumped-storage hydroelectric power station, which is commonly known as Electric Mountain or Mynydd Gwefru if you’re Welsh.

  • It opened in 1984, after a ten years of construction.
  • It has a power output of 1.8 GW.
  • The energy storage capacity of the station is around 9.1 GWh.

Roughly, every gigawatt of output is backed up by 5 GWh of storage.

If the proposed nineteen new batteries have the same power to storage ratio as Electric Mountain, then each battery will have a storage capacity of 2.63 GWh

SSE Renewables are planning two large pumped-storage hydroelectric power stations in Scotland.

A quick calculation, says we’d need seven pumped-storage hydroelectric power stations, which need a lot of space and a handy mountain.

I don’t think pumped-storage hydroelectric would be feasible.

Could Lithium-Ion Batteries Be Used?

My mathematical jottings have shown we need nineteen batteries with this specification.

  • An output of about 526 MW.
  • A storage capacity of around 2.63 GWh

This Wikipedia entry gives a list of the world’s largest battery power stations.

The current largest is Vistra Moss Landing battery in California, which has this specification.

  • An output of 750 MW.
  • A storage capacity of 3 GWh

Reading the Wikipedia entry for Vistra Moss Landing, it appears to have taken five years to construct.

I believe that nineteen lithium-ion batteries could handle National Grid’s need and they could be built in a reasonable time.

Could Any Other Batteries Be Used?

Rounding the battery size, I feel it would be better have twenty batteries with this specification.

  • An output of 500 MW.
  • A storage capacity of 2.5 GWh

Are there any companies that could produce a battery of that size?

Form Energy

Form Energy are well-backed with an MIT heritage, but their largest proposed battery is only 10 MW/1 GWh.

They could be a possibility, but I feel it’s only a small chance.

Highview Power

Highview Power say this about their next projects on this page of their web site.

Highview Power’s next projects will be located in Scotland and the North East and each will be 200MW/2.5GWh capacity. These will be located on the national transmission network where the wind is being generated and therefore will enable these regions to unleash their untapped renewable energy potential and store excess wind power at scale.

Note.

  1. This is more like the size.
  2. Work is now underway at Carrington – a 50MW / 300MWh plant at Trafford Energy Park near Manchester.
  3. Highview’s technology uses liquid air to store energy and well-proven turbo-machinery.
  4. Highview have a co-operation agreement with Ørsted

They are a definite possibility.

10 GW Of Extra Unlocked Capacity

These two paragraphs, outline the plan for 10 GW of extra unlocked capacity.

On its distribution network in the Midlands, South West of England and South Wales, the additional 10GW of unlocked capacity announced recently is set to accelerate the connection of scores of low carbon technology projects, bringing forward some ‘shovel ready’ schemes by up to five years.

National Grid has already been in contact with more than 200 projects interested in fast tracking their distribution connection dates in the first wave of the capacity release, with 16 expressing an interest in connecting in the next 12 months and another 180 looking to connect within two to five years.

This page from National Grid ESO, lists the actions that were taken to release the extra grid capacity.

Conclusion

This looks to be a very good plan from National Grid.

 

 

November 6, 2023 Posted by | Energy, Energy Storage | , , , , , , , , , , | 3 Comments

Arup and ILF Join Forces To Enhance Pumped Storage Projects In The UK

The title of this post, is the same as that of this of article on Water Power And Dam Construction.

These are the first two paragraphs.

Global sustainable development consultancy Arup and ILF Consulting Engineers have recently signed a Memorandum of Understanding (MOU) aimed at strengthening pumped storage projects in the UK. These projects include Coire Glas, Glenmuckloch, and up to 13 additional schemes in the pipeline.

This partnership marks a significant development in the hydropower sector in the UK, bringing both capacity and valuable experience to support the country’s net-zero energy transition.

Fifteen schemes could be a lot of energy storage.

These are a few useful web sites with information to back up the article.

As most of the work appears to be in Scotland, this would appear to be a second large installment of Power From The Glens. Perhaps it should be named Storage In The Glens.

October 13, 2023 Posted by | Energy | , , , , , | Leave a comment

ILI Group To Develop 1.5GW Pumped Storage Hydro Project

The title of this post, is the same as that of this article on the Solar Power Portal.

This is the sub-heading.

The pumped hydro facility will be located at Loch Awe, which is also home to Kilchurn Castle.

These paragraphs outline the story.

Clean energy developer ILI Group has begun the initial planning phase for a new pumped storage hydro project in Scotland.

The Balliemeanoch project at Loch Awe, Dalmally in Argyll and Bute will be able to supply 1.5GW of power for up to 30 hours. It is the third and largest of ILI’s pumped storage hydro projects, with the other two being Red John at Loch Ness and Corrievarkie at Loch Ericht.

The Balliemeanoch project will create a new ‘head pond’ in the hills above Loch Awe capable of holding 58 million cubic meters of water when full.

Note.

  1. At 1.5 GW/45 GWh, it is a large scheme and probably the largest in the UK.
  2. This is the third massive pumped storage hydro scheme for the Highlands of Scotland after SSE’s 1.5 GW/30 GWh Coire Glas and 152 MW/25 GWh Loch Sloy schemes.
  3. I describe the scheme in more detail in ILI Group To Develop 1.5GW Pumped Storage Hydro Project.

The article also has this paragraph.

It follows a KPMG report finding that a cap and floor mechanism would be the most beneficial solution for supporting long duration energy storage, reducing risks for investors while at the same time encouraging operators of new storage facilities to respond to system needs, helping National Grid ESO to maintain security of supply.

A decision on funding would be helpful to all the energy storage industry.

 

September 29, 2023 Posted by | Energy, Energy Storage, Finance | , , , , , , , | 1 Comment

How Britain’s Biggest Natural Battery Can Help Deliver Net Zero

The title of this post, is the same as that of this article in the New Statesman.

This is the sub-heading.

SSE wants to double the nation’s flexible electricity storage capacity.

These two paragraphs introduce the article.

After previous delays and false starts, governments and businesses across the world are pushing towards the common goal of net zero. The energy sector is arguably the area with the biggest responsibility to work towards this target, and there is no time for complacency.

Ensuring clean, renewable energy sources such as hydrogen, wind and solar power become a larger part of the grid will be critical for the sector in its push towards net zero. A key facet of the clean energy drive will be having sufficient storage for each renewable power source kept in reserve, to be used as and when required as a crucial back-up mechanism. In last spring’s energy security review the government outlined its commitment to support long duration storage projects.

It is certainly very comprehensive and a must read.

This sentence illustrates the financial problem with pumped storage.

SSE is calling on the UK government to help it commit to building the Coire Glas storage facility by providing one simple policy decision that will send a clear signal as to how government intends to support the deployment of long duration electricity storage. The project doesn’t need subsidising, SSE states, but it would benefit from revenue stabilisation, and clarity on such support sooner rather than later.

Hopefully, this article will help get the required support.

Coire Glas

Coire Glas will have an output of 1500 MW and a storage capability of 30 GWh.

There is more information at the Coire Glas web site.

The project could be up and running by the early 2030s.

Loch Sloy Pumped Storage

The article also mentions the Loch Sloy Pumped Storage scheme, that has been recently announced by SSE.

I wrote about this 25 GWh scheme in SSE Unveils Redevelopment Plans For Sloy Hydro-Electric Power Station.

SSE haven’t announced much more about this scheme and it is not mentioned on the Sloy/Awe web site.

 

June 25, 2023 Posted by | Energy, Energy Storage | , , , , | 2 Comments

Angus Peter Campbell: I’m In Two Minds About The Renewable Energy Revolution

The title of the post, is the same as that of this article in the Aberdeen Press and Journal.

This is the sub-heading.

The debate (argument) between development and environmentalism is as old as the hills.

In the article, Campbell puts all sides of the arguments over the Coire Glas pumped storage hydro-electric scheme, and the article is very much a must read.

I feel that this 1500 MW/30 GWh scheme should be built, as like Hinckley Point C and Sizewell C, it takes a large bite out of the new energy storage capacity that is needed.

But if we do build this large project, we should think very hard about how we do it.

These are a few thoughts.

Low Carbon, Disturbance And Noise During Construction

High Speed Two are doing this and I wrote about it in HS2 Smashes Carbon Target.

I do subject though, that increasingly large construction projects can go this way.

Electric Trucks, Cranes And Other Equipment

High Speed Two and big mining companies are increasingly using electric mining trucks, cranes and other equipment.

As this sort of equipment, also provides a better environment for workers, I suspect we’ll see more electric equipment.

Hydrogen Trucks And Construction Equipment

Hydrogen could play a big part and rightly so.

It is ideal for heavier equipment and one of its biggest advocates and developers is JCB.

I wouldn’t be surprised to see a decision about an onsite electrolyser being made soon.

Low Carbon Concrete

There are various methods of making low- and zero-carbon concrete, some of which incorporate carbon dioxide into the material.

Use Of Loch Lochy And The Caledonian Canal

I wouldn’t be surprised if just as the Thames in London was used in the construction of Crossrail and the Northern Line extension, Loch Lochy and The Caledonian Canal will be used to take out construction spoil.

There’s certainly a lot of ways to be innovative in the movement of men and materials.

Conclusion

The construction of Coire Glas will make an epic documentary.

 

April 6, 2023 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , | Leave a comment

£100m Boost For Biggest UK Hydro Scheme In Decades

The title of this post, is the same as that of this article on the BBC.

This is the sub-heading.

A giant hydro scheme which would double the UK’s ability to store energy for long periods is taking a leap forward with a £100m investment by SSE.

These are the first three paragraphs.

The proposed 92m-high dam and two reservoirs at Coire Glas in the Highlands would be Britain’s biggest hydroelectric project for 40 years.

Scottish ministers approved the 1.5 GW pumped storage facility in 2020.

But power giant SSE wants assurances from the UK government before finally signing it off.

There are two major problems with this scheme.

Why The Forty Year Wait?

I am an Electrical and Control Engineer and it is a scandal that we are waiting forty years for another pumped storage scheme like the successful  Electric Mountain or Cruachan power stations to arrive.

Petrol or diesel vehicles have batteries for these three main purposes.

  • To start the engine.
  • To stabilise the output of the generator or alternator.
  • To provide emergency power.

As to the latter, I can’t be the only person, who has dragged a car out of a ford on the starter motor. But think of the times, you’ve used the hazard warning lights, after an accident or an engine failure.

The nightmare of any operator of a complicated electricity network like the UK’s is a black start, which is defined by Wikipedia like this.

A black start is the process of restoring an electric power station or a part of an electric grid to operation without relying on the external electric power transmission network to recover from a total or partial shutdown.

Hydro electric power stations and especially those that are part of pumped storage schemes are ideal for providing the initial power, as they are often easy to start and have water available. Cruachan power station has a black start capability, but at 440 MW is it big enough?

Over the last few years, many lithium-ion batteries have been added to the UK power network, which are used to stabilise the grid, when the sun isn’t shining and the wind isn’t blowing.

There are four pumped storage hydro-electric schemes in the UK.

Note.

  1. I always give the power output and the storage capacity for a battery, if it is known.
  2. According to Wikipedia, Scotland has a potential for around 500 GWh of pumped storage.
  3. The largest lithium-ion battery that I know, that is being planned in the UK, is Intergen’s 320 MW/640 MWh battery at Thames Gateway, that I wrote about in Giant Batteries Will Provide Surge Of Electricity Storage. It’s smaller than any of the four current pumped storage schemes.
  4. The Wikipedia entry for Coire Glas says that it is a 1.5 GW/30 GWh pumped storage hydro-electric power station.

I very much feel that even one 1.5 GW/30 GWh pumped storage hydro-electric power station must make a big difference mathematically.

Why have we had to wait so long? It’s not as though a pumped storage hydro-electric power station of this size has suffered a serious disaster.

Drax Needs Assurances Too?

The BBC article says this.

Scotland’s only other pumped storage scheme, operated by Drax Group, is housed within a giant artificial cavern inside Ben Cruachan on the shores of Loch Awe in Argyll.

The North Yorkshire-based company plans to more than double the generating capacity of its facility, nicknamed Hollow Mountain, to more than 1GW, with the construction of a new underground power station.

But both Drax and SSE have been reluctant to press ahead without assurances from Whitehall.

It looks like the right assurances would open up at least two pumped storage hydro-electric power station projects.

But it could be better than that, as there are other projects under development.

This totals to 3750 MW/104.3 GWh or 5850 MW/134.3 GWh with the addition of Coire Glas and the extension to Cruachan.

Getting the assurances right could result in large amounts of construction in Scotland!

What Assurances Do Power Giants SSE And Drax Want Before Signing Off?

This news item on SSE Renewables, which is dated 18th March 2022, is entitled Ministerial Roundtable Seeks To Unlock Investment In UK Energy Storage.

These three paragraphs gives details of the meeting.

Business leaders have met with UK Energy Minister the Rt Hon Greg Hands MP to discuss how the government could unlock significant investment in vital energy storage technologies needed to decarbonise the power sector and help ensure greater energy independence.

The meeting was organised by the Long-Duration Electricity Storage Alliance, a new association of companies, progressing plans across a range of technologies to be first of their kind to be developed in the UK for decades.

Representatives from Drax, SSE Renewables, Highview Power and Invinity Energy Systems met with The Rt Hon Greg Hands MP, Minister of State for Business, Energy and Clean Growth [yesterday].

But they still don’t seem to have come up with a funding mechanism.

  • In this case, it seems that multiple politicians may not be to blame, as Greg Hands was the Minister of State for Business, Energy and Clean Growth until the 6th of September 2022, when he handed over to Graham Stuart, who is still the incumbent.
  • Could it be that civil servants for this problem need to be augmented by a Control Engineer with mathematical modelling skills from a practical university?

It is the sort of problem, I would love to get my teeth into, but unfortunately my three mentors in accountancy and banking; Bob, Brian and David, who could have helped me, have all passed on to another place to help someone else with their problems.

I’ve just had a virtual meeting with all three and they told me to look at it like a warehousing system.

Consider.

  • It would be very easy to measure the amount of water stored in the upper reservoir of a pumped storage hydro-electric power station.
  • It would also be easy to measure the electricity flows to and from the pumped storage hydro-electric power station.
  • A monetary value could be placed on the water in the upper reservoir and the flows, depending on the current price for electricity.

So it should be possible to know that a pumped storage hydro-electric power station, was perhaps storing energy as follows.

  • 10 GWh for SSE
  • 8 GWh for RWE
  • 6 GWh for Scottish Power
  • 6 GWh is not being used

And just as in a warehouse, they would pay a fee of so much for storing each GWh for an hour.

  • The system would work with any type of storage.
  • Would competition between the various storage sites bring down prices for storing electricity?
  • Pumped storage operators would get a bonus when it rained heavily.
  • Just as they do now, electricity generators would store it when prices are low and retrieve it when prices are high.

A lot of the rules used to decide where electricity goes would still work.

 

 

March 22, 2023 Posted by | Energy, Energy Storage, Finance | , , , , , , , , , , , , | 3 Comments