The Anonymous Widower

Dogger Bank D Welcomes Confirmation Of Grid Connection Location

The title of this post, is the same as that of this press release from SSE Renewables.

This is the sub-heading.

Project team now focusing full attention on electrical transmission system connection.

These four paragraphs describe the proposed connection to the National Grid.

SSE Renewables and Equinor have welcomed confirmation of a grid connection location from the Electricity System Operator (ESO) for a proposed fourth phase of the world’s largest offshore wind farm.

Dogger Bank D will now connect into Birkhill Wood, a proposed new 400kV substation located in the East Riding of Yorkshire which will be built as part of National Grid’s Great Grid Upgrade.

The announcement follows the publication of an impact assessment for the South Cluster by ESO, relating to energy projects which are due to be electrically connected off the east coast of England.

With the location of a grid connection confirmed, Dogger Bank D will now focus its full attention on connecting to the electrical transmission system.

This is a big change from December 2023, when I wrote Plans for Hydrogen Development At Dogger Bank D Gain Ground, which indicated that Dogger Bank D would be used to produce hydrogen, so the grid connection wouldn’t be needed.

Using A Offshore Hybrid Asset Between the UK And Another European Country

This is the next paragraph on the SSE Renewables press release.

The project is also exploring the future possibility of the development of Dogger Bank D to be coordinated with an Offshore Hybrid Asset between the UK and another European country’s electricity market to form a multi-purpose interconnector. This option would increase energy security for the UK and reduce the need to curtail offshore wind output in times of oversupply on the GB network.

Note that just over the boundary of the UK’s Exclusive Economic Zone are the Dutch and German Exclusive Economic Zones.

It is not unreasonable to believe that UK, Dutch and German grid could all be connected on the Dogger Bank.

Connecting Everything Up At Birkhill Wood

This is the next paragraph on the SSE Renewables press release.

The project team are undertaking a site selection process to identify potential cable corridors and where other onshore infrastructure associated with the grid connection at Birkhill Wood may be sited. Consultation will be held later this year to introduce the connection proposals to the local community.

At least now, with the connection to Birkhill Wood confirmed, SSE and Equinor will be able to supply any electricity generated at Dogger Bank D to the UK grid, up to limit of the connection.

The Value Of Electricity That Could Be Generated At Dogger Bank D

Consider.

  • The wind farm has a capacity of 2 GW or 2,000 MW.
  • There are 365 days in most years.
  • There are 24 hours in the day.
  • This means that 17, 520,000 MWh could be generated in a year.
  • A large wind farm like Hornsea One has a twelve month rolling capacity factor of 46.6%.
  • Applying this capacity factor says that 8,164,320 MWh will be generated in a year.
  • The Contract for Difference Round 6 for this electricity will be £73/MWh.

Applying that figure gives a yearly turnover of £ 595,995,360 or £ 297,997,680 per installed GW.

It is not unreasonable to assume that half of this electricity were to be exported to power Germany industry.

It could be a nice little earner for the Treasury.

March 14, 2024 Posted by | Energy | , , , , , , , , , | 3 Comments

Plans for Hydrogen Development At Dogger Bank D Gain Ground

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

Dogger Bank D, the potential fourth phase of the world’s largest offshore wind farm under construction, Dogger Bank Wind Farm, has awarded contracts to engineering consultants to support the feasibility and optimization of a large-scale green hydrogen development option on the project

These three paragraphs outline the project.

SSE Renewables and Equinor, the developers of the Dogger Bank wind farm in the UK, awarded contracts for green hydrogen concept and engineering and optimization studies to Genesis, H2GO Power, and Fichtner.

If progressed for delivery, Dogger Bank D would be located in the North Sea around 210 kilometers off the northeast coast of England. Subject to the successful outcome of further technical studies, the project could be capable of generating up to around 2 GW of renewable power.

The 2 GW offshore wind farm is currently planned to comprise 128 wind turbines and up to six offshore platforms.

Note.

According to the article, this would be one of the UK’s largest green hydrogen production facilities.

The partners said, that the project could contribute to the UK Government’s electrolytic hydrogen ambitions for 5 GW by 2030.

This is said about the studies.

Using AI machine learning and robust modeling, these studies will investigate the multitude of interdependent variables required to optimize a potential green hydrogen production facility, such as offshore wind farm sizing, electrolysis capacity, transport and storage capacity, water availability, and offtake optionality.

I was using robust modelling on projects such as these fifty years ago, both with Artemis and bespoke software.

To my mind, SSE Renewables and Equinor are doing the right thing. If anybody has a similar project with lots of variables, I’d love to give my opinion.

I have some thoughts.

How Much Hydrogen Will Be Produced?

Ryze Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

The electrolyser will consume 552 MWh to produce ten tonnes of hydrogen, so creating one tonne of hydrogen needs 55.2 MWh of electricity.

 

This would mean that if the Japanese built one Herne Bay-size electrolyser, then it would produce around three hundred tonnes of hydrogen in an average month.

Consider.

  • Dogger Bank D is likely to be a 2 GW wind farm.
  • This document on the OFGEM web site, says that the Dogger Bank wind farms will have a capacity factor of 45 %.
  • This means that Dogger Bank D wind farm will produce an average of 900 MW over a year.
  • This works out at 7,884 GWh of electricity in a year.

As each tonne of hydrogen needs 55.2 MWh to be produced, this means if all the electricity produced by Dogger Bank D, is used to create green hydrogen, then 142,826.1 tonnes will be produced.

How Will The Hydrogen Be Brought Ashore?

142,826.1 tonnes is a lot of green hydrogen and the easiest ways to transfer it to the shore would be by a pipeline  or a tanker.

I wouldn’t be surprised to see the use of tankers, as this would give more flexibility and allow the export of hydrogen to countries in need of hydrogen.

Will There Be Hydrogen Storage In The Dogger Bank D Wind Farm?

This would surely be a possibility, but there are security considerations.

Cost would also be a factor!

The Location Of The Dogger Bank D Wind Farm

I clipped this map of Dogger Bank A, B, C and D wind farms from this page of the Dogger Bank D web site.

Note.

  1. RWE’s Dogger Bank South wind farm is not shown on the map.
  2. Dogger Bank D wind farm is the most Easterly of the four wind farms being developed by SSE Renewables and Equinor.
  3. Dogger Bank D wind farm must be the closest of the Dogger Bank wind farms to the Eastern border of the UK’s Exclusive Economic  Zone or EEZ.

Dogger Bank D wind farm would appear to be ideally placed to supply hydrogen to a number of places, by either pipeline or tanker.

Could Dogger Bank South Wind Farm Also Produce Hydrogen?

In RWE Partners With Masdar For 3 GW Dogger Bank South Offshore Wind Projects, I talked about the change of ownership of the Dogger Bank South wind farm.

I would assume that the Dogger Bank South wind farm will be located to the South of the Dogger Bank A,B, C and D wind farms.

Whether it will produce hydrogen will be a matter for the owners and market conditions.

I do believe though, that it could share some facilities with the those that might be built for Dogger Bank D wind farm.

Conclusion

After this brief look, Dogger Bank D could be an ideal place to build a large hydrogen production facility.

 

December 4, 2023 Posted by | Computing, Energy, Hydrogen | , , , , , , , , , , , | 1 Comment

Crown Estate Mulls Adding 4 GW Of Capacity From Existing Offshore Wind Projects

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

The Crown Estate has revealed that it is taking steps to enable the generation of up to an additional 4 GW of electricity from several offshore wind projects in development, within the timeframe of the 50 GW 2030 target.

These are the first two paragraphs.

This follows requests from the developers of seven offshore wind farm projects who believe additional capacity can be generated from the areas of the seabed they hold existing rights for.

According to the Crown Estate, the technology has advanced and more capacity could be developed at projects that are already underway.

The seven wind farms are.

  • Awel y Môr – Estimates 500 MW – Fixed – RWE
  • Dogger Bank D – 1320 MW – Fixed – SSE Renewables, Equinor
  • Dudgeon and Sheringham Shoal Extension – 719 MW – Fixed – Equinor
  • Five Estuaries – TBD – Fixed – RWE
  • North Falls – 504 MW – Fixed – SSE Renewables, RWE
  • Rampion 2 – 1200 MW – Fixed – E-ON

Note.

  1. The Dudgeon and Sheringham Shoal Extensions seem to have been combined.
  2. One website connected to the wind farm, gives Five Estuaries as 353 MW.
  3. All are fixed wind farms.
  4. All are by large, established developers.

The total size is 4596 MW, using 500 MW for Awel y Môr and 353 MW for Five Estuaries.

Uprating by 8596/4596 could give these capacities.

  • Awel y Môr – 935 MW
  • Dogger Bank D – 2469 MW
  • Dudgeon and Sheringham Shoal Extension – 1345 MW
  • Five Estuaries – 660 MW
  • North Falls – 943 MW
  • Rampion 2 – 2244 MW

The total size is 8596 MW

Conclusion

This seems to be a sensible way to increase offshore wind capacity.

November 9, 2023 Posted by | Energy | , , , , , , , , , , | 4 Comments

Fourth Phase Could Bring 2 GW More To World’s Already Largest Offshore Wind Farm Under Construction

The title of this post, is the same as that of this article on offshoreWIND.biz.

 

This is the sub-heading.

Dogger Bank D, the potential fourth phase of the Dogger Bank Wind Farm, whose first three phases totalling 3.6 GW are currently being built, is planned to have a generation capacity of around 2 GW. If built, the fourth phase would bring the total installed capacity of the UK project – already the world’s largest offshore wind farm under construction – to over 5.5 GW.

This is the introductory paragraph.

SSE Renewables and Equinor, which own the Dogger Bank A, B and C offshore wind farms through a consortium that also comprises Vårgrønn, have now launched a public consultation period on the Dogger Bank D proposals that runs until 7 November.

As RWE are developing the 3 GW Dogger Bank South, the Dogger Bank wind farm will be up to 8.5 GW in a few years.

September 26, 2023 Posted by | Energy | , , , , , , | Leave a comment

Equinor And SSE Eye Green Hydrogen Production For 1.32 GW Dogger Bank D

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

SSE Renewables and Equinor, the developers of the Dogger Bank Wind Farm in the UK, are exploring two options for Dogger Bank D, the fourth wind farm the partners are looking to build as part of the development. These include using Dogger Bank D for electricity that would feed into the UK grid and/or for green hydrogen production.

This says to me, that depending on need, electricity from the Dogger Bank Wind Farms and D in particular, can be distributed in the grid or converted into green hydrogen.

  • The article says that the electrolyser could become the UK’s largest green hydrogen project
  • There will be plenty of hydrogen storage in the salt caverns at Aldbrough, which can currently store the equivalent of 320 GWh of electricity, It is currently being expanded to be one of the largest hydrogen stores in the world according to this page on the SSE web site.
  • There are currently two gas-fired power stations at Keadby and they will in a few years be joined by a third, that will be fitted with carbon-capture and a hydrogen-fueled power station.

The various wind farms, power stations and gas storage on Humberside are growing into a very large zero-carbon power cluster, with an output approaching six GW.

Any shortfall in wind output, could be made-up by using the Keadby 3 gas-fired power station with carbon capture or the Keadby hydrogen power station.

Conclusion

Humberside is getting a cluster of power stations and wind farms, that can produce almost twice the electricity of Hinckley Point C nuclear power station.

 

February 6, 2023 Posted by | Energy, Hydrogen | , , , , , , , , , | 2 Comments

Plans Emerge For 8 GW Of Offshore Wind On Dogger Bank

Wikipedia has an entry, which is a List Of Offshore Wind Farms In The United Kingdom.

The totals are worth a look.

  • Operational – 13279 MW
  • Under Construction – 4125 MW
  • Proposed Under The UK Government’s Contracts For Difference Round 3 – 2412 MW
  • Proposed Under The UK Government’s Contracts For Difference Round 4 – 7026 MW
  • Exploratory Phase, But No Contract for Difference – Scotland – 24,826 MW
  • Exploratory Phase, But No Contract for Difference – England – 14,500 MW

Note.

  1. That gives a Grand Total of 66,168 MW or 66.168 GW.
  2. The government’s target is 50 GW of offshore wind by 2030.
  3. The typical UK power need is around 23 GW, so with nuclear and solar, we could be approaching three times the electricity generation capacity that we currently need.

The figures don’t include projects like Berwick Bank, Cerulean Wind, Norfolk Vanguard or Northern Horizons, which are not mentioned in Wikipedia’s list.

I regularly look at the list of wind farms in this Wikipedia entry and noticed that the number of Dogger Bank wind farms had increased.

They are now given as.

  • Dogger Bank A – 1200 MW – Completion in 2023/24
  • Dogger Bank B – 1200 MW – Completion in 2024/25
  • Dogger Bank C – 1200 MW – Completion in 2024/25
  • Dogger Bank D – 1320 MW – No Completion Given
  • Dogger Bank South – 3000 MW – No Completion Given

Note, that gives a Grand Total of 7920 MW or 7.920 GW.

This article on offshoreWIND.biz is entitled BREAKING: SSE, Equinor Plan 1.3 GW Dogger Bank D Offshore Wind Project.

It was published on the October 6th, 2022 and starts with this summary.

SSE Renewables and Equinor are looking into building what would be the fourth part of Dogger Bank Wind Farm, the world’s largest offshore wind farm, whose three phases (A, B and C) are currently under construction. Surveys are now underway at an offshore site where the partners want to develop Dogger Bank D, which would bring Dogger Bank Wind Farm’s total capacity to nearly 5 GW if built.

Obviously, there are a few ifs and buts about this development, but it does look like SSE Renewables and Equinor are serious about developing Dogger Bank D.

More Dogger Bank Gigawatts for UK As RWE Moves Forward With Two 1.5 GW Projects

This subheading describes, the 3 GW wind farm, that I listed earlier as Dogger Bank South.

These three paragraphs describe the projects.

RWE is now moving forward with two new offshore wind farms in the Zone, each with a 1.5 GW generation capacity, after the company obtained approval from the UK Secretary of State for Business, Energy and Industrial Strategy (BEIS) to enter into an Agreement for Lease with The Crown Estate this Summer, following the Round 4 leasing process.

The wind farms will be built at two adjacent sites located just southwest of the Dogger Bank A offshore wind farm and are dubbed Dogger Bank South (DBS) East and Dogger Bank South (DBS) West.

RWE has also started with geophysical seabed surveys within the wind turbine array areas for its two new projects.

It appears that they have already got the leasing process started.

When Will Dogger Bank D And Dogger Bank South Be Operational?

Consider.

  • In How Long Does It Take To Build An Offshore Wind Farm?, showed that a lot of offshore wind farms have gone from planning permission to first operation in six years.
  • I don’t think that there will be planning permission problems on the Dogger Bank.
  • The two wind farms are a continuation of Dogger Bank A, B and C and the Sofia wind farms.
  • A lot of the construction, would be more of the same.

With average luck, I can see Dogger Bank D and Dogger Bank South in full production before the end of 2028.

October 16, 2022 Posted by | Energy | , , , , , , , , , , , | Leave a comment