The Anonymous Widower

Plans Announced For ‘Low Carbon’ Power Stations In Lincolnshire

The title of this post, is the same as that of this article on the BBC.

This is the introductory paragraph.

Hundreds of jobs could be created after plans were announced to build two “low carbon” power stations in North Lincolnshire.

Last year, I only had one night away from home and that was in Doncaster, from where I explored North East Lincolnshire and wrote Energy In North-East Lincolnshire, where I made a few predictions.

These are my thoughts on my predictions and other points made in the BBC article.

Keadby 1

Keadby 1 is a 734 MW gas-fired power station, that was commissioned in 1996.

Keadby 2

  • Keadby 2 will be a 840 MW gas-fired power station.
  • It will be possible to add Carbon Capture and Storage technology to Keadby 2 to make the plant net-zero carbon.
  • Keadby 2 will be able to run on hydrogen.

Keadby 2 is under construction.

Keadby 3 And Keadby 4

I predicted that two new power stations would be added to the Keadby cluster.

  • When I wrote the other post, SSE were still designing Keadby 3, but had said it would be a 910 MW station.
  • This would mean that Keadby 1, Keadby 2 and Keadby 3 would have a combined capacity of 2484 MW of electricity.
  • Adding a fourth station, which I called Keadby 4, which I proposed to be the same size as Keadby 3 would give a combined capacity of 3394 MW.

This will be more than the planned capacity of the under-construction Hinckley Point C nuclear power station will be able to generate 3200 MW.

The BBC article says this about the plans for Keadby.

One plant would burn natural gas and use carbon capture technology to remove the CO2 from its emissions. The CO2 would then be transported along pipelines before being securely stored in rocks under the North Sea.

The hydrogen power station would produce “zero emissions at the point of combustion”, its developers claimed.

It looks like Keadby will have the power of a Hinckley Point nuclear station, but running on gas.

Carbon Capture And Storage

From what I read on the sseThermal web site and published in Energy In North-East Lincolnshire, it looks like Keadby 2 and Keadby 3 will use carbon capture and storage and Keadby 4 will use hydrogen.

There are plenty of depleted gas fields connected to the Easington terminal that can be used for carbon-dioxide storage.

The Zero Carbon Humber Network

The Zero Carbon Humber is going to be a gas network along the Humber, that will distribute hydrogen to large industrial users and return carbon dioxide for storage under the North Sea.

This map shows the Zero Carbon Humber pipeline layout.

Note.

  1. The orange line is a proposed carbon dioxide pipeline
  2. The black line alongside it, is a proposed hydrogen pipeline.
  3. Drax, Keadby and Saltend are power stations.
  4. Easington gas terminal is connected to around twenty gas fields in the North Sea.
  5. The terminal imports natural gas from Norway using the Langeled pipeline.
  6. The Rough field has been converted to gas storage and can hold four days supply of natural gas for the UK.

I can see this network being extended, with some of the depleted gas fields being converted into storage for natural gas, hydrogen or carbon dioxide.

Enter The Vikings

This article on The Times is entitled SSE and Equinor’s ‘Blue Hydrogen’ Power Plant Set To Be World First.

This is the introductory paragraph.

The world’s first large-scale power station to burn pure hydrogen could be built in Britain this decade by SSE and Equinor to generate enough low-carbon energy to supply more than a million homes.

This second paragraph explains the working of the production of the blue hydrogen.

The proposed power station near Scunthorpe would burn “blue hydrogen”, produced by processing natural gas and capturing and disposing of waste CO2 in a process that has low but not zero emissions. Equinor is already working on plans for a blue hydrogen production facility at Saltend in the Humber.

This may seem to some to be a wasteful process in that you use energy to produce blue hydrogen from natural gas and then use the hydrogen to generate power, but I suspect there are good reasons for the indirect route.

I believe that green hydrogen will become available from the North Sea from combined wind-turbine electrolysers being developed by Orsted and ITM Power, before the end of the decade.

Green hydrogen because it is produced by electrolysis will have less impurities than blue hydrogen.

Both will be zero-carbon fuels.

According to this document on the TNO web site, green hydrogen will be used for fuel cell applications and blue hydrogen for industrial processes.

Blue hydrogen would be able to power Keadby 2, 3 and 4.

I can see a scenario where Equinor’s blue hydrogen will reduce the price of hydrogen steelmaking and other industrial processes. It will also allow the purer and more costly green hydrogen to be reserved for transport and other fuel cell applications.

Using The Carbon Instead Of Storing

The document on the TNO web site has this surprising paragraph.

Hydrogen produced from natural gas using the so-called molten metal pyrolysis technology is called ‘turquoise hydrogen’ or ‘low carbon hydrogen’. Natural gas is passed through a molten metal that releases hydrogen gas as well as solid carbon. The latter can find a useful application in, for example, car tyres. This technology is still in the laboratory phase and it will take at least ten years for the first pilot plant to be realised.

This technical paper is entitled Methane Pyrolysis In A Molten Gallium Bubble Column Reactor For Sustainable Hydrogen Production: Proof Of Concept & Techno-Economic Assessment.

This may be a few years away, but just imagine using the carbon dioxide from power stations and industrial processes to create a synthetic rubber.

But I believe there is a better use for the carbon dioxide in the interim to cut down the amount that goes into long-term storage, which in some ways is the energy equivalent of landfill except that it isn’t in the least way toxic, as carbon-dioxide is one of the most benign substances on the planet.

Lincolnshire used to be famous for flowers. On a BBC Countryfile program a couple of weeks ago, there was a feature on the automated growing and harvesting of tulips in greenhouses.

There are references on the Internet to  of carbon dioxide being fed to flowers in greenhouses to make them better flowers.

So will be see extensive building of greenhouses on the flat lands of Lincolnshire growing not just flowers, but soft fruits and salad vegetables.

Conclusion

The plans of SSE and Equinor as laid out in The Times and the BBC could create a massive power station cluster.

  • It would be powered by natural gas and hydrogen.
  • Blue hydrogen will be produced by an efficient chemical process.
  • Green hydrogen will be produced offshore in massive farms of wind-turbine/electrolysers.
  • It would generate as much electricity as a big nuclear power station.
  • All carbon-dioxide produced would be either stored or used to create useful industrial products and food or flowers in greenhouses.

Do power stations like this hasten the end of big nuclear power stations?

Probably, until someone finds a way to turn nuclear waste into something useful.

 

April 9, 2021 Posted by | Energy, Hydrogen | , , , , , , , , , , | Leave a comment

H2 Green Steel Plans 800 MW Hydrogen Plant In Sweden

The title of this post, is the same as that of this article on montel.

The title says it all.

In Can The UK Have A Capacity To Create Five GW Of Green Hydrogen?, I said the following.

Ryse Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

This would mean that H2 Green Steel’s electrolyser could be producing around one hundred and forty thousand tonnes of hydrogen per year or 380 tonnes per day.

What About Scunthorpe?

I very much believe that Scunthorpe in Lincolnshire, would be the ideal place for hydrogen steelmaking in the UK as I outlined in Green Hydrogen To Power First Zero Carbon Steel Plant.

So could 800 MW of electricity be available to produce the hydrogen in the area.

Currently, the world’s largest offshore wind farm is Hornsea One with a capacity of 1218 MW, which feeds into the National Grid at Killingholme.

This Google Map shows the distance between Scunthorpe and Killingholme.

Note.

  1. Scunthorpe is in the South-West corner of the map.
  2. Killingholme is in the North-East corner of the map.

The distance is about twenty miles.

When fully developed, the Hornsea Wind Farm is planned to have a capacity of 6 GW or 6000 MW, so there should be enough renewable energy.

Could The Hydrogen Be Created Offshore?

In ITM Power and Ørsted: Wind Turbine Electrolyser Integration, I wrote about combining wind turbines and electrolysers to create an offshore wind turbine, that generates hydrogen, rather than electricity.

This approach may be ideal for the later phases of the Hornsea Wind Farm.

  • Redundant gas pipes can be used to bring the hydrogen ashore.
  • Worked-out offshore gas fields can be used to store hydrogen.
  • Worked-out gas fields in the area, are already being used to store natural gas from Norway.
  • The hydrogen can be fed directly into the HumberZero hydrogen network.

But the main reason, is that some serious commentators feel it is more affordable approach in terms of capital and maintenance costs.

It is also easy to convert hydrogen back to zero-carbon electricity, if you have a handy gas-fired power station. There could be as many of three of these at Keadby.

Conclusion

It’s all coming together on Humberside.

Anything the Swedes can do, we can do better!

March 1, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , | 1 Comment

Batteries Could Save £195m Annually By Providing Reserve Finds National Grid ESO Trial

The title of this post, is the same as that of this article on Current News.

The title gives the findings of the Arenko-led trial.

What Is The National Grid Reserve Service?

It’s all about providing capacity for the National Grid Reserve Service, which is described in this Wikipedia entry. This is the introductory paragraph.

To balance the supply and demand of electricity on short timescales, the UK National Grid has contracts in place with generators and large energy users to provide temporary extra power, or reduction in demand. These reserve services are needed if a power station fails for example, or if forecast demand differs from actual demand. National Grid has several classes of reserve services, which in descending order of response time are: Balancing Mechanism (BM) Start-Up, Short-Term Operating Reserve, Demand Management and Fast Reserve.

The Wikipedia entry is very comprehensive.

A Collateral Benefit

This is a paragraph from the article.

Additionally, unlike CCGT plants, batteries do not need to be producing power in order to provide Reserve as they can charge when there is abundant renewable energy on the grid, and then wait to react when needed. As CCGT’s need to be producing power to provide this service, it can led to renewables switched off in favour of the more carbon intensive fossil fuel generation, to ensure Reserve is available if needed.

The article concludes that Reserve from Storage could help National Grid ESO’s reach their target of net-zero operation by 2025.

Could We Replace CCGT Plants With Batteries?

CCGT or combined cycle gas-turbine power plants are efficient ways to turn natural gas into electricity.

  • Typical sizes are around 800 MW.
  • They are reasonably quick and easy to build.
  • As their fuel comes by a pipeline, they don’t need to be connected to the rail network, unlike biomass and coal power plants.

Because they burn methane, they still emit a certain amount of carbon dioxide, although levels much less than an equivalent coal-fired power station.

In Energy In North-East Lincolnshire, I described the three Keadby power stations.

  • Keadby – In operation – 734 MW
  • Keadby 2 – Under construction – 840 MW
  • Keadby 3 – In planning – 910 MW

In total, these three power stations will have a capacity of 2484 MW.

By comparison, Hinckley Point C will have a capacity of 3200 MW.

Add Keadby 4 and the four CCGTs would provide more electricity, than Hinckley Point C.

I think it would be very difficult to replace a cluster of CCGT gas-fired power stations or a big nuclear power plant with the sort of batteries being deployed today. 2.5 to 3 GW is just so much electricity!

I do believe though, that instead of building a 3200 MW nuclear power plant, you could build a cluster of four 800 MW CCGTs.

But What About The Carbon Dioxide?

Using the Keadby cluster of CCGTs as an example.

  • Keadby 2 and Keadby 3 are being built to be upgraded with carbon-capture technology.
  • The HumberZero gas network will take the carbon dioxide away for  storage in worked-out gas fields in the North Sea.
  • Some carbon dioxide will be fed to salad vegetables and soft fruits in greenhouses, to promote growth.
  • Keadby 2 and Keadby 3 are being built to be able to run on hydrogen.
  • The HumberZero network will also be able to deliver hydrogen to fuel the power stations.

I’m certain we’ll see some of the next generation of wind turbines delivering their energy from hundreds of miles offshore, in the form of hydrogen by means of a pipe.

The technology is being developed by ITM Power and Ørsted, with the backing of the UK government.

  • Redundant gas pipelines can be used, to bring the hydrogen to the shore
  • The engineering of piping hydrogen to the shore is well-understood.
  • Redundant gas pipelines can be used if they already exist.
  • Gas networks can be designed, so that depleted gas fields can be used to store the gas offshore, in times when it is not needed.

But above all gas pipelines cost less than DC  electricity links, normally used to connect turbines to the shore.

I can see very complicated, but extremely efficient networks of wind turbines, redundant gas fields and efficient CCGT power stations connected together by gas pipelines, which distribute natural gas, hydrogen and carbon dioxide as appropriate.

Could Offshore Hydrogen Storage And CCGTs Provide The Reserve Power

Consider.

  • Using a CCGT power station  to provide Reserve Power is well understood.
  • Suppose there is a large worked out gasfield, near to the power station, which has been repurposed to be used for hydrogen storage.
  • The hydrogen storage is filled using hydrogen created by offshore wind turbines, that have built in electrolysers, like those being developed by ITM Power and Ørsted.
  • One of more CCGTs could run as needed using hydrogen from the storage as fuel.
  • A CCGT power station running on hydrogen is a zero-carbon power station.

Effectively, there would be a giant battery, that stored offshore wind energy as hydrogen.

I can see why the UK government is helping to fund this development by ITM Power and Ørsted.

Could We See Cradle-To-Grave Design Of Gas Fields?

I suspect that when a gas field is found and the infrastructured is designed it is all about what is best in the short term.

Suppose a gas field is found reasonably close to the shore or in an area like the Humber, Mersey or Tees Estuaries, where a lot of carbon dioxide is produced by industries like steel, glass and chemicals!

Should these assessments be done before any decisions are made about how to bring the gas ashore?

  • After being worked out could the gas field be used to store carbon dioxide?
  • After being worked out could the gas field be used to store natural gas or hydrogen?
  • Is the area round the gas field suitable for building a wind farm?

Only then could a long-term plan be devised for the gas-field and the infrastructure can be designed accordingly.

I suspect that the right design could save a lot of money, as infrastructure was converted for the next phase of its life.

Conclusion

It does appear that a lot of money can be saved.

But my rambling through the calculations shows the following.

Wind Turbines Generating Hydrogen Give Advantages

These are some of the advantages.

  • Hydrogen can be transported at less cost.
  • Hydrogen is easily stored if you have have a handy worked-out gas field.
  • The technology is well-known.

Hydrogen can then be converted back to electricity in a CCGT power station

The CCGT Power Station Operates In A Net-Zero Carbon Manner

There are two ways, the CCGT station can be run.

  • On natural gas, with the carbon-dioxide captured for use or storage.
  • On hydrogen.

No carbon-dioxide is released to the atmosphere in either mode.

The Hydrogen Storage And The CCGT Power Station Or Stations Is Just A Giant Battery

This may be true, but it’s all proven technology, that can be used as the Power Reserve.

Power Networks Will Get More Complicated

This will be inevitable, but giant batteries from various technologies will make it more reliable.

 

 

 

February 12, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , | 1 Comment

Energy In North-East Lincolnshire

A few weeks ago, I took a train from Doncaster to Cleethorpes and back.

These pictures show the area is all about energy.

Keadby Power Station

Keadby power station is a 734 MW gas-fired power-station, that opened in 1996.

Keadby 2 Power Station

Keadby 2 is described on this page of the sseThermal web site.

These are the three opening paragraphs.

Keadby 2 is a new 840MW gas-fired power station in North Lincolnshire currently being constructed by our EPC contractor Siemens Energy. The project is adjacent to our operational Keadby 1 Power Station.

SSE Thermal has partnered with Siemens Energy to introduce first-of-a-kind, high-efficiency gas-fired generation technology to the UK. When completed, Keadby 2 is expected to become the cleanest and most-efficient gas-fired power station in Europe.

The station will also be capable of being upgraded to further decarbonise its generation through carbon capture or hydrogen technology, as routes to market develop.

Note.

  1. It will be possible to add Carbon Capture and Storage technology to Keadby 2 to make the plant net-zero carbon.
  2. Keadby 2 will be able to run on hydrogen.
  3. Keadby 2 is the under-construction power station in my pictures.

Could this be the prototype gas-fired power station of the future?

Keadby 3 Power Station

Keadby 3 is described on this page of the sseThermal web site.

These are the two opening paragraphs.

SSE Thermal is developing the option for a low-carbon combined cycle gas turbine (CCGT) at our Keadby site in North Lincolnshire, which will be known as Keadby 3.

As part of our commitment to a net zero emissions future, Keadby 3 will only be built with a clear route to decarbonisation, either using hydrogen as a low-carbon fuel, or equipping it with post-combustion carbon capture technology. The project is at the early stages of development and no final investment decision has been made.

Keadby 3 is still in the consultation and planning stage.

This newsletter on the sseThermal web site, gives some useful information about Keadby 3.

These are the first three paragraphs.

We are proposing to build a new gas fired power station at Keadby, North Lincolnshire. The project, known as Keadby 3, will have a generating capacity of up to 910 megawatts (MW) and will provide the essential back up to renewable generation and reliable and flexible energy during the country’s transition to Net Zero.

Keadby 3 will be a highly efficient gas fired power station. It will either use natural gas as the fuel and be fitted with a Carbon Capture Plant (CCP) to remove carbon dioxide (CO2) from the emissions to air from the plant, or it will be fired on primarily hydrogen, with no carbon dioxide emissions to air from its operation. Both options are currently being considered, and government is also currently considering the roles of carbon capture and hydrogen in the power sector nationally.

Keadby 3 will require connections for natural gas and possibly hydrogen fuel, water for use in the process
and for cooling and possibly for a pipeline to export the captured CO2 into a gathering network being provided by others and from there to a permanent geological storage site. An electricity connection to export the generated electricity to the UK transmission system will also be required. The plant would be capable of operating as a dispatchable low-carbon generating station to complement the increasing role of renewables in supplying the UK with electricity

Note.

  1. The three Keadby gas-fired power stations can generate 2484 MW of electricity in total.
  2. By comparison, the under-construction Hinckley Point C nuclear power station will be able to generate 3200 MW.
  3. The addition of a Keadby 4 power station, if it were the same size as Keadby 3, would mean the Keadby cluster of gas-fired power stations had a capacity of 3394 MW and they would be larger than the big nuclear station.

In terms of power output, it is an interesting alternative to a larger nuclear power station.

What About The Carbon?

If you’re burning natural gas, you will produce some carbon dioxide.

Power generation from natural gas creates 0.2 Kg of CO2 per kWh according to this web page.

So a 3000 MW station that produces 3000 MW, will produce 3000 MWh or 3000000 kWh in an hour.

This will create 600,000 Kg or 600 tonnes of carbon dioxide in an hour.

As there are roughly 9000 hours in a year, that is roughly 5.4 million tonnes of carbon dioxide.

This newsletter on the sseThermal web site, gives some information about sseThermal are going to do with the carbon dioxide.

As a low-carbon CCGT, Keadby 3 comprises one high efficiency gas turbine and associated steam turbine and either the infrastructure required to allow the CCGT to fire primarily on hydrogen gas, r inclusion of a post combustion Carbon Capture Plant (CCP) in a scenario where natural gas is used as the fuel. In the latter scenario, this is required in order that CO2 emissions are captured and directed to an offshore geological store through the Humber Low Carbon cluster pipeline network being developed by National Grid Ventures and partners.

A diagram of these components, and optional components, is shown below.

Note.

  1. Click on the image to get a larger view.
  2. The CCGT Power Plant is on the left.
  3. Most of the power is generated by the gas-turbine.
  4. Heat is recovered to create steam, which drives a turbine to create more electricity
  5. The Carbon Capture Plant is on the right.
  6. Carbon dioxide is extracted from the exhaust.

There are two outputs from the plant; electricity and carbon dioxide.

As the carbon dioxide is in a pipe from the drying and compression unit, it is easy to handle.

The newsletter says this about what will happen to the carbon dioxide.

CO2 emissions are captured and directed to an offshore geological store through the Humber Low Carbon cluster pipeline network being developed by National Grid Ventures and partners.

As there are several worked out gas fields in the area, there are places to store the carbon dioxide.

Storing The Carbon Dioxide

This map shows the Zero Carbon Humber pipeline layout.

Note.

  1. The orange line is a proposed carbon dioxide pipeline
  2. The black line alongside it, is a proposed hydrogen pipeline.
  3. Drax, Keadby and Saltend are power stations.
  4. Easington gas terminal is connected to around twenty gas fields in the North Sea.
  5. The terminal imports natural gas from Norway using the Langeled pipeline.
  6. The Rough field has been converted to gas storage and can hold four days supply of natural gas for the UK.

I can see this network being extended, with some of the depleted gas fields being converted into storage for natural gas, hydrogen or carbon dioxide.

Using The Carbon Dioxide

But I would prefer , that the carbon dioxide were to be put to use. Under Carbon Capture and Utilisation on Wikipedia, a variety of uses are shown.

Surprisingly, they don’t talk about using the carbon dioxide to promote the growing of crops in green houses.

I do think, though, that some clever chemists will find ways to convert the carbon into some form of advanced engineering plastics to replace steel.

Hydrogen-Fuelled Power Stations

Note how on the map the hydrogen pipeline goes through the Keadby cluster of power stations.

  • Hydrogen is a zero-carbon fuel.
  • It will be produced offshore by wind turbines connected to electrolysers.
  • The hydrogen will be brought ashore using the existing gas pipeline network.
  • Excess hydrogen could be stored in the worked out gas fields.

I suspect there will be a massive increase in the number of wind turbines in the North Sea to the East of Hull.

Hydrogen Steelmaking

In ten years time, this will surely be the way steel will be made. British Steel at Scunthorpe would surely be an ideal site.

It would also be an ideal site for the HIsarna steelmaking process, which generates much less carbon dioxide and because it is a continuous process, what carbon dioxide is generated is easily captured.

Conclusion

Installations like this will mean that large nuclear power stations built with Chinese money are not needed.

 

October 20, 2020 Posted by | Energy, Hydrogen | , , , , , , , | 4 Comments

Keadby 3 Low-Carbon Power Station

This article on Business Live is entitled Huge Green Power Station Proposed By SSE As It Embraces Hydrogen And Carbon Capture.

SSE Thermal is working on a low-carbon 910 MW gas-fired power station to join Keadby and Keadby 2 power stations in a cluster near Scunthorpe.

A spokesman for SSE is quoted as saying they will not build the plant without a clear route to decarbonisation.

On this page of their web site,  SSE Thermal, say this about Keadby 3.

As part of our commitment to a net zero emissions future, Keadby 3 will only be built with a clear route to decarbonisation, either using hydrogen as a low-carbon fuel, or equipping it with post-combustion carbon capture technology. The project is at the early stages of development and no final investment decision has been made.

It should also be noted that SSE Renewables have also built a wind farm at Keadby. The web site describes it like this.

Keadby Wind Farm is England’s largest onshore wind farm. This 68MW renewable energy generation site can power approximately 57,000 homes.

There are a lot of good intentions here and I think that SSE haven’t disclosed the full picture.

It would seem inefficient to use hydrogen to power a gas-fired power station to achieve zero-carbon power generation.

  • If you are using hydrogen created from steam reforming of methane, this creates a lot of carbon-dioxide.
  • If you are using green hydrogen produced by electrolysis, then, why don’t you store the electricity in a battery?

Perhaps, SSE are trying out a new process?

This Google Map shows the area of Keadby to the West of Scunthorpe.

Note.

The River Trent meandering through the area.

  1. Althorpe station is in the bend of the River,
  2. I’m fairly certain, that I remember an old airfield in the area.
  3. Keadby power station is a bit to the North of the waterway running West from the River and close to where the railway crosses the waterway.

This second Google Map shows a close-up of the power station.

This visualisation from SSE Thermal shows how the site might look in the future.

For me the interesting location is the village of Althorpe, where C and myself had friends.

They were always getting tourists arriving in the village looking for Princess Diana’s grave!

Carbon Capture And Storage At Keadby

If SSE have three large power stations at Keadby, a shared carbon capture and storage system could be worthwhile.

  • There are numerous gas fields in the area and a big gas terminal at Theddlethorpe, to where they all connect.
  • I was surprised to see, that one of thee fields; Saltfleetby is owned by President Putin’s favourite gas company; Gazprom.
  • Some of these fields are actually on-shore.
  • The power stations probably get their gas from the same terminal.

Some of these gas fields that connect to Theddlethorpe could be suitable for storing the carbon dioxide.

As there is masses of space at Keadby, I can see more gas-fired power stations being built at Keadby.

All would feed into the same carbon capture and storage system.

If gas was needed to be imported in a liquified form, there is the Port of Immingham nearby.

Absorption Of Carbon Dioxide By Horticulture

Consider.

  • Increasingly, horticulture is getting more automated and efficient.
  • Automatic harvesters are being developed for crops like tomatoes and strawberries.
  • Instead of storing the carbon-dioxide in worked-out gas fields, it can also be fed directly to fruit and vegetables that are being grown in greenhouses.
  • Keadby is surrounded by the flat lands of Lincolnshire.

How long will it be before we see tomatoes, strawberries, peppers and cucumbers labelled as British zero-carbon products?

Offshore Hydrogen

I’ll repeat what I said in ITM Power and Ørsted: Wind Turbine Electrolyser Integration.

This is from a press release from ITM Power, which has the same title as the linked article.

This is the introductory paragraph.

ITM Power (AIM: ITM), the energy storage and clean fuel company, is pleased to share details of a short project sponsored by the Department for Business, Energy & Industrial Strategy (BEIS), in late 2019, entitled ‘Hydrogen supply competition’, ITM Power and Ørsted proposed the following:  an electrolyser placed at the wind turbine e.g. in the tower or very near it, directly electrically connected to the DC link in the wind turbine, with appropriate power flow control and water supplied to it. This may represent a better design concept for bulk hydrogen production as opposed to, for instance, remotely located electrolysers at a terminal or platform, away from the wind turbine generator, due to reduced costs and energy losses.
Some points from the remainder of the press release.

  • Costs can be saved as hydrogen pipes are more affordable than under-water power cables.
  • The proposed design reduced the need for AC rectification.

After reading the press release, it sounds like the two companies are performing a serious re-think on how wind turbines and their links to get energy on-shore are designed.

  • Will they be using redundant gas pipes to bring the hydrogen ashore?
  • Will the hydrogen come ashore at Theddlethorpe and use the existing gas network to get to Keadby?

It sounds inefficient, but then the steelworks at Scunthorpe will probably want masses of hydrogen for carbon-free steel making and processing.

Boosting Power Station Efficiency

There is also a section in the Wikipedia entry for Combined Cycle Power Plant called Boosting Efficiency, where this is said.

The efficiency of CCGT and GT can be boosted by pre-cooling combustion air. This is practised in hot climates and also has the effect of increasing power output. This is achieved by evaporative cooling of water using a moist matrix placed in front of the turbine, or by using Ice storage air conditioning. The latter has the advantage of greater improvements due to the lower temperatures available. Furthermore, ice storage can be used as a means of load control or load shifting since ice can be made during periods of low power demand and, potentially in the future the anticipated high availability of other resources such as renewables during certain periods.

So is the location of the site by the Trent, important because of all that cold water?

Or will they use surplus power from the wind farm to create ice?

The Proposed North Sea Wind Power Hub

The North Sea Wind Power Hub is a proposed energy island complex on the Eastern part of the Dogger Bank.

  • The Dutch, Germans and Danes are leading the project.
  • Along with the Belgians, we have been asked to join.
  • Some reporting on the Hub has shown, airstrips in the middle of the complex to bring the workforce to the site.
  • A Dutch report, says that as much as 110 GW of wind power could be developed by 2050.
  • We are also looking at installing wind farms on our section of the Dogger Bank.

Geography says, that one of the most convenient locations to bring all this electricity or hydrogen gas ashore is North Lincolnshire

A Very Large Battery

I would also put a very large battery on the site at Keadby.

One of Highview Power‘s proposed 1 GWh CRYOBatteries would be a good start. This will be four times the size of the 250 MWh CRYOBattery, which the company is currently designing and building at Carrington in Greater Manchester.

Conclusion

The three power stations at Keadby are the following sizes

  • Keadby 1 – 734 MW
  • Keadby 2 – 803.7 MW
  • Keadby 3 – 010 MW

This adds up to a total of 2447.7 MW. And if they fit carbon capture and storage it will be zero-carbon.

Note.

  • Hinckley Point C is only 3200 MW and will cost around £20 billion or £6.25 billion per GW.
  • Keadby 2 power station is quoted as costing £350 million. or £0.44 billion per GW.

These figures don’t include the cost of carbon capture and storage, but they do show the relatively high cost of nuclear.

 

 

 

July 11, 2020 Posted by | Energy, Energy Storage, Hydrogen | , , , , | 6 Comments