The Anonymous Widower

Energy In North-East Lincolnshire

A few weeks ago, I took a train from Doncaster to Cleethorpes and back.

The area is all about energy.

Keadby Power Station

Keadby power station is a 734 MW gas-fired power-station.

Keadby 2 Power Station

Keadby 2 is described on this page of the sseThermal web site.

These are the three opening paragraphs.

Keadby 2 is a new 840MW gas-fired power station in North Lincolnshire currently being constructed by our EPC contractor Siemens Energy. The project is adjacent to our operational Keadby 1 Power Station.

SSE Thermal has partnered with Siemens Energy to introduce first-of-a-kind, high-efficiency gas-fired generation technology to the UK. When completed, Keadby 2 is expected to become the cleanest and most-efficient gas-fired power station in Europe.

The station will also be capable of being upgraded to further decarbonise its generation through carbon capture or hydrogen technology, as routes to market develop.

Krsdby 2 is the under-construction power station in my pictures.

Keadby 3 Power Station

Keadby 3 is described on this page of the sseThermal web site.

These are the two opening paragraphs.

SSE Thermal is developing the option for a low-carbon combined cycle gas turbine (CCGT) at our Keadby site in North Lincolnshire, which will be known as Keadby 3.

As part of our commitment to a net zero emissions future, Keadby 3 will only be built with a clear route to decarbonisation, either using hydrogen as a low-carbon fuel, or equipping it with post-combustion carbon capture technology. The project is at the early stages of development and no final investment decision has been made.

Keadby 3 is still in the consultation and planning stage.

This newsletter on the sseThermal web site, gives some useful information about Keadby 3.

These are the first three paragraphs.

We are proposing to build a new gas fired power station at Keadby, North Lincolnshire. The project, known as Keadby 3, will have a generating capacity of up to 910 megawatts (MW) and will provide the essential back up to renewable generation and reliable and flexible energy during the country’s transition to Net Zero.

Keadby 3 will be a highly efficient gas fired power station. It will either use natural gas as the fuel and be fitted with a Carbon Capture Plant (CCP) to remove carbon dioxide (CO2) from the emissions to air from the plant, or it will be fired on primarily hydrogen, with no carbon dioxide emissions to air from its operation. Both options are currently being considered, and government is also currently considering the roles of carbon capture and hydrogen in the power sector nationally.

Keadby 3 will require connections for natural gas and possibly hydrogen fuel, water for use in the process
and for cooling and possibly for a pipeline to export the captured CO2 into a gathering network being provided by others and from there to a permanent geological storage site. An electricity connection to export the generated electricity to the UK transmission system will also be required. The plant would be capable of operating as a dispatchable low-carbon generating station to complement the increasing role of renewables in supplying the UK with electricity

Note.

  1. The three Keadby gas-fired power stations can generate 2484 MW of electricity in total.
  2. By comparison, the under-construction Hinckley Point C nuclear power station will be able to generate 3200 MW.
  3. The addition of a Keadby 4 power station, if it were the same size as Keadby 3, would mean the Keadby cluster of gas-fired power stations had a capacity of 3394 MW and they would be larger than the big nuclear station.

In terms of power output, it is an interesting alternative to a larger nuclear power station.

What About The Carbon?

If you’re burning natural gas, you will produce some carbon dioxide.

Power generation from natural gas creates 0.2 Kg of CO2 per kWh according to this web page.

So a 3000 MW station that produces 3000 MW, will produce 3000 MWh or 3000000 kWh in an hour.

This will create 600,000 Kg or 600 tonnes of carbon dioxide in an hour.

As there are roughly 9000 hours in a year, that is roughly 5.4 million tonnes of carbon dioxide.

This newsletter on the sseThermal web site, gives some information about sseThermal are going to do with the carbon dioxide.

As a low-carbon CCGT, Keadby 3 comprises one high efficiency gas turbine and associated steam turbine and either the infrastructure required to allow the CCGT to fire primarily on hydrogen gas, r inclusionof a post combustion Carbon Capture Plant (CCP) in a scenario where natural gas is used as the fuel. In the latter scenario, this is required in order that CO2 emissions are captured and directed to an offshore geological store through the Humber Low Carbon cluster pipeline network being developed by National Grid Ventures and partners.

A diagram of these components, and optional components, is shown below.

Note.

  1. Click on the image to get a larger view.
  2. The CCGT Power Plant is on the left.
  3. Most of the power is generated by the gas-turbine.
  4. Heat is recovered to create steam, which drives a turbine to create more electricity
  5. The Carbon Capture Plant is on the right.
  6. Carbon dioxide is extracted from the exhaust.

There are two outputs from the plant; electricity and carbon dioxide.

As the carbon dioxide is in a pipe from the drying and compression unit, it is easy to handle.

The newsletter says this about what will happen to the carbon dioxide.

CO2 emissions are captured and directed to an offshore geological store through the Humber Low Carbon cluster pipeline network being developed by National Grid Ventures and partners.

As there are several worked out gas fields in the area, there are places to store the carbon dioxide.

Storing The Carbon Dioxide

This map shows the Zero Carbon Humber pipeline layout.

Note.

  1. The orange line is a proposed carbon dioxide pipeline
  2. The black line alongside it, is a proposed hydrogen pipeline.
  3. Drax, Keadby and Saltend are power stations.
  4. Easington gas terminal is connected to gas fields in the North Sea and also imports natural gas from Norway using the Langeled pipeline.
  5. There are fourteen gas feels connected to Easington terminal. Some have been converted to gas storage.

I can see this network being extended.

Using The Carbon Dioxide

But I would prefer , that the carbon dioxide were to be put to use. Under Carbon Capture and Utilisation on Wikipedia, a variety of uses are shown.

Surprisingly, they don’t talk about using the carbon dioxide to promote the growing of crops in green houses.

I do think, though, that some clever chemists will find ways to convert the carbon into some form of advanced engineering plastics to replace steel.

Hydrogen-Fuelled Power Stations

Note how on the map the hydrogen pipeline goes through the Keadby cluster of power stations.

  • Hydrogen is a zero-carbon fuel.
  • It will be produced offshore by wind turbines connected to electrolysers.
  • The hydrogen will be brought ashore using the existing gas pipeline network.
  • Excess hydrogen could be stored in the worked out gas fields.

I suspect there will be a massive increase in the number of wind turbines in the North Sea to the East of Hull.

Hydrogen Steelmaking

In ten years time, this will surely be the way steel will be made. British Steel at Scunthorpe would surely be an ideal site.

It would also be an ideal site for the HIsarna steelmaking process, which generates much less carbon dioxide and because it is a continuous process, what carbon dioxide is generated is easily captured.

Conclusion

Installations like this will mean that large nuclear power stations built with Chinese money are not needed.

 

October 20, 2020 Posted by | Energy, Hydrogen | , , , , , | 2 Comments

Keadby 3 Low-Carbon Power Station

This article on Business Live is entitled Huge Green Power Station Proposed By SSE As It Embraces Hydrogen And Carbon Capture.

SSE Thermal is working on a low-carbon 910 MW gas-fired power station to join Keadby and Keadby 2 power stations in a cluster near Scunthorpe.

A spokesman for SSE is quoted as saying they will not build the plant without a clear route to decarbonisation.

On this page of their web site,  SSE Thermal, say this about Keadby 3.

As part of our commitment to a net zero emissions future, Keadby 3 will only be built with a clear route to decarbonisation, either using hydrogen as a low-carbon fuel, or equipping it with post-combustion carbon capture technology. The project is at the early stages of development and no final investment decision has been made.

It should also be noted that SSE Renewables have also built a wind farm at Keadby. The web site describes it like this.

Keadby Wind Farm is England’s largest onshore wind farm. This 68MW renewable energy generation site can power approximately 57,000 homes.

There are a lot of good intentions here and I think that SSE haven’t disclosed the full picture.

It would seem inefficient to use hydrogen to power a gas-fired power station to achieve zero-carbon power generation.

  • If you are using hydrogen created from steam reforming of methane, this creates a lot of carbon-dioxide.
  • If you are using green hydrogen produced by electrolysis, then, why don’t you store the electricity in a battery?

Perhaps, SSE are trying out a new process?

This Google Map shows the area of Keadby to the West of Scunthorpe.

Note.

The River Trent meandering through the area.

  1. Althorpe station is in the bend of the River,
  2. I’m fairly certain, that I remember an old airfield in the area.
  3. Keadby power station is a bit to the North of the waterway running West from the River and close to where the railway crosses the waterway.

This second Google Map shows a close-up of the power station.

This visualisation from SSE Thermal shows how the site might look in the future.

For me the interesting location is the village of Althorpe, where C and myself had friends.

They were always getting tourists arriving in the village looking for Princess Diana’s grave!

Carbon Capture And Storage At Keadby

If SSE have three large power stations at Keadby, a shared carbon capture and storage system could be worthwhile.

  • There are numerous gas fields in the area and a big gas terminal at Theddlethorpe, to where they all connect.
  • I was surprised to see, that one of thee fields; Saltfleetby is owned by President Putin’s favourite gas company; Gazprom.
  • Some of these fields are actually on-shore.
  • The power stations probably get their gas from the same terminal.

Some of these gas fields that connect to Theddlethorpe could be suitable for storing the carbon dioxide.

As there is masses of space at Keadby, I can see more gas-fired power stations being built at Keadby.

All would feed into the same carbon capture and storage system.

If gas was needed to be imported in a liquified form, there is the Port of Immingham nearby.

Absorption Of Carbon Dioxide By Horticulture

Consider.

  • Increasingly, horticulture is getting more automated and efficient.
  • Automatic harvesters are being developed for crops like tomatoes and strawberries.
  • Instead of storing the carbon-dioxide in worked-out gas fields, it can also be fed directly to fruit and vegetables that are being grown in greenhouses.
  • Keadby is surrounded by the flat lands of Lincolnshire.

How long will it be before we see tomatoes, strawberries, peppers and cucumbers labelled as British zero-carbon products?

Offshore Hydrogen

I’ll repeat what I said in ITM Power and Ørsted: Wind Turbine Electrolyser Integration.

This is from a press release from ITM Power, which has the same title as the linked article.

This is the introductory paragraph.

ITM Power (AIM: ITM), the energy storage and clean fuel company, is pleased to share details of a short project sponsored by the Department for Business, Energy & Industrial Strategy (BEIS), in late 2019, entitled ‘Hydrogen supply competition’, ITM Power and Ørsted proposed the following:  an electrolyser placed at the wind turbine e.g. in the tower or very near it, directly electrically connected to the DC link in the wind turbine, with appropriate power flow control and water supplied to it. This may represent a better design concept for bulk hydrogen production as opposed to, for instance, remotely located electrolysers at a terminal or platform, away from the wind turbine generator, due to reduced costs and energy losses.
Some points from the remainder of the press release.

  • Costs can be saved as hydrogen pipes are more affordable than under-water power cables.
  • The proposed design reduced the need for AC rectification.

After reading the press release, it sounds like the two companies are performing a serious re-think on how wind turbines and their links to get energy on-shore are designed.

  • Will they be using redundant gas pipes to bring the hydrogen ashore?
  • Will the hydrogen come ashore at Theddlethorpe and use the existing gas network to get to Keadby?

It sounds inefficient, but then the steelworks at Scunthorpe will probably want masses of hydrogen for carbon-free steel making and processing.

Boosting Power Station Efficiency

There is also a section in the Wikipedia entry for Combined Cycle Power Plant called Boosting Efficiency, where this is said.

The efficiency of CCGT and GT can be boosted by pre-cooling combustion air. This is practised in hot climates and also has the effect of increasing power output. This is achieved by evaporative cooling of water using a moist matrix placed in front of the turbine, or by using Ice storage air conditioning. The latter has the advantage of greater improvements due to the lower temperatures available. Furthermore, ice storage can be used as a means of load control or load shifting since ice can be made during periods of low power demand and, potentially in the future the anticipated high availability of other resources such as renewables during certain periods.

So is the location of the site by the Trent, important because of all that cold water?

Or will they use surplus power from the wind farm to create ice?

The Proposed North Sea Wind Power Hub

The North Sea Wind Power Hub is a proposed energy island complex on the Eastern part of the Dogger Bank.

  • The Dutch, Germans and Danes are leading the project.
  • Along with the Belgians, we have been asked to join.
  • Some reporting on the Hub has shown, airstrips in the middle of the complex to bring the workforce to the site.
  • A Dutch report, says that as much as 110 GW of wind power could be developed by 2050.
  • We are also looking at installing wind farms on our section of the Dogger Bank.

Geography says, that one of the most convenient locations to bring all this electricity or hydrogen gas ashore is North Lincolnshire

A Very Large Battery

I would also put a very large battery on the site at Keadby.

One of Highview Power‘s proposed 1 GWh CRYOBatteries would be a good start. This will be four times the size of the 250 MWh CRYOBattery, which the company is currently designing and building at Carrington in Greater Manchester.

Conclusion

The three power stations at Keadby are the following sizes

  • Keadby 1 – 734 MW
  • Keadby 2 – 803.7 MW
  • Keadby 3 – 010 MW

This adds up to a total of 2447.7 MW. And if they fit carbon capture and storage it will be zero-carbon.

Note.

  • Hinckley Point C is only 3200 MW and will cost around £20 billion or £6.25 billion per GW.
  • Keadby 2 power station is quoted as costing £350 million. or £0.44 billion per GW.

These figures don’t include the cost of carbon capture and storage, but they do show the relatively high cost of nuclear.

 

 

 

July 11, 2020 Posted by | Energy, Energy Storage, Hydrogen | , , , , | 6 Comments