The Anonymous Widower

Are Hitachi Designing the Ultimate Battery Train?

In Sparking A Revolution, a post based on an article of the same name in Issue 898 of Rail Magazine, I repeated this about the specification of Hitachi UK Battery Train Specification.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

Does this mean that the train can do 55-65 miles cruising at 90-100 mph?

How Much Energy Is Needed To Accelerate A Five-Car Class 800 Train To Operating Speed?

I will do my standard calculation.

  • Empty train weight – 243 tonnes (Wikipedia for Class 800 train!)
  • Passenger weight – 302 x 90 Kg (Includes baggage, bikes and buggies!)
  • Train weight – 270.18 tonnes

Using Omni’s Kinetic Energy Calculator, the kinetic energy at various speeds are.

  • 60 mph – 27 kWh
  • 80 mph – 48 kWh
  • 90 mph – 61 kWh
  • 100 mph – 75 kWh
  • 125 mph – 117 kWh – Normal cruise on electrified lines.
  • 140 mph – 147 kWh – Maximum cruise on electrified lines.

Because the kinetic energy of a train is only proportional to the weight of the train, but proportional to the square of the speed, note how the energy of the train increases markedly after 100 mph.

Are these kinetic energy figures a reason, why Hitachi have stated their battery train will have an operating speed of between 90 and 100 mph?

A 100 mph cruise would also be very convenient for a lot of main lines, that don’t have electrification in the UK.

What Battery Size Would Be Needed?

In How Much Power Is Needed To Run A Train At 125 mph?, I calculated that a five-car Class 801 electric train, needed 3.42 kWh per vehicle-mile to maintain 125 mph.

For comparison, an InterCity 125 train, had a figure of 2.83 kWh per vehicle-mile.

Hitachi are redesigning the nose of the train for the new Class 804 train and I suspect that these trains can achieve somewhere between 1.5 and 3 kWh per vehicle-mile, if they are cruising at 100 mph.

Doing the calculation for various consumption levels gives the following battery capacity for a five-car train to cruise 65 miles at 100 mph

  • 1.5 kWh per vehicle-mile – 487 kWh
  • 2 kWh per vehicle-mile – 650 kWh
  • 2.5 kWh per vehicle-mile – 812.5 kWh
  • 3 kWh per vehicle-mile – 975 kWh

These figures don’t include any energy for acceleration to line speed from the previous stop or station, but they would cope with a deceleration and subsequent acceleration, after say a delay caused by a slow train or other operational delay, by using regenerative braking to the battery.

The energy needed to accelerate to operating speed, will be as I calculated earlier.

  • 90 mph – 61 kWh
  • 100 mph – 75 kWh

As the battery must have space to store the regenerative braking energy and it would probably be prudent to have a ten percent range reserve, I can see a battery size for a train with an energy consumption of 2 kWh per vehicle-mile, that needed to cruise at 100 mph being calculated as follows.

  • Energy for the cruise – 650 kWh
  • 10% reserve for cruise – 65 kWh
  • Braking energy from 100 mph – 75 kWh

This gives a total battery size of 790 kWh, which could mean that 800 kWh would be convenient.

Note that each of the three MTU 12V 1600 diesel engines, fitted to a Class 800 train, each weigh around two tonnes.

In Innolith Claims It’s On Path To 1,000 Wh/kg Battery Energy Density, I came to these conclusions.

  • Tesla already has an energy density of 250 Wh/Kg.
  • Tesla will increase this figure.
  • By 2025, the energy density of lithium-ion batteries will be much closer to 1 KWh/Kg.
  • Innolith might achieve this figure. But they are only one of several companies aiming to meet this magic figure.

Suppose two of the MTU 12V 1600 diesel engines were each to be replaced by a two tonne battery, using Tesla’s current energy density, this would mean the following.

  • Each battery would have a capacity of 500 kWh.
  • The train would have one MWh of installed battery power.
  • This is more than my rough estimate of power required for a 65 mile trip.
  • The train would have little or no weight increase.
  • I also wouldn’t be surprised to find that the exchange of a diesel engine for a battery was Plug-and-Play.

Hitachi would have an electric/battery/diesel tri-mode train capable of the following.

  • Range – 55-65 miles
  • Out and Back Range – about 20-30 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Emergency diesel engine.

I feel it would be a very useful train.

Trains That Could Be Fitted With Batteries

The original article in Rail Magazine says this.

For the battery project, positive discussions are taking place with a number of interested parties for a trial, with both Class 385s and Class 800s being candidates for conversion.

So this means that the following operators will be able to use Hitachi’s battery technology o their trains.

  • Avanti West Coast – Class 80x trains
  • East Coast Trains – Class 80x trains
  • East Midlands Railway – Class 80x trains
  • GWR – Class 80x trains
  • Hull Trains – Class 80x trains
  • LNER – Class 80x trains
  • ScotRail – Class 385 trains
  • TransPennine Express – Class 80x trains

Although, I based my calculations on Class 80x trains, I suspect that the methods can be applied to the smaller Class 385 trains.

Possible Out-And-Back Journeys

These are possible Out-And-Back journeys, that I believe Hitachi’s proposed battery-electric trains could handle.

  • Edinburgh and Tweedbank – 30 miles from Newcraighall
  • London Paddington and Bedwyn – 30 miles from Reading
  • London Euston and Blackburn – 12 miles from Preston
  • London Kings Cross and Bradford – < 27 miles from Leeds
  • London Euston and Chester – 21 miles from Crewe
  • London Kings Cross and Harrogate – <18 miles from Leeds
  • London Kings Cross and Huddersfield – 17 miles from Leeds
  • London St. Pancras and Leicester – 16 miles from Market Harborough
  • London Kings Cross and Lincoln – 17 miles from Newark
  • London St. Pancras and Melton Mowbray – 26 miles from Corby
  • London Kings Cross and Middlesbrough – 20 miles from Northallerton
  • London Kings Cross and Nottingham – 20 miles from Newark
  • London Paddington and Oxford – 10 miles from Didcot
  • London Kings Cross and Redcar – 29 miles from Northallerton
  • London Kings Cross and Rotherham- 14 miles from Doncaster
  • London Kings Cross and Sheffield – 20 miles from Doncaster
  • London and Weston-super-Mare – 19 miles from Bristol

Note.

  1. Provided that the Out-And-Back journey is less than about sixty miles, I would hope that these stations are comfortably in range.
  2. Leicester is the interesting destination, which would be reachable in an Out-And-Back journey. But trains from the North stopping at Leicester would probably need to charge at Leicester.
  3. I have included Blackburn as it could be a destination for Avanti West Coast.
  4. I have included Melton Mowbray as it could be a destination for East Midlands Railway.
  5. I have included Nottingham, Rotherham and Sheffield as they could be destinations for LNER. These services could prove useful if the Midland Main Line needed to be closed for construction works.
  6. I’m also fairly certain, that no new electrification would be needed, although every extra mile would help.
  7. No charging stations would be needed.

I suspect, I’ve missed a few possible routes.

Possible Journeys Between Two Electrified Lines

These are possible journeys between two electrified lines, that  I believe Hitachi’s proposed battery-electric trains could handle.

  • London St. Pancras and Eastbourne via Hastings – 25 miles between Ashford and Ore.
  • Leeds and York via Garforth – 20 miles between Neville Hall and Colton Junction
  • London Kings Cross and Norwich via Cambridge – 54 miles between Ely and Norwich.
  • Manchester Victoria and Leeds via Huddersfield – 43 miles between Manchester Victoria and Leeds.
  • Preston and Leeds via Hebden Bridge – 62 miles between Preston and Leeds.
  • Newcastle and Edinburgh – Would battery-electric trains get round the well-publicised power supply problems on this route?

Note.

  1. I am assuming that a range of 65 miles is possible.
  2. If the trains have a diesel-generator set, then this could be used to partially-charge the battery in places on the journey.
  3. Leeds and York via Garforth has been scheduled for electrification for years.
  4. Preston and Leeds via Hebden Bridge would probably need some diesel assistance.
  5. London Kings Cross and Norwich via Cambridge is a cheeky one, that Greater Anglia wouldn’t like, unless they ran it.
  6. As before no new electrification or a charging station would be needed.

I suspect, I’ve missed a few possible routes.

Possible Out-And-Back Journeys With A Charge At The Destination

These are possible Out-And-Back journeys, that I believe Hitachi’s proposed battery-electric trains could handle, if the batteries were fully charged at the destination.

  • Doncaster and Cleethorpes – 52 miles from Doncaster.
  • London Paddington and Cheltenham – 42 miles from Swindon
  • London Kings Cross and Cleethorpes via Lincoln – 64 miles from Newark
  • London Euston and Gobowen – 46 miles from Crewe
  • London Euston and Wrexham – 33 miles from Crewe
  • London Kings Cross and Hull – 45 miles from Selby
  • London Kings Cross and Shrewsbury – 30 miles from Wolverhampton
  • London Kings Cross and Sunderland 41 miles from Northallerton
  • London Paddington and Swansea – 46 miles from Cardiff
  • London Paddington and Worcester – 67 miles from Didcot Parkway
  • London St. Pancras and Derby – 46 miles from Market Harborough
  • London St. Pancras and Nottingham – 43 miles from Market Harborough

Note.

  1. I am assuming that a range of 65 miles is possible.
  2. If the trains have a diesel-generator set, then this could be used to partially-charge the battery in places on the journey.
  3. I am assuming some form of charging is provided at the destination station.
  4. As before no new electrification would be needed.

I suspect, I’ve missed a few possible routes.

Midland Main Line

The Midland Main Line could possibly be run between London St. Pancras and Derby, Nottingham and Sheffield without the use of diesel.

Consider.

  • The route will be electrified between London St. Pancras and Market Harborough.
  • In connection with High Speed Two, the Midland Main Line and High Seed Two will share an electrified route between Sheffield and Clay Cross North Junction.
  • London St. Pancras and Derby can be run with a charging station at Derby, as Market Harborough and Derby is only 46 miles.
  • London St. Pancras and Nottingham can be run with a charging station at Nottingham, as Market Harborough and Nottingham is only 43 miles.
  • The distance between Clay Cross North Junction and Market Harborough is 67 miles.
  • The distance between Sheffield and Leeds is 38 miles.

It looks to me that the range of East Midlands Railway’s new Class 804 trains, will be a few miles short to bridge the gap on batteries, between Clay Cross North Junction and Market Harborough station, but Leeds and Sheffield appears possible, once Sheffield has been electrified.

There are several possible solutions to the Clay Cross North and Market Harborough electrification gap.

  1. Fit higher capacity batteries to the trains.
  2. Extend the electrification for a few miles North of Market Harborough station.
  3. Extend the electrification for a few miles South of Clay Cross North Junction.
  4. Stop at Derby for a few minutes to charge the batteries.

The route between Market Harborough and Leicester appears to have been gauge-cleared for electrification, but will be difficult to electrify close to Leicester station. However, it looks like a few miles can be taken off the electrification gap.

Between Chesterfield and Alfriston, the route appears difficult to electrify with tunnels and passig through a World Heritage Site.

So perhaps options 1 and 2 together will give the trains sufficient range to bridge the electrification gap.

Conclusion On The Midland Main Line

I think that Hitachi, who know their trains well, must have a solution for diesel-free operation of all Midland Main Line services.

It also looks like little extra electrification is needed, other than that currently planned for the Midland Main Line and High Speed Two.

North Wales Coast Line

If you look at distance along the North Wales Coast Line, from the electrification at Crewe, you get these values.

  • Chester – 21 miles
  • Rhyl – 51 miles
  • Colwyn Bay – 61 miles
  • Llandudno Junction – 65 miles
  • Bangor – 80 miles
  • Holyhead – 106 miles

It would appear that Avanti West Coast’s new AT-300 trains, if fitted with batteries could reach Llandudno Junction station, without using diesel.

Electrification Between Crewe And Chester

It seems to me that the sensible thing to do for a start is to electrify the twenty-one miles between Crewe and Chester, which has been given a high priority for this work.

With this electrification, distances from Chester are as follows.

  • Rhyl – 30 miles
  • Colwyn Bay – 40 miles
  • Llandudno Junction – 44 miles
  • Bangor – 59 miles
  • Holyhead – 85 miles

Electrification between Crewe and Chester may also open up possibilities for more electric and battery-electric train services.

But some way will be needed to charge the trains to the West of Chester.

Chagring The Batteries At Llandudno Junction Station

This Google Map shows Llandudno Junction station.

Note.

  1. It is a large station site.
  2. The Conwy Valley Line, which will be run by battery Class 230 trains in the future connects at this station.
  3. The Class 230 train will probably use some of Vivarail’s Fast Charging systems, which use third-rail technology, either at the ends of the branch or in Llandudno Junction station.

The simplest way to charge the London Euston and Holyhead train, would be to build a charging station at Llandudno Junction, which could be based on Vivarail’s Fast Charging technology or a short length of 25 KVAC overhead wire.

But this would add ten minutes to the timetable.

Could 25 KVAC overhead electrification be erected for a certain distance through the station, so that the train has ten minutes in contact with the wires?

Looking at the timetable of a train between London Euston and Holyhead, it arrives at Colwyn Bay station at 1152 and leaves Llandudno Junction station at 1200.

So would it be possible to electrify between the two stations and perhaps a bit further?

This Google Map shows Colwyn Bay Station,

Note how the double-track railway is squeezed between the dual-carriageway of the A55 North Wales Expressway and the sea.

The two routes follow each other close to the sea, as far as Abegele & Pensarn station, where the Expressway moves further from the sea.

Further on, after passing through more caravans than I’ve ever seen, there is Rhyl station.

  • The time between arriving at Rhyl station and leaving Llandudno Junction station is nineteen minutes.
  • The distance between the two stations is fourteen miles.
  • Rhyl and Crewe is fifty-one miles.
  • Llandudno Junction and Holyhead is forty-one miles.

It would appear that if the North Wales Coast Line between Rhyl and Llandudno Junction is electrified, that Hitachi’s proposed battery trains can reach Holyhead.

The trains could even changeover between electrification and battery power in Rhyl and Llandudno Junction stations.

I am sure that electrifying this section would not be the most difficult in the world, although the severe weather sometimes encountered, may need some very resilient or innovative engineering.

It may be heretical to say so, but would it be better if this section were to be electrified using proven third-rail technology.

West of Llandudno Junction station, the electrification would be very difficult, as this Google Map of the crossing of the River Conwy shows.

I don’t think anybody would want to see electrification around the famous castle.

Electrification Across Anglesey

Llanfairpwll station marks the divide between the single-track section of the North Wales Coast Line over the Britannia Bridge and the double-track section across Anglesey.

From my virtual helicopter, the route looks as if, it could be fairly easy to electrify, but would it be necessary?

  • Llandudno Junction and Holyhead is forty-one miles, which is well within battery range.
  • There is surely space at Holyhead station to install some form of fast-charging system.

One problem is that trains seem to turn round in only a few minutes, which may not be enough to charge the trains.

So perhaps some of the twenty-one miles between Llanfairpwll and Holyhead should be electrified.

London Euston And Holyhead Journey Times

Currently, trains take three hours and forty-three minutes to go between London Euston and Holyhead, with these sectional timings.

  • London Euston and Crewe – One hour and thirty-nine minutes.
  • Crewe and Holyhead – Two hours and four minutes.

The big change would come, if the London Euston and Crewe leg, were to be run on High Speed Two, which will take just fifty-five m,inutes.

This should reduce the London Euston and Holyhead time to just under three hours.

Freight On The North Wales Coast Line

Will more freight be seen on the North Wales Coast Line in the future?

The new tri-mode freight locomotives like the Class 93 locomotive, will be able to take advantage of any electrification to charge their batteries, but they would probably be on diesel for much of the route.

Conclusion On The North Wales Coast Line

Short lengths of electrification, will enable Avanti West Coast’s AT-300 trains, after retrofitting with batteries, to run between Crewe and Holyhead, without using any diesel.

I would electrify.

  • Crewe and Chester – 21 miles
  • Rhyl and Llandudno Junction – 14 miles
  • Llanfairpwll and Holyhead – 21 miles

But to run battery-electric trains between London Euston and Holyhead, only Rhyl and Llandudno Junction needs to be electrified.

All gaps in the electrification will be handled on battery power.

A Selection Of Possible Battery-Electric Services

In this section, I’ll look at routes, where battery-electric services would be very appropriate and could easily be run by Hitachi’s proposed battery-electric trains.

London Paddington And Swansea

Many were disappointed when Chris Grayling cancelled the electrification between Cardiff and Swansea.

I went along with what was done, as by the time of the cancellation, I’d already ridden in a battery train and believed in their potential.

The distance between Cardiff and Swansea is 46 miles without electrification.

Swansea has these services to the West.

  • Carmarthen – 32 miles
  • Fishguard – 73 miles
  • Milford Haven  71 miles
  • Pembroke Dock – 73 miles

It looks like, three services could be too long for perhaps a three car battery-electric version of a Hitachi Class 385 train, assuming it has a maximum range of 65 miles.

But these three services all reverse in Carmarthen station.

So perhaps, whilst the driver walks between the cabs, the train can connect automatically to a fast charging system and give the batteries perhaps a four minute top-up.

Vivarail’s Fast Charging system based on third-rail technology would be ideal, as it connects automatically and it can charge a train in only a few minutes.

I would also electrify the branch between Swansea and the South Wales Main Line.

This would form part of a fast-charging system for battery-trains at Swansea, where turnround times can be quite short.

I can see a network of battery-electric services developing around Swansea, that would boost tourism to the area.

Edinburgh And Tweedbank

The Borders Railway is electrified as far as Newcraighall station and the section between there and Tweedbank is thirty miles long.

I think that a four-car battery-electric Class 385 train could work this route.

It may or may not need a top up at Tweedbank.

The Fife Circle

The Fife Circle service from Edinburgh will always be difficult to electrify, as it goes over the Forth Rail Bridge.

  • The Fife Circle is about sixty miles long.
  • Plans exist for a short branch to Leven.
  • The line between Edinburgh and the Forth Rail Bridge is partly electrified.

I believe that battery-electric Class 385 train could work this route.

London Kings Cross and Grimsby/Cleethorpes via Lincoln

The Cleethorpes/Grimsby area is becoming something of a  renewable energy powerhouse and I feel that battery trains to the area, might be a significant and ultimately profitable statement.

LNER recently opened a six trains per day service to Lincoln.

Distances from Newark are as follows.

  • Lincoln – 17 miles
  • Grimsby – 61 miles
  • Cleethorpes – 64 miles

A round trip to Lincoln can probably be achieved on battery alone with a degree of ease, but Cleethorpes and Grimsby would need a recharge at the coast.

Note that to get to the Cleethorpes/Grimsby area, travellers usually need to change at Doncaster.

But LNER are ambitious and I wouldn’t be surprised to see them dip a toe in the Cleethorpes/Grimsby market.

The LNER service would also be complimented by a TransPennine Express service from Manchester Airport via Sheffield and Doncaster, which could in the future be another service run by a Hitachi battery train.

There is also a local service to Barton-on-Humber, which could be up for improvement.

London Waterloo And Exeter

This service needs to go electric, if South Western Railway is going to fully decarbonise.

But third-rail electrification is only installed between Waterloo and Basingstoke.

Could battery-electric trains be used on this nearly two hundred mile route to avoid the need for electrification.

A possible strategy could be.

  • Use existing electrification, as far as Basingstoke – 48 miles
  • Use battery power to Salisbury – 83 miles
  • Trains can take several minutes at Salisbury as they often split and join and change train crew, so the train could be fast-charged.
  • Use battery power to the Tisbury/Gillingham/Yeovil/Crewkerne area, where trains would be charged – 130 miles
  • Use battery power to Exeter- 172 miles

Note.

  1. The miles are the distance from London.
  2. The charging at Salisbury could be based on Vivarail’s Fast-Charging technology.
  3. The charging around Yrovil could be based on perhaps twenty miles of third-rail electrification, that would only be switched on, when a train is present.

I estimate that there could be time savings of up to fifteen minutes on the route.

 

To Be Continued…

 

 

 

 

 

 

 

 

 

 

 

February 18, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , , , , , | 5 Comments

Could High Speed Two Trains Serve Chester?

This may seem a slightly outrageous proposal to run High Speed Two trains to Chester.

  • The city is a major tourist destination.
  • Despite its closeness to Crewe it is a major rail hub, with services across Wales to Cardiff, Holyhead and Llandudno and along the border between England and Wales to Shrewsbury and Newport.
  • Merseyrail serves the city and the station can be considered to be part of Liverpool’s extensive commuting area. This service is likely to be more reliable and faster with the delivery of new Class 777 trains.
  • For parts of Merseyside, travelling to London or Manchester Airport, is easier via Chester than Liverpool Lime Street or Liverpool South Parkway.

If the promoters of High Speed Two are serious about creating a railway for the whole country, then I feel that running trains direct to and from Chester could be very beneficial for the towns and cities, that can be served by the current network at Chester.

Current And Possible Timings

Currently, trains take two minutes over two hours between Euston and Chester.

When Avanti West Coast introduces the new Hitachi AT-300 trains on the route, the following times will be possible.

  • Euston to Crewe via West Coast Main Line – 90 minutes – Fastest Pendelino
  • Crewe and Chester – 24 minutes – Current timing

This would give a time of one hour and 54 minutes, which is a saving of 8 minutes. But a lot of carbon would not be emitted.

I estimate, that with High Speed Two Phase 2a completed, the following timings will be possible.

  • Euston to Crewe via HS2 – 55 minutes – HS2 website
  • Crewe and Chester – 24 minutes – Current timing

This would give a time of one hour and 19 minutes, which is a saving of 43 minutes.

Infrastructure Needed

There will need to be some infrastructure changes.

Platform Lengthening At Chester Station

The station would probably be served by two-hundred metre long classic-compatible, which might need some platform lengthening.

This Google Map shows the station.

It looks to me, that there is plenty of space.

Will Chester And Crewe Be Electrified?

We know little about the capabilities of the trains proposed by the various manufacturers.

But, I wouldn’t be surprised that one or more of the proposals use batteries for one of the following purposes.

  • Regenerate braking.
  • Emergency power.
  • Range extension for up to perhaps sixty miles.

As Chester and Crewe stations are only twenty-one miles apart with no intermediate stations, which will be run at an average speed of only 52 mph I don’t think it will be impossible to extend the service to Chester on battery power.

If electrification is required I wrote about it in Hitachi Trains For Avanti.

As it is only just over twenty miles, I don’t think it will be the most challenging of projects, although there does seem to be a lot of bridges.

Electrification would also allow Avanti West Coast’s Hitachi trains to run on electricity to Chester.

What About Holyhead?

Holyhead could become a more important destination in the next few years.

It is probably the best alternative to avoid flying and driving between Great Britain and the Island of Ireland.

And who can accurately predict, what effect Brexit and thinking about global warming will have?

I have a feeling that after electrification to Chester, using on-board energy storage could be used West of Chester.

It is very difficult to predict battery ranges in the future, but I can see a two hundred metre long classic-compatible train on High Speed Two being able to reach Holyhead on battery power, with or without some limited extra electrification.

I estimate that with some track improvements, that it will be possible to travel between Euston and Holyhead in around three hours.

Conclusion

It looks to me, that when High Speed Two, think about adding extra destinations, Chester could be on the list.

I also suspect that if it can be run without full electrification, Euston and Holyhead could be a valuable route for Avanti West Coast.

January 21, 2020 Posted by | Transport | , , , , , , , , , | 2 Comments

Hitachi Trains For Avanti

The title of this post is the same as that of an article in the January 2020 Edition of Modern Railways.

The Bi-Mode Trains

Some more details of the thirteen bi-mode and ten electric Hitachi AT 300 trains are given.

Engine Size and Batteries

This is an extract from the article.

Hitachi told Modern Railways it was unable to confirm the rating of the diesel engines on the bi-modes, but said these would be replaceable by batteries in future if specified.

I do wonder if my speculation in Will Future Hitachi AT-300 Trains Have MTU Hybrid PowerPacks? is possible.

After all, why do all the hard work to develop a hybrid drive system, when your engine supplier has done it for you?

Would Avanti West Coast need a train that will do 125 mph on diesel?

The only place, they will be able to run at 125 mph or even higher will be on the West Coast Main Line, where they will be running under electric power from the pantograph.

If I were designing a bi-mode for 90 mph on diesel and 125 mph on electric, I would have batteries on the train for the following purposes.

  • Handle regenerative braking.
  • Provide hotel power in stations or when stationery.
  • Provide an acceleration boost, if required, when running on diesel.
  • Provide emergency power, if the wires go down in electric mode.

I’m sure MTU could work out a suitable size of diesel engine and batteries in an MTU PowerPack, that would meet the required performance.

Or maybe a smaller diesel could be used. An LNER Class 800 train has 1680 kW of installed power to maintain 125 mph. But the Great Western Railway versions have 2100 kW or twenty-five percent more, as their routes are more challenging with steeper gradients.

For the less challenging routes at a maximum of 90 mph between Crewe, Chester, Shrewsbury and North Wales, I wonder what level of power is needed.

A very rough estimate based on the speed required could put the power requirement as low as 1200-1500 kW.

As the diesel engines are only electrical generators, it would not effect the ability of the train to do 125 mph between Crewe and London.

There looks to be a virtuous circle at work here.

  • Lower maximum speed on diesel means smaller diesel engines.
  • Smaller diesel engines means lighter diesel engines and less fuel to carry.
  • Less weight to accelerate needs less installed power.
  • Less power probably means a more affordable train, that uses less diesel.

It looks to me, that Hitachi have designed a train, that will work Avanti West Coast’s routes efficiently.

The Asymmetric Bi-Mode Train

It looks to me that the bi-mode train  that Avanti West Coast are buying has very different performance depending on the power source and signalling

  • 90 mph or perhaps up to 100 mph on diesel.
  • 125 mph on electric power.with current signalling.
  • Up to 140 mph on electric power with in-cab digital signalling.

This compares with the current Class 221 trains, which can do 125 mph on all tracks, with a high enough operating speed.

The new trains’ different performance on diesel and electric power means they could be called asymmetric bi-modes.

Surely, creating an asymmetric bi-mode train, with on-board power; battery, diesel or hydrogen, sized to the route, mean less weight, greater efficiency, less cost and in the case of diesel, Higher carbon efficiency.

Carbon Emissions

Does the improvement in powertrain efficiency with smaller engines running the train at slower speeds help to explain this statement from the Modern Railways article?

Significant emissions reduction are promised from the elimination of diesel operation on electrified sections as currently seen with the Voyagers, with an expected reduction in CO2 emissions across the franchise of around two-thirds.

That is a large reduction, which is why I feel, that efficiency and batteries must play a part.

Battery-Electric Conversion

In my quote earlier from the Modern Railways article, I said this.

These (the diesel engines) would be replaceable by batteries in future if specified.

In Thoughts On The Next Generation Of Hitachi High Speed Trains, I looked at routes that could be run by a battery-electric version of Hitachi AT-300 trains.

I first estimated how far an AT-300 train could go on batteries.

How far will an AT-300 train go on battery power?

  • I don’t think it is unreasonable to be able to have 150 kWh of batteries per car, especially if the train only has one diesel engine, rather than the current three in a five-car train.
  • I feel with better aerodynamics and other improvements based on experience with the current trains, that an energy consumption of 2.5 kWh per vehicle mile is possible, as compared to the 3.5 kWh per vehicle mile of the current trains.

Doing the calculation gives a range of sixty miles for an AT-300 train with batteries.

As train efficiency improves and batteries are able to store more energy for a given volume, this range can only get better.

I then said this about routes that will be part of Avanti West Coast’s network.

With a range of sixty miles on batteries, the following is possible.

  • Chester, Gobowen, Shrewsbury And Wrexham Central stations could be reached on battery power from the nearest electrification.
  • Charging would only be needed at Shrewsbury to ensure a return to Crewe.

Gobowen is probably at the limit of battery range, so was it chosen as a destination for this reason.

The original post was based on trains running faster than the 90 mph that is the maximum possible on the lines without electrification, so my sixty mile battery range could be an underestimate.

These distances should be noted.

  • Crewe and Chester – 21 miles
  • Chester and Shrewsbury – 42 miles
  • Chester and Llandudno – 47 miles
  • Chester and Holyhead – 84 miles

Could electrification between Crewe and Chester make it possible for Avanti West Coast’s new trains to go all the way between Chester and Holyhead on battery power in a few years?

I feel that trains with a sixty mile battery range would make operations easier for Avanti West Coast.

Eighty miles would almost get them all the way to Holyhead, where they could recharge!

Rlectrification Between Chester And Crewe

I feel that this twenty-odd miles of electrification could be key to enabling battery-electric trains for the routes to the West of Chester to Shrewsbury, Llandudno and Holyhead.

How difficult would it be to electrify between Chester and Crewe?

  • It is not a long distance to electrify.
  • There doesn’t appear to be difficult viaducts or cuttings.
  • It is electrified at Crewe, so power is not a problem.
  • There are no intermediate stations.

But there does seem to be a very large number of bridges. I counted forty-four overbridges and six underbridges. At least some of the bridges are new and appear to have been built with the correct clearance.

Perhaps it would be simpler to develop fast charging for the trains and install it at Chester station.

Conclusion On The Bi-Mode Trains

It appears to me that Avanti West Coast, Hitachi and Rock Rail, who are financing the trains have done a very good job in devising the specification for a fleet of trains that will offer a good service and gradually move towards being able to deliver that service in a carbon-free manner.

  • The initial bi-mode trains will give a big improvement in performance and reduction in emission on the current Voyagers, as they will be able to make use of the existing electrification between Crewe and London.
  • The trains could be designed for 125 mph on electric power and only 90-100 mph on diesel, as no route requires over 100 mph on diesel. This must save operating costs and reduce carbon emissions.
  • They could use MTU Hybrid PowerPacks instead of conventional diesel engines to further reduce emissions and save energy
  • It also appears that Hitachi might be able to convert the trains to battery operation in a few years.
  • The only new infrastructure would be a few charging stations for the batteries and possible electrification between Chester and Crewe.

I don’t think Avanti West Coast’s ambition of a two-thirds reduction in CO2 is unreasonable and feel it could even be exceeded.

Other Routes For Asymetric Bi-Mode Trains

I like the concept of an asymetric bi-mode train, where the train has the following performance.

  • Up to 100 mph on battery, diesel or hydrogen.
  • Up to 100 mph on electrified slower-speed lines.
  • 125 mph on electrified high-speed lines, with current signalling.
  • Up to 140 mph on electrified high-speed lines, with in-cab digital signalling.

I am very sure that Hitachi can now tailor an AT-300 train to a particular company’s needs. Certainly, in the case of Avanti West Coast, this seems to have happened, when Avanti West Coast, Hitachi, Network Rail and Rock Rail had some serious negotiation.

LNER At Leeds

As an example consider the rumoured splitting and joining of trains at Leeds to provide direct services between London and Bradford, Harrogate, Huddersfield, Ilkley, Skipton and other places, that I wrote about in Dancing Azumas At Leeds.

In the related post, I gave some possible destinations.

  • Bradford – 13 miles – 25 minutes – Electrified
  • Harrogate – 18 miles – 30 minutes
  • Huddersfield – 17 miles – 35 minutes
  • Hull – 20 miles – 60 minutes
  • Ilkley – 16 miles – 26 minutes – Electrified
  • Skipton – 26 miles – 43 minutes – Electrified
  • York – 25 miles – 30 minutes

Note, that the extended services would have the following characteristics.

They would be run by one five-car train.

  1. Services to Bradford, Ilkley and Skipton would be electric
  2. Electrification is planned from Leeds to Huddersfield and York, so these services could be electric in a few years.
  3. All other services would need independent power; battery, diesel or hydrogen to and from Leeds.
  4. Two trains would join at Leeds and run fast to London on the electrified line.
  5. Services would probably have a frequency of six trains per day, which works out at a around a train every two hours and makes London and back very possible in a day.
  6. They would stop at most intermediate stations to boost services to and from Leeds and give a direct service to and from London.

As there are thirty trains per day between London and Leeds in each direction, there are a lot of possible services that could be provided.

Currently, LNER are only serving Harrogate via Leeds.

  • LNER are using either a nine-car train or a pair of five-car trains.
  • The trains reverse in Platforms 6 or 8 at Leeds, both of which can handle full-length trains.
  • LNER allow for a generous time for the reverse, which would allow the required splitting and joining.
  • All trains going to Harrogate are Class 800 bi-mode trains.

Note that the Class 800 trains are capable of 125 mph on diesel, whereas the average speed between Harrogate and Leeds is just 35 mph. Obviously, some of this slow speed is due to the route, but surely a train with a maximum speed of 90-100 mph, with an appropriate total amount of diesel power, would be the following.

  • Lighter in weight.
  • More efficient.
  • Emit less pollution.
  • Still capable of high speed on electrified lines.
  • Bi-mode and electric versions could run in pairs between Leeds and London.

LNER would probably save on track access charges and diesel fuel.

LNER To Other Places

Could LNER split and join in a similar way to other places?

  • Doncaster for Hull and Sheffield
  • Edinburgh for Aberdeen and Inverness
  • Newark for Lincoln and Nottingham
  • York for Middlesbrough and Scarborough.

It should be noted that many of the extended routes are quite short, so I suspect some train diagrams will be arranged, so that trains are only filled up with diesel overnight,

GWR

Great Western Railway are another First Group company and I’m sure some of their routes could benefit, from similar planning to that of Avanti West Coast.

Splitting and joining might take place at Reading, Swindon, Bristol and Swansea.

South Western Railway

South Western Railway will need to replace the three-car Class 159 trains to Exeter, that generally work in pairs with a total number of around 400 seats, in the next few years.

These could be replaced with a fleet of third-rail Hitachi trains of appropriate length.

  • Seven cars sating 420 passengers?
  • They would remove diesel trains from Waterloo station.
  • All South Western Railway Trains running between Waterloo and Basingstoke would be 100 mph trains.

I wonder, if in-cab digital signalling on the route, would increase the capacity? It is sorely needed!

Southeastern

Southeastern need bi-mode trains to run the promised service to Hastings.

  • Trains would need a third-rail capability.
  • Trains need to be capable of 140 mph for High Speed One.
  • Trains need to be able to travel the 25 miles between Ashford International and Ore stations.
  • Trains would preferably be battery-electric for working into St. Pancras International station.

Would the trains be made up from six twenty-metre cars, like the Class 395 trains?

The Simple All-Electric Train

The Modern Railways article, also says this about the ten all-electric AT-300 trains for Birmingham, Blackpool and Liverpool services.

The electric trains will be fully reliant on the overhead wire, with no diesel auxiliary engines or batteries.

It strikes me as strange, that Hitachi are throwing out one of their design criteria, which is the ability of the train to rescue itself, when the overhead wires fail.

In Do Class 800/801/802 Trains Use Batteries For Regenerative Braking?, I published this extract from this document on the Hitachi Rail web site.

The system can select the appropriate power source from either the main transformer or the GUs. Also, the size and weight of the system were minimized by designing the power supply converter to be able to work with both power sources. To ensure that the Class 800 and 801 are able to adapt to future changes in operating practices, they both have the same traction system and the rolling stock can be operated as either class by simply adding or removing GUs. On the Class 800, which is intended to run on both electrified and non-electrified track, each traction system has its own GU. On the other hand, the Class 801 is designed only for electrified lines and has one or two GUs depending on the length of the trainset (one GU for trainsets of five to nine cars, two GUs for trainsets of 10 to 12 cars). These GUs supply emergency traction power and auxiliary power in the event of a power outage on the catenary, and as an auxiliary power supply on non-electrified lines where the Class 801 is in service and pulled by a locomotive. This allows the Class 801 to operate on lines it would otherwise not be able to use and provides a backup in the event of a catenary power outage or other problem on the ground systems as well as non-electrified routes in loco-hauled mode.

This is a very comprehensive power system, with a backup in case of power or catenary failure.

So why does it look like Hitachi are throwing that capability out on the trains for Avanti West Coast.

There are several possibilities.

  • The reliability of the trains and the overhead wire is such, that the ability of a train to rescue itself is not needed.
  • The auxiliary generator has never been used for rescuing the train.
  • The West Coast Main Line is well-provided with Thunderbird locomotives for rescuing Pendelinos, as these trains have no auxiliary generator or batteries.
  • Removal of the excess weight of the auxiliary engine and batteries, enables the Hitachi AT-300 trains to match the performance of the Pendelinos, when they are using tilt.

Obviously, Hitachi have a lot of train performance statistics, from the what must be around a hundred trains in service.

It looks like Hitachi are creating a lightweight all-electric train, that has the performance or better of a Pendelino, that it achieves without using tilt.

  • No tilt means less weight and more interior space.
  • No auxiliary generator or batteries means less weight.
  • Wikipedia indicates, that Hitachi coaches are around 41 tonnes and Pendelino coaches are perhaps up to ten tonnes heavier.
  • Less weight means fast acceleration and deceleration.
  • Less weight means less electricity generated under regenerative braking.
  • Pendelinos use regenerative braking, through the catenary.
  • Will the new Hitachi trains do the same instead of the complex system they now use?

If the train fails and needs to be rescued, it uses the same Thunderbird system, that the Pendelinos use when they fail.

Will The New Hitachi Trains Be Less Costly To Run?

These trains will be lighter in weight than the Pendelinos and will not require the track to allow tilting.

Does this mean, that Avanti West Coast will pay lower track access charges for their new trains?

They should also pay less on a particular trip for the electricity, as the lighter trains will need less electricity to accelerate them to line speed.

Are Avanti West Coast Going To Keep The Fleets Apart?

Under a heading of Only South Of Preston, the Modern Railways article says this.

Unlike the current West Coast fleet, the Hitachi trains will not be able to tilt. Bid Director Caroline Donaldson told Modern Railways this will be compensated for by their improved acceleration and deceleration characteristics and that the operator is also working with Network Rail to look at opportunities to improve the linespeed for non-tilting trains.

The routes on which the Hitachi trains will operate have been chosen with the lack of tilt capability in mind, with this having the greatest impact north of Preston, where only Class 390 Pendelinos, which continue to make use of their tilting capability will be used.

Avanti West Coast have said that the Hitachi trains will run from London to Birmingham, Blackpool and Liverpool.

All of these places are on fully-electrified branches running West from the West Coast Main Line, so it looks like there will be separation.

Will The New Hitachi Trains Be Faster To Birmingham, Blackpool And Liverpool?

Using data from Real Time Trains, I find the following data about the current services.

  • Birmingham and Coventry is 19 miles and takes 20 minutes at an average speed of 57 mph
  • Blackpool and Preston is 16.5 miles and takes 21 minutes at an average speed of 47 mph
  • Liverpool and Runcorn is 3.15 miles and takes 15 minutes at an average speed of 52 mph

All the final legs when approaching the terminus seem to be at similar speeds, so I doubt there are much savings to be made away from the West Coast Main Line.

Most savings will be on the West Coast Main Line, where hopefully modern in-cab digital signalling will allow faster running at up to the design speed of both the Hitachi and Pendelino trains of 140 mph.

As an illustration of what might be possible, London to Liverpool takes two hours and thirteen minutes.

The distance is 203 miles, which means that including stops the average speed is 91.6 mph.

If the average speed could be raised to 100 mph, this would mean a journey time of two hours and two minutes.

As much of the journey between London and Liverpool is spent at 125 mph, which is the limit set by the signalling, raising that to 135 mph could bring substantial benefits.

To achieve the journey in two hours would require an overall average speed of 101.5 mph.

As the proportion of track on which faster speeds, than the current 125 mph increase over the next few years, I can see Hitachi’s lightweight all-electric expresses breaking the two hour barrier between London and Liverpool.

What About The Pendelinos And Digital Signalling?

The January 2020 Edition of Modern Railways also has an article entitled Pendolino Refurb Planned.

These improvements are mentioned.

  • Better standard class seats! (Hallelujah!)
  • Refreshed First Class.
  • Revamped shop.

Nothing is mentioned about any preparation for the installation of the equipment to enable faster running using digital in-cab signalling, when it is installed on the West Coast Main Line.

Surely, the trains will be updated to be ready to use digital signalling, as soon as they can.

Just as the new Hitachi trains will be able to take advantage of the digital signalling, when it is installed, the Pendellinos will be able to as well.

Looking at London and Glasgow, the distance is 400 miles and it takes four hours and thirty minutes.

This is an average speed of 89 mph, which compares well with the 91.6 mph between London and Liverpool.

Raise the average speed to 100 mph with the installation of digital in-cab signalling on the route, that will allow running at over 125 mph for long sections and the journey time will be around four hours.

This is a table of average speeds and journey times.

  • 100 mph – four hours
  • 105 mph – three hours and forty-eight minutes
  • 110 mph – three hours and thirty-eight minutes
  • 115 mph – three hours and twenty-eight minutes
  • 120 mph – three hours and twenty minutes
  • 125 mph – three hours and twelve minutes
  • 130 mph – three hours and four minutes

I think that I’m still young enough at 72 to be able to see Pendelinos running regularly between London and Glasgow in three hours twenty minutes.

The paragraph is from the Wikipedia entry for the Advanced Passenger Train.

The APT is acknowledged as a milestone in the development of the current generation of tilting high speed trains. 25 years later on an upgraded infrastructure the Class 390 Pendolinos now match the APT’s scheduled timings. The London to Glasgow route by APT (1980/81 timetable) was 4hrs 10min, the same time as the fastest Pendolino timing (December 2008 timetable). In 2006, on a one off non-stop run for charity, a Pendolino completed the Glasgow to London journey in 3hrs 55min, whereas the APT completed the opposite London to Glasgow journey in 3hrs 52min in 1984.

I think it’s a case of give the Pendelinos the modern digital in-cab signalling they need and let them see what they can do.

It is also possible to give an estimate for a possible time to and from Manchester.

An average speed of 120 mph on the route would deliver a time of under one hour and forty minutes.

Is it possible? I suspect someone is working on it!

Conclusion

I certainly think, that Avanti West Cost, Hitachi and Network Rail, have been seriously thinking how to maximise capacity and speed on the West Coast Main Line.

I also think, that they have an ultimate objective to make Avanti West Coast an operator, that only uses diesel fuel in an emergency.

 

 

January 1, 2020 Posted by | Transport | , , , , , , , , , , , , , , , , | 3 Comments

Could High Speed Two Be A One-Nation Project?

As currently envisioned, High Speed Two is very much an English project, with the following routes

  • London and Birmingham
  • London and Liverpool via Birmingham
  • London and Manchester Airport/Manchester via Birmingham and Crewe
  • London and Sheffield via Birmingham and the East Midlands Hub
  • London and Leeds via Birmingham and the East Midlands Hub

There are large numbers of mid-sized towns and cities that it won’t serve directly.

The West Coast Main Line

The West Coast Main Line serves the following routes.

  • London and Birmingham
  • London and Liverpool via Crewe
  • London and Manchester via Crewe
  • London and Glasgow via Crewe, Wigan, Preston and Carlisle
  • London and Blackpool via Crewe, Wigan, Preston
  • London and North Wales via Crewe and Chester.

It could probably be considered a two or two-and-a-half nation line, as it serves the Western half of Scotland and the Northern half of Wales.

Add the West Coast Main Line and High Speed Two together and you get a line, that serves a lot more places like Blackpool, Carlisle, Chester, Edinburgh, Glasgow, Preston, Stafford, Stoke and Wigan.

  • The current plan for both routes envisage them both being run by Avanti West Coast, so it looks like High Speed Two is being designed to work with the West Coast Main Line.
  • Destinations like Carlisle, Glasgow and Preston will be served using the West Coast Main Line.
  • Compatible trains will be built that can be run on both lines.
  • Some stations will be shared.

It does seem that there are advantages, if the two routes are considered as one system.

The East Coast Main Line

The East Coast Main Line serves the following routes.

  • London and Cambridge
  • London and Kings Lynn via Cambridge
  • London and Lincoln via Newark.
  • London and Leeds via Doncaster
  • London and Hull
  • London and Edinburgh via Doncaster, York and Newcastle

The East Coast Main Line could become another high speed line.

Extra services could be added.

  • London and Norwich via Cambridge
  • London and Nottingham
  • London and Grimsby and Cleethorpes via Lincoln.
  • London and Sheffield via Doncaster.

Add the East Coast Main Line and High Speed Two together and there could be a wider range of towns and cities served.

  • Peterborough and Doncaster could play the same role in the East as Birmingham and Crewe will play in the West.
  • The East Coast Main Line between London and Doncaster will be upgraded to in-cab ERTMS signalling in a few years time, which will allow 140 mph running on several sections of the route.
  • Improvements are either under way or being planned to reduce bottlenecks on the East Coast Main Line.
  • If High Speed Two can handle eighteen trains per hour (tph), then surely the East Coast Main Line, which has a lot of quadruple track, can handle upwards of twelve 140 mph trains per hour between London and Doncaster, after the improvements to track and signalling.
  • I estimate that 140 mph running between London and Doncaster could save as much as twenty minutes.
  • I feel that Barnsley, Doncaster, Hull, Leeds, Sheffield and York could all be reached in under two hours from London using the existing Azuma trains.
  • This morning the 0700 from Kings Cross is timetabled to reach York at 0852. Would it be possible for London and York to be around just ninety minutes?
  • Savings would also apply to trains between London and Middlesbrough, Newcastle, Scotland and Sunderland.
  • Sub-four hour journeys between London and Edinburgh would be commonplace.

Note that the Internet gives a driving time of nearly three and a half hours between London and Leeds. Surely, two hours or less on High Speed Yorkshire would be much preferable.

I would add this infrastructure.

  • There might be a good case to create electrified routes to Hull and Sheffield and between Sheffield and Leeds, but they wouldn’t be needed to start the service or obtain the time savings. But they would ease operation, cut carbon emissions and save a few more minutes.
  • A station at Doncaster-Sheffield Airport.
  • A parkway station at Barnsley on the Dearne Valley Line with direct services to Doncaster, Leeds, London and Sheffield.

The two latter improvements have been proposed in Sheffield Region’s transport plans.

High Speed Yorkshire should be finished as soon as possible. A completion date of 2024 is not unreasonable.

Northern Powerhouse Rail

Northern Powerhouse Rail is a plan to build an East-West high speed line or at least a much faster one, than the overcrowded joke, that presently exists.

I discussed the latest thinking in Changes Signalled For HS2 Route In North and the latest thinking and my views can best be summarised as follows.

  • Northern Powerhouse Rail will be an improved line with some new sections, between Liverpool and Hull via Manchester Airport, Manchester and Leeds.
  • Northern Powerhouse Rail and High Speed Two will connect at High Legh.
  • Northern Powerhouse Rail and High Speed Two will share infrastructure.
  • The High Speed Two route to Manchester would be via Birmingham, Crewe, High Legh and Manchester Airport.
  • The High Speed Two route to Liverpool would be via Birmingham, Crewe, High Legh and Warrington
  • Hull will get a London service from High Speed Two via Birmingham, Crewe, High Legh and Manchester Airport, Manchester and Leeds

The Oakervee review of High Speed Two is also underway and leaks are suggesting, that the report is recommending that High Speed Two be built in full, but differently.

One important thing, that is happening, is that Network Rail have started the procurement process to improve the current line between Leeds and Huddersfield, as I reported in Network Rail Reveals Detailed £2.9bn Upgrade Plans For TransPennine Route.

  • Extra tracks will be built.
  • There will be some extra electrification.

I very much feel, that this is one of the most difficult TransPennine sections to improve.

The other sections are summarised as follows.

  • Liverpool and Manchester Airport via Warrington and High Legh is across the flat lands of North Cheshire and could follow the M56.
  • Manchester Airport and Manchester will probably be a high speed tunnel.
  • Manchester and Huddersfield section could possibly be improved in the short term
  • Leeds and Hull and the required connections to the East Coast Main Line are in the flat lands of East Yorkshire.

It looks to me, that Network Rail have a plan in there to perhaps deliver improved services East of Huddersfield and radiating from Leeds in the next few years.

It certainly needs improvement, as the TransPennine route must be the worst main line in the UK.

A One-Nation Railway

I think these lines can be connected to create an integrated high speed network.

  • High Speed Two
  • West Coast Main Line
  • East Coast Main Line
  • Northern Powerhouse Rail

But.

  • It doesn’t connect to the whole country and needs to be extended.
  • It won’t be fully developed until at least 2035.
  • Improvements are needed now!

So what could be substantially delivered of the core network, by say 2024, which is around the date of the next General Election?

  • Faster and more frequent services on the East Coast Main Line.
  • An electrified higher capacity and faster line between Leeds and Huddersfield and possibly between Leeds and Hull.
  • New East Coast Main Line services from London to Barnsley Dearne Valley, Bradford, Cleethorpes, Doncaster Sheffield Airport, Grimsby, Harrogate, Huddersfield, Middlesbrough, Norwich, Nottingham, Scarborough and Sheffield and Sunderland.
  • Sub-four hour services between London and Edinburgh.
  • New local services to connect Blyth and Ashington to the East Coast Main Line at Newcastle.
  • A Tees Valley Metro  connecting Bishop Auckland, Whitby and all in between to the East Coast Main Line at Darlington.
  • Improved local services between York and Leeds via Harrogate, Sheffield and Leeds via the Dearne Valley and on other lines in Yorkshire.

Effectively, the recommendations of this report on the Transport for the North web site, which is entitled At A Glance – Northern Powerhouse Rail, which apply to Leeds and Sheffield would have been implemented to connect to high speed services at Doncaster, Leeds, Sheffield and Yprk.

Technology used would include.

  • Some more electrification using the power from the electrified East Coast Main Line.
  • Conventional electric trains and compatible battery trains.
  • Tram-trains feeding into the Sheffield Supertram.
  • ERTMS digital signalling on the East Coast Main Line and the major branches to Hull, Leeds and Middlesbrough.

There would also need to be an increase in LNER’s Azuma fleet. But that is already rumoured as I wrote in More New Trains On LNER Wish List.

Could we see as many as twelve Axumas per hour between London and Doncaster? Yes!

Could it all be delivered by the 2024 General Election? Yes!

High Speed Scotland

The Scottish Nationalist Party is pushing for High Speed Two to be extended to Scotland.

I think that this will eventually be a feasible project, but it will be a very expensive and perhaps built around 2040.

These are my thoughts for the next few years up to 2024.

High Speed To Edinburgh

Consider.

  • Edinburgh currently supports a half-hourly service to and from London.
  • East Coast Trains are proposing to add five trains per day to this route.
  • TransPennine Express will run an hourly service between Edinburgh and Liverpool, via Manchester, Leeds, York and Newcastle, which starts at the December 2019 timetable change..
  • CrossCountry run an hourly service between Aberdeen and Plymouth.
  • It looks like Edinburgh and Newcastle have a four tph service.

All services, except the CrossCountry  are planned to be run by Hitachi’s Class 800, 802 or 803 trains.

  • Currently, services take ninety minutes for the 125 miles between Newcastle and Edinburgh.
  • The Hitachi trains are all capable of 140 mph with digital signalling.
  • The Hitachi trains have better acceleration.
  • The route is fully electrified. Although, there are reports it needs enhancing to be able to handle the current number of trains.

How many minutes can be taken off thjs route, with a new timetable on a line running only Hitachi high speed trains?

Probably not that many, but it would ensure all London and Edinburgh trains were under four hours.

But it will all happen by 2024?

High Speed To Glasgow

So Edinburgh is alright, but what about Glasgow?

Consider.

  • Glasgow currently supports an hourly service to and from London.
  • TransPennine Express run an hourly service to and from Manchester Airport
  • TransPennine Express will run a three trains per day service to and from Liverpool.

Glasgow has a much lower frequency service to and from England than Edinburgh.

Currently, London and Glasgow takes over four-and-a half hours and there is going to be no serious improvement, until High Speed Two opens to Crewe, when the time could drop to perhaps just over three-and-a half hours.

But that won’t happen until possibly 2030.

In Does One Of Baldrick’s Descendents Work For Avanti West Coast?, I detail a cunning plan, that might allow London and Glasgow in four hours.

This was my conclusion in the other article.

To improve services between London and Birmingham, Blackpool, Liverpool and Scotland, appears to need the following.

  • Ten new Hitachi trains.
  • Full digital signalling on the West Coast Main Line.
  • Track improvements on the West Coast Main Line
  • Upgrading of the Pendelinos to allow 140 mph running.

This should reduce London and Glasgow to around four hours and London and Liverpool to around two hours.

There may be advantages in replacing the Pendelinos with the Classic-compatible High Speed Two trains on the London and Glasgow service as early as possible.

  • There would be a large increase of capacity between London and Glasgow.
  • What would be the possible speed of the Classic-compatible trains on updated track North of Crewe? I will assume 140 mph, but it could be more! That’s called engineering!
  • London and Glasgow timings would be improved, as soon as digital signalling is installed.
  • The trains would get a thorough testing before the opening of High Speed Two to Birmingham.

At least one platform at Glasgow Central would need to be extended to take a four-hundred metre long train.

According to Wikipedia, the Classic-compatible trains will be introduced from 2026.

I think by the December 2026 timetable change Glasgow could see a four-hour service to and from London.

But could it be 2024, if the Pendelinos can pick up time North of Crewe with digital signalling?

The Borders Railway

If High Speed Two is going to be a One Nation project, the Borders Railway must be extended from Tweedbank to Carlisle via Hawick.

Could this be done by 2024?

It would be a close-run thing! But possible!

The Glasgow South Western Line

The Glasgow South Western Line, is a secondary route between Glasgow and Carlisle.

It should be electrified early, so that during the upgrading of the West Coast Main Line North of Carlisle it can be used as a diversionary route.

Scotland Could Have Two Four-Hour Fully-Electrified Routes To And From London

But it’s not just London that gets good connectivity to and from Scotland!

  • Birmingham
  • Bradford
  • Carlisle
  • Leeds
  • Liverpool
  • Manchester
  • Newcastle
  • Peterborough
  • Preston
  • Wolverhampton
  • York

All these cities will have direct connections to Edinburgh and/or Glasgow.

High Speed Midlands

Almost unnoticed and with little fuss, the Midland Main Line is being upgraded to provide 125 mph services between London and Chesterfield, Derby, Leicester, Nottingham and Sheffield.

  • New Hitachi bi-mode Class 804 trains will improve speeds and increase capacity
  • Over the last decade or so, the track has been upgraded for 125 mph running.
  • Electrification will reach between London and Market Harborough.
  • Market Harborough station has been remodelled to remove a bottleneck.
  • The Corby branch will be electrified with the trains running half-hourly.

I also think, that the Midland Main Line will link into all the improvements between Barnsley, Doncaster, Leeds and Sheffield and provide the following.

  • A high speed route between Leeds and the East Midlands.
  • A route for a Barnsley and London service.
  • A second route for Leeds and London services..

It also seems that rail planners are getting innovative with the design of the Midland Main Line.

  • It appears that the Midland Main Line and High Speed Two’s spur to Sheffield will be combined into an electrified line between Clay Cross and Sheffield via Chesterfield.
  • An improved link to the East-West Rail link at Bedford could improve links between the North-East and the South of England.
  • The disused rail line between Market Harborough and Northampton could be reopened.

The line is a lot more than a connection between London and the East Midlands.

The upgrade should be complete by 2024.

East West Rail

East West Rail is still in a long planning stage, but it now looks likely to provide more than a passenger link between Oxford and Cambridge.

  • New freight routes for Felixstowe and Southampton.
  • Extra passenger services between Oxford and Reading in the West and Cambridge, Ipswich and Norwich in the East.
  • Connections to the Great Western Main Line, the Chiltern Line, West Coast Main Line, Midland Main Line, East Coast Main Line and the Great Eastern Main Line.

It has also been suggested that East West Rail should be connected to High Speed Two at a new station at Calvert. This could give Bristol, Cardiff and Southampton good links to and from High Speed Two.

Great Western Main Line

At the December 2019 timetable change, there has finally been some good news in the saga of the electrification of the Great Western Main Line.

  • Services between London and Bristol have been improved.
  • The timetable has been improved.

Whether it will stand up is another matter.

Certainly by 2024, it will be a much better main line.

It could have full digital in-can signalling, which could result in 140 mph running and journey time savings.

Who knows?

But what excites me is the possibility of a connection between High Speed Two and East West Rail at Calvert, which will allow trains to run between Bristol, Cardiff and Swansea, in Wales and the West and the North on a mainly electrified high speed railway.

High Speed North Wales

Avanti West Coast is purchasing thirteen new Hitachi bi-mode trains to run services to Chester and North Wales.

I can’t see much speed improvement in the services, although if the West Coast Main Line gets digital signalling, this could save a few minutes between London and Crewe.

High Speed Ireland

The technology is now available to build a rail bridge between Scotland and the island of Ireland.

I laid out the arguments in A Solution To The Northern Irish Problem!.

The Lincoln Solution

Lincoln is a city, that has been ignored by UK railways for decades.

But not any more as LNER now run six return trips a day to the city on Mondays to Saturdays and five on Sundays.

I wrote about the improvements in The Shape Of Train Services To Come.

How many other cities and large towns would benefit from a Lincoln solution?

LNER have already launched a similar service to Harrogate at the December 2019 timetable change and I’m sure that more will follow.

Disability And Access Issues

A true one-nation railway wouldn’t exclude anybody from using the trains.

Strides have been made to put up step-free bridges, but some of the access between platform and train is truly dreadful.

This picture shows what can be achieved by good design on a Class 755 train.

And this is the step on one of Hitachi’s new trains.

Note that all doors on these Hitachi trains are also far too narrow.

Some train manufacturers can do much better.

Recurring Themes

In this analysis, there are factors that keep cropping up.

Digital Signalling Or ERTMS

This is the key to squeezing more trains into our overcrowded railway.

Between London and Doncaster on the East Coast Main Line, should be operational in a few years and I believe the following lines should follow as soon as possible.

  • East Coast Main Line between Doncaster and York and possibly Newcastle.
  • East Coast Main Line North Of Newcastle
  • West Coast Main Line North Of Crewe
  • West Coast Main Line South Of Crewe
  • Midland Main Line
  • Great Western Main Line

As a time-expired Control Engineer, I believe that in-cab digital signalling is a major key to increasing capacity.

Faster Line Speeds

Some routes like TransPennine, have Victorian line speeds

Network Rail showed how it could improve line speed with the remodelling at Market Harborough station.

Bottlenecks, like the Trowse Swing Bridge at Norwich need immediate removal, no matter what the Heritage Taliban and other Luddites say.

New Hitachi Trains

There will be several more orders for the next generation of Hitachi’s high speed trains.

I have been critical of Hitachi’s manufacturing processes for these trains in the past, but they seem now to be running well in fleet service.

A standard UK train on 125 mph lines, that can also handle 140 mph with digital signalling must be a good thing for all sorts of reasons.

New Feeder Services

Several new feeder services have been indicated and there should be a lot more of these to bring the benefit of the high speed network to more of the UK population.

Delivering The Improvements

Geographically, the places where improvements are needed are spread thinly around the country and vary from projects with a cost of tens of millions to those with costs of tens of billions.

In the UK, we tend to go for the big hit, when perhaps several smaller ones might give a better short-term improvement.

We also duck projects, which would annoy the noisy local interests.

We need to have fundamental rethink about how we deliver and pay for rail improvements.

Conclusion

I am fairly pleased overall in that I think by 2024, many places in the UK, will have a much better train service than they do now!

Delivery of High Speed Two, East West Rail and Northern Powerhouse Rail as soon as possible after 2024, will be the icing on the cake.

Will It Be A One-Nation Project?

I think it can be!

 

December 16, 2019 Posted by | Transport | , , , , , , , , , , , , | 3 Comments

Does One Of Baldrick’s Descendents Work For Avanti West Coast?

I have been looking at the problems of maximising traffic and reducing journey times on the West Coast Main Line to the North of Crewe.

I think that what Avanti West Coast intend to do has a touch of the Baldricks about it.

Trains that go North from Crewe include the following Avanti West Coast services.

  • Blackpool, which branches off at Preston.
  • Glasgow, which goes up the West Coast Main Line via Preston, Lancaster, Oxenholme and Carlisle.
  • Liverpool, which branches off at Weaver Junction, between Crewe and Warrington.
  • Manchester, which branches off at Crewe.

I find it interesting that according to Wikipedia, Avanti West Coast will be running their new Hitachi electric trains to Blackpool and Liverpool, but not Manchester.

Could it be that as these trains will be sharing tracks to the North of Crewe in the future with High Speed Two services to Preston, Carlisle and Scotland, that these trains will be built to have the same operating speed on the West Coast Main Line, as the classic-compatible High Speed Two trains, that will serve the route?

The Manchester Branch is slower, so will remain 125 mph Pendelino territory.

The Number Of Electric Trains Ordered

Doing a rough estimate< I reckon the following.

  • One train per hour (tph) to Liverpool needs five 125 mph Pendelinos.
  • One tph to Blackpool needs six 125 mph Pendelinos.
  • .Two tph to Liverpool needs ten 125 mph Pendelinos.
  • If the new Hitachi trains, are capable of 140 mph, I reckon two tph to Liverpool might need eight 140 mph trains.

The order of new Hitachi trains is not large enough to run both Blackpool and Liverpool services.

Will The New Hitachi Trains Be Used On London and Liverpool?

Consider.

  • It would probably the best policy to run each route with one class of train.
  • A two tph London and Liverpool service is much needed.
  • Running the new Hitachi trains on London and Liverpool, would release extra trains for London and Blackpool and London and Birmingham.
  • Two tph to Liverpool needs eight 125 mph Pendelinos or eight 140 mph Hitachi trains.

But it would also mean installing ERTMS signalling on the London and Liverpool route to enable 140 mph running.

It does appear that ten new Hitachi trains, able to run at 140 mph could service the London and Liverpool route and release five Pendelinos for other routes.

Could The Pendelinos Run At 140 mph?

They were designed for this speed, as were the InterCity 225 trains and only don’t run at this speed because of the lack of digital signalling on the West Coast Main Line.

The Wikipedia entry for the Class 390 Pendelino train says this about the speed of the train.

The Class 390 Pendolino is one of the fastest domestic electric multiple units operating in Britain, with a design speed of 140 mph (225 km/h); however, limitations to track signalling systems restrict the trains to a maximum speed of 125 mph (200 km/h) in service. In September 2006, the Pendolino set a new speed record, completing the 401 mi (645 km) length of the West Coast Main Line from Glasgow Central to London Euston in 3 hours, 55 minutes.

Perhaps it is time to unleash the Pendelinos?

Could the planned refurbishment of the Pendelinos install the required equipment, allow the trains to run using digital signalling at 140 mph?

What Is The Cunning Plan?

These are the possible objectives of adding the extra ten trains.

  • One tph between London and Glasgow in around four hours.
  • Two tph between London and Liverpool in around two hours.

Would this be one possible way to achieve these objectives?

  • Install digital signalling on the West Coast Main Line to allow 140 mph in places, where the track allows.
  • Improve the track of the West Coast Main Line, where necessary.
  • Run new Hitachi trains between London and Liverpool.
  • Release the current Pendelinos to other routes.
  • Upgrade the Pendelinos with digital signalling to allow 140 mph running, where possible.
  • Run 140 mph Pendelinos between London and Blackpool, Edinburgh and Glasgow.

The real plan will probably be a lot better and more comprehensive, but it does show how the two objectives can be met.

Conclusion

To improve services between London and Birmingham, Blackpool, Liverpool and Scotland, appears to need the following.

  • Ten new Hitachi trains.
  • Full digital signalling on the West Coast Main Line.
  • Track improvements on the West Coast Main Line
  • Upgrading of the Pendelinos to allow 140 mph running.

This should reduce London and Glasgow to around four hours and London and Liverpool to around two hours.

 

 

 

December 15, 2019 Posted by | Transport | , , , , , , , , | 4 Comments

Rail Operator Avanti West Coast To Offer Three Classes Of Travel

The title of this post is the same as that of this article on the BBC.

This is the first two introductory paragraphs.

Three travel classes will be available on a domestic UK railway line for the first time in more than 60 years.

Avanti West Coast, which has replaced Virgin Trains on the West Coast Main Line, will offer premium economy as well as standard and first-class seats.

I always use the middle-class on Eurostar and regularly use a Weekend First upgrade, so it could be that this middle-class ticket will be useful for me.

 

December 10, 2019 Posted by | Transport | | 2 Comments

New Trains For West Coast Will Be Built By Hitachi

The title of this post, is the same as that of this article on Railnews.

With the new Franchise; Avanti West Coast, starting services in a few days, more detail is starting to be added to their plans.

New Trains

This is said about the new trains to be added to the fleet.

Hitachi is to build 23 new trains for the West Coast Partnership, with the aim of having them in service by 2022.

The fleet will consist of 10 seven-car electric units and 13 five-car bi-mode units, and will be based on Hitachi’s existing Intercity Express models.

These are my thoughts about the trains.

Routes

According to Wikipedia, the bi-mode trains will be used from Euston to Chester, Gobowen, Holyhead, Llandudno and Shrewsbury and the electric trains will be used from Euston to Birmingham New Street, Blackpool North and Liverpool.

In Service Date

The Railnews article and a very similar one in Rail Magazine say that the trains will enter service by or around 2022.

This probably means that they will be built after the Class 804 trains for East Midlands Railway.

Comparison With Class 804 Trains

It has been stated that the Class 804 trains will have the following. characteristics.

  • Twenty-four metre long cars, as opposed to twenty-six metres of a Class 802 train.
  • Four diesel engines in a five-car train, instead of three in a Class 802 train.
  • They will have a reprofiled nose.

They can be considered to be the Mark 2 version of Hitachi’s Intercity Express.

The car length for the Avanti West Coast trains has been specified at twenty-six metres, which is two metres longer than that of the current Class 390 trains on the West Coast Main Line,

So will Avanti West Coast’s trains be based on the Mark 2 version?. It’s logical, that they will.

Performance

The trains for Avanti West Coast will need to keep up with the Class 390 trains, which have the advantage of tilt.

The Railnews article says this about performance.

Although the new trains will not have tilt equipment, their superior acceleration should compensate for slightly slower speeds on some sections of line.

I think that the removal of tilt equipment could be a good thing.

  • Removal could reduce the weight of the train, which would result in increased acceleration.
  • Does tilting reduce the ride quality?
  • Of all the express trains on the UK network, the Class 390 trains, are the ones I avoid because the trains are cramped and so many seats have a bad view.. Is this caused by incorporating tilting or by crap design?

I also wonder if the reprofiled nose will improve the aerodynamics of the new trains for both the East Midlands Railway and Avanti West Coast.

Better aerodynamics would help during a high-speed cruise.

Train Length

Class 390 trains have two car lengths.

  • An intermediate car is 23.9 metres
  • A driving car is 25.1 metres

This means the following.

  • A nine-car Class 390/0 train is 217.5 metres long.
  • An eleven-car Class 390/1 train is 265.3 metres long.

If the Hitachi trains have seven twenty-six metre cars, then they are 182 metres long or 35.5 metres shorter.

I find that surprising, but it does mean they fit shorter platforms. Is this needed for new destinations like Walsall?

Seating Capacity

The Railnews says this about seating.

There will more seats, because a seven-car train will have 453 and five-car sets will have 301. First said the seven-car version will have about the same number of seats as a nine-car Pendolino, because each IET vehicle is longer, at 26m

Seating on current trains is as follows.

  • A nine-car Class 390 train seats 463 passengers.
  • A five-car Class 221 train seats 250 passengers.

It would appear that the bi-mode trains seat another fifty-one passengers, than the trains they are replacing, which must be good for the routes to Chester, Shrewsbury and North Wales.

As the seven car trains are not replacing any other trains, Aventi West Coast will have n increase in capacity.

Adding up the numbers, it appears that the Avanti West Coast fleet will have three more trains and 3443 more seats.

If they should need more cars or trains, Avanti West Coast should be able to buy them easily.

Out of curiosity, how many passengers could be seated in an Hitachi train, that is the same length as an eleven-car Class 390/1 train.

As this train is 265 metres, a ten-car Hitachi train would be almost the same length.

Assuming the same passenger density as the seven-car trains, a ten-car train would have 647 seats. The current Class 390/1 train has 589 seats, so there would be an increase of sixty seats.

Train Finance

The trains are financed by Rock Rail West Coast; a joint venture between Rock Rail and Aberdeen Standard Investments.

If your pension is with Aberdeen Standard, you may ultimately own a seat or a door handle on these trains, as pension funds find trains a good way of turning pension contributions into the long-term pension, we’ll hopefully all need.

Nationalisation of the trains themselves would probably blow a hole in a lot of pension pots.

Food Offering

The Railnews article says this about food.

The details of catering on board have yet to be finalised, but Railnews has learned that there will be a buffet counter as well as trolley services, and that one of the main food suppliers will be Marks and Spencer.

Over the last couple of years, a food war seems to have developed between Virgin and LNER and as a coeliac, I’ve noticed an improvement in gluten-free food.

Marks and Spencer have done a deal with British Airways, so surely a deal with a train company must fit that model.

  • M & S already deliver to shops in most of Avanti West Coast’s destinations.
  • M & S are one of the best on getting allergies correct.
  • M & S are one of the UK’s most trusted brands.

FirstGroup, who are a seventy percent sharewholder in Avanti West Coast, might like to roll this food model out in their other rail franchises; Great Western Railway, Hull Trains, South Western Railway, TransPennine Express and the future East Coast Trains.

Hull

Hull station is an interesting case, although it has nothing to do with Avanti West Coast.

  • It is a major terminus for Hull Trains and TransPennine Express.
  • Hull Trains market themselves as a quality local train service to and from London.
  • Hull station does not have a M & S Simply Food.
  • M & S are closing their main store in Hull.
  • There are reportedly spare units in the large Hull station.

A well-designed M & S food hub in Hull station could be of great benefit to both FirstGroup and M & S.

Conclusion

Hitachi seem to be able to manipulate the train length to give customers the capacity they want.

But that is good design.

 

 

 

December 6, 2019 Posted by | Transport | , , , | 2 Comments