The Anonymous Widower

Batteries On Class 777 Trains

In this article on Railway Gazette, which is entitled Merseyrail Class 777 arrives in Liverpool, there is this sentence.

There is space under one vehicle to house a battery weighing up to 5 tonnes within the axleload limit.

This matter-of-fact sentence, draws me to the conclusion, that these trains have been designed from the start to allow future battery operation.

Batteries are not an add-on squeezed into a design with great difficulty.

Battery Capacity

Energy densities of 60 Wh/Kg or 135 Wh/litre are claimed by Swiss battery manufacturer; Leclanche.

This means that a five tonne battery would hold 300 kWh.

Note that Vivarail find space for 424 kWh in the two-car Class 230 train, I wrote about in Battery Class 230 Train Demonstration At Bo’ness And Kinneil Railway, so it would appear that Stadler aren’t being over ambitious.

Kinetic Energy Of A Full Class 777 Train

The weight of a full Class 777 train is calculated as follows.

  • Basic empty weight – 99 tonnes
  • Battery weight – 5 tonnes
  • 484 passengers at 80 Kg – 38.72 tonnes

Which gives a total weight of 143.72 tonnes.

Intriguingly, the weight of a current Class 507 train is 104.5 tonnes, which is 500 Kg more than an empty Class 777 train with a battery!

For various speeds, using Omni’s Kinetic Energy Calculator, this weight gives.

  • 30 mph – 3.6 kWh
  • 40 mph – 6.4 kWh
  • 50 mph – 10.0 kWh
  • 60 mph – 14.4 kWh
  • 70 mph – 19.5 kWh
  • 75 mph – 22.4 kWh

Note.

  1. The average speed between Bidston and Wrexham General stations on the Borderlands Line is under 30 mph
  2. The operating speed on the Wirral Line is 70 mph
  3. The operating speed on the Northern Line is 60 mph
  4. The maximum speed of the trains is 75 mph.

Every time I do these calculations, I’m surprised at how low the kinetic energy of a train seems to be.

How Small Is A Small Battery?

One battery doesn’t seem enough, for a train designed with all the ingenuity of a product with quality and precision, that is designed to out-perfrorm all other trains.

This is another paragraph from the article.

According to Merseytravel, ‘we want to be able to prove the concept that we could run beyond the third rail’. By storing recovered braking energy, the batteries would help to reduce power demand and the resulting greenhouse gas emissions. All of the Class 777s will be fitted with small batteries to allow independent movement around workshop and maintenance facilities.

I am not quite sure what this means.

It would seem strange to have two independent battery systems in one train.

I think it is more likely, that the smaller battery can be considered the primary battery of the train.

  • After all in the depot, it looks after the train’s power requirement.
  • Does it also handle all the regenerative braking energy?
  • Is it used as a secondary power supply, if say the power is low from the electrification?
  • Could it be used to move the train to the next station for passenger evacuation in the event of a power failure?

When the five tonne battery is fitted, does the train’s control system move power between the two batteries to drive the train in the most efficient manner?

I return to factors that define the size of the small battery.

The small battery must be big enough for these purposes.

  • Handling regenerative braking at the operating speed.
  • Recovering a full train to the next station.
  • Keeping a train’s systems running, during power supply problems.
  • Moving a train around a depot

As the lines leading to depots are electrified, the train can probably enter a depot with a battery fairly well-charged.

As the new Class 777 trains have a maximum operating speed of 75 mph, I would suspect that the small battery must be able to handle the regenerative braking from 75 mph, which my calculations show is 22.4 kWh with a full train. Let’s call it 30 kWh to have a reserve.

Using Leclanche’s figures, a 30 kWh battery would weigh 500 Kg and have a volume of just under a quarter of a cubic metre (0.222 cubic metre to be exact!)

I suspect the operation of the small battery through a station would be something like this.

  • As the train runs from the previous station, the power from the battery will be used by the train, to make sure that there is enough spare capacity in the battery to accommodate the predicted amount of energy generated by regenerative braking.
  • Under braking, the regenerative braking energy will be stored in the battery.
  • Not all of the kinetic energy of the train will be regenerated, as the process is typically around eighty percent efficient.
  • Whilst in the station, the train’s hotel services like air-conditioning, lights and doors, will be run by either the electrification if available or the battery.
  • When the train accelerates away, the train’s computer will use the optimal energy source.

The process will repeat, with the battery constantly being charged under braking and discharged under acceleration.

Lithium-ion batteries don’t like this cycling, so I wouldn’t be surprised to see dome other battery or even supercapacitors.

A Trip Between Liverpool and Wrexham Central in A Class 777 Train With A Battery

The train will arrive at Bidston station with 300 kWh in the battery, that has been charged on the loop line under the city.

I will assume that the train is cruising at 50 mph between the twelve stops along the twenty-seven and a half miles to Wrexham Central station.

At each of the twelve stops, the train will use regenerative braking, but it will lose perhaps twenty percent of the kinetic energy. This will be two kWh per stop or 24 kWh in total.

I usually assume that energy usage for hotel functions on the train are calculated using a figure of around three kWh per vehicle mile.

This gives an energy usage of 330 kWh.

But the Class 777 trains have been designed to be very electrically efficient and the train is equivalent in length to a three-car Class 507 train.

So perhaps a the calculation should assume three vehicles not four.

Various usage figures give.

  • 3 kWh per vehicle-mile – 247.5 kWh
  • 2.5 kWh per vehicle-mile – 206 kWh
  • 2 kWh per vehicle-mile – 165 kWh
  • 1.5 kWh per vehicle-mile – 123.8 kWh
  • 1 kWh per vehicle-mile – 82.5 kWh

Given that station losses between Bidston and Wrexham Central could be around 24 kWh, it looks like the following could be possible.

  1. With a consumption of 3 kWh per vehicle-mile, a Class 777 train could handle the route, but would need a charging station at Wrexham Central.
  2. If energy consumption on the train could be cut to 1.5 kWh per vehicle-mile, then a round trip would be possible.

It should also be noted that trains seem to do a very quick stop at Wrexham Central station of just a couple of minutes.

So if charging were to be introduced, there would need to be a longer stop of perhaps eight to ten minutes.

But the mathematics are telling me the following.

  • The Class 777 train has been designed to weigh the same empty as a current Class 507 train, despite carrying a five tonne battery.
  • If power consumption can be kept low, a Class 777 train with a battery can perform a round trip from Liverpool to Wrexham Central, without charging except on the electrified section of line between Liverpool and Bidston.
  • Extra stops would probably be possible, as each would consume about 2 kWh

I feel that these trains have been designed around Liverpool to Wrexham Central.

Conclusion

Wrexham Central here we come!

Other routes are possible.

  • Hunts Cross and Manchester Oxford Road – 27 miles
  • Ormskirk and Preston – 15 miles
  • Headbolt Lane and Skelmersdale – 6 miles
  • Ellesmere Port and Helsby – 5 miles
  • Kirkby and Wigan Wallgate – 12 miles

Chargers will not be needed at the far terminals.

February 4, 2020 Posted by | Transport | , , , , | 1 Comment

Tyne And Wear Metro: Swiss Firm Stadler To Build New Fleet

The title of this post is the same as that of this article on the BBC.

This is the introductory paragraph.

Swiss firm Stadler has won a £362m contract to build a new fleet of trains for the Tyne and Wear Metro.

And this is one of Stadler’s visualisations of the trains for the Tyne and Wear Metro (T & W).

Compare this with a Stadler picture of a Class 777 train, that will soon be appearing on Merseyrail in Liverpool.

They would appear to be two very similar trains.

  • The same headlights and stylised M on the front.
  • One pair of double passenger doors in the first car.
  • Both new trains are articulated with four sections.
  • Train widths are Merseyrail Old – 2.82 metres, T & W Old – 2.65 metres and Merseyrail New – 2.82 metres.
  • The Merseyrail trains have a 75 mph operating speed and the T & W trains have one of only 50 mph.

The T & W trains have a pantograph and overhead electrification and the Merseyrail trains use third-rail electrification.

More Details On The Tyne And Wear Trains

This page on the NEXUS web site is entitled Nexus Unveils £362m New Tyne And Wear Metro Trains.

This is two paragraphs.

The new trains will cut Metro’s high voltage power consumption by 30% while providing 15 times better reliability than the current fleet. Metro’s 36 million passengers will benefit from modern features including wifi, charging points, air conditioning and a step-change in accessibility.

Among new features will be an automatic sliding step at every door of the new trains, making travel easier for Metro’s 50,000 wheelchair passengers as well as people with children’s buggies, luggage or bicycles.

The size of the energy saving, indicates that the trains will probably be using regenerative braking.

As it has been disclosed that the new Merseyrail trains will have a small battery for depot movements, will this also be used to handle the regenerative braking.

More details of the trains will be disclosed in the coming months.

Merseyrail And The Tyne And Wear Metro Are Similar

I have ridden Merseyrail many times and the Tyne and Wear Metro perhaps five times and it is surprising how similar the two systems are.

  • They are partly in tunnel.
  • There are a range of stations, including both ancient and modern, simple and complex.
  • Merseyrail is powered by 750 VDC third rail electrification and T & W by 1500 VDC overhead electrification. The power electronics on the two fleets, won’t be that different.
  • Both operators have ambitions to use 25 KVAC overhead electrification to extend services.
  • Both operators have ambitions to extend services on lines, that currently have no electrification. Merseyrail want to go to Preston, Skelmersdale, Warrington and Wrexham and T & W want to go to Blyth and Ashington.

It is no surprise to me, that Merseyrail and T & W have chosen to use two versions of the same Stadler train.

Expansion Of The Networks

Both networks are ambitious  and it appears to me, that they have ordered a train, that could be used to expand their networks.

Merseyrail

Merseyrail have proposed these expansions at various times.

  • Extension of the Northern Line from Ormskirk to Preston
  • Extension of the Northern Line from Hunts Cross to Warrington
  • Incorporation of the Borderlands Line from Bidston to Wrexham into the Wirral Line as a new branch.
  • A new branch of the Northern Line to Skelmersdale via the new station at Headbolt Lane.
  • Passenger services on the Canada Dock Branch.

Merseyrail now have the trains to handle this expansion.

  • They may need to purchase a few extra trains.
  • Some charging points or electrification may be needed.

Note that Bidston and Wrexham is less than thirty miles of unelectrified line, so I suspect that the new trains can handle this range.

Other places within a similar range include.

  • Preston from Ormskirk
  • Wigan Wallgate from Kirkby
  • Manchester Oxford Road from Hunts Cross, via Warrington Central.
  • Chester from Liverpool Lime Street via Runcorn, Frodsham and Helsby.

The four terminal stations all have existing bay platforms.

Tyne And Wear Metro

The Tyne And Wear Metro have proposed these expansions at various times.

  • Sunderland city centre to Doxford Park
  • South Shields to Sunderland
  • Washington, either via the disused Leamside line or a new route

But as the Government is funding a study into linking Blyth and Ashington to Newcastle, which I wrote about in £500m Fund To Restore Beeching Rail Cuts Goes Ahead Amid Criticism, I wouldn’t be surprised that this route is developed.

A lot of my comments about expanding the Merseyrail network, can be applied to the T & W.

  • They may need to purchase a few extra trains.
  • Some charging points or electrification may be needed.

None of the proposed extensions seem particularly long and places like Blyth, Ashington and Washington should be able to be reached on battery power.

Tram-Train Operation

The Wikipedia entry for Merseyrail has a section called tram-trains.

Two possible routes are indicated.

  • Liverpool Lime Street to John Lennon Airport, using street-running from Liverpool South Parkway.
  • Kings Dock to Edge Hill

I have heard others mentioned.

The Wikipedia entry for the Tyne and Wear Metro also mentions street-running.

Stadler have extensive experience of trams and tram-trains and built the Class 399 tram-trains for the Sheffield Supertram.

Stadler also provided the trains for the unique tram-train system in the German town of Zwickau, where diesel multiples units share the tram tracks to access the town centre.

The picture shows the train at its stop in the centre.

I’m sure Stadler know how to enable street-running with the UK’s smaller trains.

Stadler’s trains, trams and tram trains also seem to have a high degree of articulation and seem to be able to take tight corners with ease.

The picture was taken inside a Class 399 tram-train, as it traversed the tight curve under the M1 motorway, where the tram and the train sections of the route to Rotherham join.

Looking at the pictures of the Class 777 trains, I feel they could be able to take tighter curves than most trains.

The Dead Elephant In The Room

Several local services on Merseyside and in the North East are run by Northern, which is now being taken over the Government.

The Department for Transport, hasn’t disclosed any plans yet, but it is likely that some routes could be handed to Merseyrail and the T & W.

There is a loose precedent for this happening. In North-East London the poorly performing Lea Valley Lines from Liverpool Street to Chingford, Cheshunt and Enfield Town were moved from Greater Anglia to London Overground in 2015. No-one feels they should be returned and there are rumours that more services in the area will move to the London Overground.

So what services could be moved?

Merseyrail

These diesel services could surely be moved to Merseyrail.

  • Omrskirk and Preston – 16 miles
  • Liverpool Lime Street and Manchester Oxford Road via Warrington Central – 27 miles

The distances are the length of track without electrification.

It could also be argued that Greater Manchester would get its share of the Northern routes, but I can envisage Class 777 trains or similar running the following routes.

  • Southport and Manchester Victoria – 27 miles
  • Kirkby and Manchester Victoria – 28 miles

As before, the distances are the length of track without electrification, but these could be reduced considerably with electrification from Salford Crescent to Wigan Wallgate.

It should be noted that Greater Manchester has ambitions to run tram-trains to Wigan Wallgate via various routes.

The demise of Northern probably allows these routes to be taken over by Greater Manchester.

  • Manchester Piccadilly and Buxton – 16 miles
  • Manchester Piccadilly and Hadfield/Glossop – Electrified
  • Manchester Victoria and Blackburn – 14 miles
  • Manchester Victoria and Clitheroe – 24 miles
  • Manchester Victoria and Rochdale – 11 miles
  • Manchester Victoria and Stalybridge – 8 miles
  • Manchester Victoria and Wigan Wallgate – 10 miles

Again, the distances are the length of track without electrification.

Buxton and Clitheroe could be difficult because of the gradients involved, but as in South Wales, bi-modes might be the solution if the routes were run back-to-back.

This simple analysis shows how Northern’s demise will ask questions all over the North.

Tyne And Wear Metro

These diesel services could surely be moved to the T & W.

  • Newcastle and Morpeth – Electrified
  • Newcastle and Chathill- Electrified

I also think, that these services could be restructured, if the Blyth and Ashington routes are developed for the T & W.

The trains could also reach to Hexham, which is just 22 miles from electrification.

Middlesbrough is probably too far, as the station is thirty five miles from the electrification at Sunderland.

But electrification of the Durham Coast Line would allow the T & W Metro to serve the new station at Howden and reach Middlesbrough and possibly Nunthorpe.

Conclusion

I can see both Merseyrail and the Tyne and Wear Metro significantly extending their networks in the next few years.

The new trains, with their batteries and dual-voltage capability are built for expansion.

Tram-train or street running will help.

Several important new areas are within battery range.

I can also see other cities using similar Stadler technology to create local Metros.

Manchester, Middlesbrough, Preston and Sheffield come to mind.

Using similar technology would surely allow joint services and sharing of knowledge and designs to enable cost savings.

 

 

 

 

 

 

 

 

 

 

 

 

 

January 31, 2020 Posted by | Transport | , , , , , , , , | Leave a comment

Could High Speed Two Trains Serve Chester?

This may seem a slightly outrageous proposal to run High Speed Two trains to Chester.

  • The city is a major tourist destination.
  • Despite its closeness to Crewe it is a major rail hub, with services across Wales to Cardiff, Holyhead and Llandudno and along the border between England and Wales to Shrewsbury and Newport.
  • Merseyrail serves the city and the station can be considered to be part of Liverpool’s extensive commuting area. This service is likely to be more reliable and faster with the delivery of new Class 777 trains.
  • For parts of Merseyside, travelling to London or Manchester Airport, is easier via Chester than Liverpool Lime Street or Liverpool South Parkway.

If the promoters of High Speed Two are serious about creating a railway for the whole country, then I feel that running trains direct to and from Chester could be very beneficial for the towns and cities, that can be served by the current network at Chester.

Current And Possible Timings

Currently, trains take two minutes over two hours between Euston and Chester.

When Avanti West Coast introduces the new Hitachi AT-300 trains on the route, the following times will be possible.

  • Euston to Crewe via West Coast Main Line – 90 minutes – Fastest Pendelino
  • Crewe and Chester – 24 minutes – Current timing

This would give a time of one hour and 54 minutes, which is a saving of 8 minutes. But a lot of carbon would not be emitted.

I estimate, that with High Speed Two Phase 2a completed, the following timings will be possible.

  • Euston to Crewe via HS2 – 55 minutes – HS2 website
  • Crewe and Chester – 24 minutes – Current timing

This would give a time of one hour and 19 minutes, which is a saving of 43 minutes.

Infrastructure Needed

There will need to be some infrastructure changes.

Platform Lengthening At Chester Station

The station would probably be served by two-hundred metre long classic-compatible, which might need some platform lengthening.

This Google Map shows the station.

It looks to me, that there is plenty of space.

Will Chester And Crewe Be Electrified?

We know little about the capabilities of the trains proposed by the various manufacturers.

But, I wouldn’t be surprised that one or more of the proposals use batteries for one of the following purposes.

  • Regenerate braking.
  • Emergency power.
  • Range extension for up to perhaps sixty miles.

As Chester and Crewe stations are only twenty-one miles apart with no intermediate stations, which will be run at an average speed of only 52 mph I don’t think it will be impossible to extend the service to Chester on battery power.

If electrification is required I wrote about it in Hitachi Trains For Avanti.

As it is only just over twenty miles, I don’t think it will be the most challenging of projects, although there does seem to be a lot of bridges.

Electrification would also allow Avanti West Coast’s Hitachi trains to run on electricity to Chester.

What About Holyhead?

Holyhead could become a more important destination in the next few years.

It is probably the best alternative to avoid flying and driving between Great Britain and the Island of Ireland.

And who can accurately predict, what effect Brexit and thinking about global warming will have?

I have a feeling that after electrification to Chester, using on-board energy storage could be used West of Chester.

It is very difficult to predict battery ranges in the future, but I can see a two hundred metre long classic-compatible train on High Speed Two being able to reach Holyhead on battery power, with or without some limited extra electrification.

I estimate that with some track improvements, that it will be possible to travel between Euston and Holyhead in around three hours.

Conclusion

It looks to me, that when High Speed Two, think about adding extra destinations, Chester could be on the list.

I also suspect that if it can be run without full electrification, Euston and Holyhead could be a valuable route for Avanti West Coast.

January 21, 2020 Posted by | Transport | , , , , , , , , , | 2 Comments

Protests After Claim That Hitachi Has Lost T&W Contract

The title of this post is the same as that of this article on Railnews.

This is the introductory paragraphs.

There have been protests in north east England after a report claimed that Hitachi has been ruled out of the three-way contest to build a £500 million fleet for Tyne & Wear Metro.

The other contenders are CAF and Stadler, and the source of the claims says ‘insiders’ at Nexus have been told that Hitachi will be ‘overlooked’.

It should be noted that the two other bidders have orders for similar trains in the pipeline.

CAF

In TfL Awards Contract For New DLR Fleet To Replace 30-year-old Trains , I wrote about how CAF had been awarded the contract for new trains for the Docklands Light Railway.

I also said this about the possibility of CAF being awarded the contract for the new trains for the Tyne and Wear Metro.

In Bombardier Transportation Consortium Preferred Bidder In $4.5B Cairo Monorail, I indicated that as the trains on the Tyne and Wear Metro and the trains on the Docklands Light Railway, are of a similar height and width, it might be possible to use the same same car bodies on both trains.

So now that CAF have got the first order for the Docklands Light Railway, they must be in prime position to obtain the Tyne and Wear Metro order!

A second order would fit well with the first and could probably be built substantially in their South Wales factory.

Stadler

Stadler seem to be targeting the North, with new Class 777 trains for Merseyrail and Class 399 tram-trains for Sheffield and bids in for tram-trains and and new trains for the Tyne and Wear Metro.

Their trains are both quirky, accessible and quality and built to fit niche markets like a glove.

Only Stadler would produce a replacement for a diesel multiple unit fleet with a bi-mode Class 755 train, with the engine in the middle, that is rumoured to be capable of running at 125 mph.

Note the full step-free access between train and platform, which is also a feature of the Merseyrail trains.

Does the Tyre and Wear Metro want to have access like this? It’s already got it with the existing trains, as this picture at South Shields station shows.

Stadler’s engineering in this area, would fit their philosophy

I first thought that Stadler would propose a version of their Class 399 tram-trains. for the Tyne and Wear Metro and wrote Comparing Stadler Citylink Metro Vehicles With Tyne And Wear Metro’s Class 994 Trains.

This was my conclusion.

I am led to the conclusion, that a version of the Stadler Citylink Metro Vehicle similar to those of the South Waes Metro, could be developed for the Tyne and Wear Metro.

My specification would include.

  • Length of two current Class 994 trains, which would be around 111 metres.
  • Walk through design with longitudinal seating.
  • Level access between platform and train at all stations.
  • A well-designed cab with large windows at each end.
  • Ability to use overhead electrification at any voltage between 750 and 1500 VDC.
  • Ability to use overhead electrification at 25 KVAC.
  • Pantographs would handle all voltages.
  • A second pantograph might be provided for reasons of reliable operation.
  • Ability to use onboard battery power.
  • Regenerative braking would use the batteries on the vehicle.

Note.

  1. Many of these features are already in service in Germany, Spain or Sheffield.
  2. The train would be designed, so that no unnecessary platform lengthening is required.
  3. As in Cardiff, the specification would allow street-running in the future.
  4. Could battery range be sufficient to allow new routes to be developed without electrification?

I also feel that the specification should allow the new trains to work on the current network, whilst the current trains are still running.

But since I wrote that comparison in June 2018, Merseyrail’s new trains have started to be delivered and Liverpudlians have started to do what they do best; imagine!

The Tyne and Wear Metro has similar ambitions to expand the network and would a version of the Class 777 train fit those ambitions better?

Conclusion

I wouldn’t be surprised if Hitachi misses out, as the experience of the Docklands Light Railway or Merseyrail fed into the expansion of the Tyne and Wear Metro could be the clincher of the deal.

They would also be the first UK customer for the Hitachi trains.

 

September 22, 2019 Posted by | Transport | , , , , , , , | 3 Comments

Could Merseyrail’s Class 777 Trains Run As Tram-Trains On The Manchester Metrolink?

Look at the main dimensions of the Stadler Class 777 train destined for Merseyrail  and the current M5000 tram of the Manchester Metrolink. I have also added the dimensions of the Stadler Class 399 tram-train, that is running on the Sheffield Supertram network.

Class 777 train

  • Width – 2.82 metres
  • Height – 3.82 metres
  • Floor Height – 0.96 metres
  • Overall Length – 64.98 metres
  • Capacity – 190 seats and 302 standing – 492 total
  • Operating Speed – 75 mph

M5000

  • Width – 2.65 metres
  • Height – 3.67 metres
  • Floor Height – 0.90 metres
  • Overall Length – 28.4 metres
  • Double Length – 56.8 ,metres
  • Capacity – 60 or 66 seats and 146 standing – 206 or 212 total
  • Operating Speed – 50 mph

Class 399 tram-train

  • Width – 2.65 metres
  • Height – 3.72 metres
  • Floor Height – 0.425 metres
  • Overall Length – 37.2 metres
  • Capacity – 96 seats and 140 standing – 236  total
  • Operating Speed – 62 mph

Note.

  1. Vehicle width and height could probably be incorporated on the same track
  2. The floor heights of the Class 777 train and the M5000 are surprisingly close,
  3. The floor height of the low-floor Class 399 tram-train is lower and wouldn’t allow step-free access from platform to tram on the Metrolink network.
  4. A double M5000 and a Class 777 train have similar lengths.
  5. A double M5000 has 86% of the capacity of a Class 777 train.

A Class 777 train looks to be able to go anywhere that a double M5000 tram can go and be able to give the same quality of passenger access.

Can double M5000 trams use the whole of the Metrolink network?

Power Supply

Around Manchester and Liverpool there are the following types of electrification.

  • 25 KVAC overhead – Connecting major cities and on the West Coast Main Line.
  • 750 VDC overhead – Manchester Metrolink
  • 750 VDC third-rail – Merseyrail

In the future it is intended that Class 777 trains will be able to handle.

  • 25 KVAC overhead
  • 750 VDC third-rail

It should also be noted that Class 399 tram-trains, which are also built by Stadler can handle.

  • 25 KVAC overhead
  • 750 VDC overhead

I wouldn’t be surprised to find, that Stadler can produce a Class 777 train, that could handle these voltages.

  • 25 KVAC overhead
  • 750 VDC overhead
  • 750 VDC third-rail

It’s all about the electrical systems on the train, but Stadler probably have the solutions in their boxes of tricks.

I very much feel it would possible for a version of a Class 777 train with an additional battery to do the following.

  • Run as a train on the Merseyrail network. using 750 VDC third-rail.
  • Run as a train between Otmskirk and Preston using a mixture of battery power and 25 KVAC overhead.
  • Run as a train between Kirkby and Wigan using the battery.
  • Run as a double tram on the Manchester Metrolink using 750 VDC overhead.
  • Run as a tram-train to extend the Manchester Metrolink using a mixture of battery power and 25 KVAC overhead.

Class 777 trains might even be able to run on the Sheffield Supertram network. But they might be too long and would not be able to provide step-free access from platform to tram, without modification of trains and/or platforms.

Poasible Routes

Just about anywhere a Manchester Metrolink M5000 tram or a four-car electric or diesel multiple unit can run.

Thjis article on Railway Gazette is entitled Battery Trial Planned For New EMU Fleet.

This is the first sentence.

The sixth of the 52 four-car 750 V DC third rail electric multiple-units which Stadler is to supply for Merseyrail services around Liverpool is to be fitted with a 5 tonne battery to test the business case for energy storage.

A five tonne battery will soon be able to have a capacity of 500 kWh, which should be able to give the train a range of fifty miles on battery power.

This would more than cover the thirty miles without electrification between Altrincham and Chester, where the battery could be recharged.

Conclusion

I am in no doubt that Merseyrail’s Class 777 trains, could run as tram-trains on the Manchester Metrolink.

But then, Stadler don’t do ordinary and obvious!.

Why should they?

There must also be an advantage to Manchester Metrolink and Merseyrail, if they were using the same or similar vehicles for their public transport networks.

 

 

September 18, 2019 Posted by | Transport, Uncategorized | , , , , , | 11 Comments

Irlam Station To Go Step-Free

This document on the Government web site is entitled Access for All: 73 Stations Set To Benefit From Additional Funding.

Irlam station is on the list.

These pictures show the station and the current subway.

The station was a total surprise, with a large pub-cafe and a lot of visitors and/or travellers sitting in the sun.

I had an excellent coffee and a very welcoming gluten-free blueberry muffin!

This Google Map shows the station.

It is one of those stations where commuters have to cross the railway either on the way to work or coming home.

So a step-free method of crossing the railway is absolutely necessary.

The Current And Future Rail Service

As the station lies conveniently between Liverpool and Warrington to the West and Manchester and Manchester Airport to the East, it must be a station with tremendous potential for increasing the number of passengers.

At the moment the service is two trains per hour (tph) between Liverpool Lime Street and Manchester Oxford Road stations.

  • Oxford Road is probably not the best terminus, as it is not on the Metrolink network.
  • When I returned to Manchester, many passengers alighted at Deansgate for the Metrolink.
  • On the other hand, Liverpool Lime Street is a much better-connected station and it is backed up by Liverpool South Parkway station, which has a connection to Merseyrail’s Northern Line.
  • The current service doesn’t serve Manchester Piccadilly or Airport stations.

A guy in the cafe also told me that two tph are not enough and the trains are often too short.

Merseyrail work to the same principle as the London Overground and other cities of four tph at all times and the frequency certainly draws in passengers.

Whilst I was drinking my coffee, other trains past the station.

  • One tph – Liverpool Lime Street and Manchester Airport
  • One tph – Liverpool Lime Street and Norwich

Modern trains like Northern’s new Class 195 trains, should be able to execute stops at stations faster than the elderly diesel trains currently working the route.

So perhaps, after Irlam station becomes step-free, the Manchester Airport service should call as well.

As Liverpool Lime Street station has been remodelled, I can see a time in the not too distant future, when that station can support four tph, that all stop at Irlam station.

The Manchester end of the route could be a problem, as services terminating at Oxford Road have to cross the busy lines of the Castlefield Corridor.

So perhaps all services through Irlam, should go through Deansgate, Manchester Oxford Road and Manchester Piccadilly stations to terminate either at the Airport or perhaps Stockport or Hazel Grove stations.

But would this overload the Castlefield Corridor?

Battery/Electric Trains

If you look at the route between Liverpool Lime Street and Manchester Oxford Road stations, the following can be seen.

  • Only about thirty miles between Deansgate and Liverpool South Parkway stations is not electrified.
  • The section without electrification doesn’t appear to be particularly challenging, as it is along the River Mersey.

It is my view, that the route between Liverpool and Manchester via Irlam, would be an ideal route for a battery/electric train.

A train between Liverpool Lime Street and Manchester Airport stations would do the following.

  • Run from Liverpool Lime Street station to Liverpool South Parkway station using the installed 25 KVAC overhead electrification.
  • Drop the pantograph during the stop at Liverpool South Parkway station.
  • Run from Liverpool South Parkway station to Deansgate station using battery power.
  • Raise the pantograph during the stop at Deansgate station.
  • Run from Deansgate station to Manchester Airport station, using the installed 25 KVAC overhead electrification.

The exact distance between Deansgate and Liverpool South Parkway stations is 28.2 miles or 45.3 kilometres.

In 2015, I was told by the engineer riding shotgun on the battery/electric Class 379 train, that that experimental train was capable of doing fifty kilometres on battery power.

There are at least four possible trains, that could handle this route efficiently.

  • Porterbrook’s proposed batteryFLEX train based on a Class 350 train.
  • A battery/electric train based on the seemingly unwanted Class 379 train.
  • A battery/electric version of Stadler’s Class 755 train.
  • I believe that Bombardier’s Aventra has been designed so that a battery/electric version can be created.

There are probably others and I haven’t talked about hydrogen-powered trains.

Battery power between Liverpool and Manchester via Irlam, appears to be very feasible.

Tram-Trains

As my train ran between Manchster and Irlam it ran alongside the Metrolink between Cornbrook and Pomona tram stops.

Manchester is very serious about tram-trains, which I wrote about in Could A Class 399 Tram-Train With Batteries Go Between Manchester Victoria And Rochdale/Bury Bolton Street/Rawtenstall Stations?.

Tram-trains are often best employed to go right across a city, so could the Bury tram-trains go to Irlam after joining the route in the Cornbrook area?

  • Only about thirty miles between Deansgate and Liverpool South Parkway stations is not electrified.
  • The route between Liverpool and Manchester via Irlam doesn’t look to be a very challenging line to electrify.
  • The total distance bettween Liverpool Lime Street and Manchester Victoria station is only about forty miles, which is a short distance for a tram-train compared to some in Karlsruhe.
  • Merseyrail’s Northern Line terminates at Hunts Cross station, which is going to be made step-free.
  • There is an existing step-free interchange between the Liverpool and Manchester route via Irlam and Merseyrail’s Northern Line at Liverpool South Parkway station.
  • Class 399 tram-trains will have a battery capability in South Wales.
  • Class 399 tram-trains have an operating speed of 62 mph, which might be possible to increase.
  • Stadler make Class 399 tram-trains and are building the new Class 777 trains for Merseyrail.

I think that Stadler’s engineers will find a totally feasible and affordable way to link Manchester’s Metrolink with Liverpool Lime Street station and Merseyrail’s Northern and Wirral Lines.

I can envisage the following train service running between Liverpool and Manchester via Irlam.

  • An hourly service between Liverpool Lime Street and Nottingham, as has been proposed for the new East Midlands Franchise.
  • A four tph service between Liverpool Lime Street and Manchester Airport via Manchester Piccadilly.
  • A tram-train every ten minutes, linking Liverpool Central and Manchester’s St Peter’s Square.
  • Tram-trains would extend to the North and East of Manchester as required.
  • All services would stop much more comprehensively, than the current services.
  • Several new stations would be built.
  • In the future, the tram-trains could have an interchange with High Speed Two at Warrington.

Obviously, this is just my speculation, based on what I’ve seen of tram-train networks in Germany.

The possibilities for the use of tram trains are wide-ranging.

Installing Step-Free Access At Irlam Station

There would appear to be two ways of installing step-free access at Irlam station.

  • Add lifts to the existing subway.
  • Add a separate bridge with lifts.

These are my thoughts on each method.

Adding Lifts To The Existing Subway

Consider.

  • The engineering would not be difficult.
  • Installaton would probably take a number of weeks.
  • There is good contractor access on both sides of the railway.

There are similar successful step-free installations around the UK

The problem is all about, how you deal with passengers, whilst the subway is closed for the installation of the lifts.

Adding A Separate Bridge With Lifts

Consider.

  • There is a lot of space at both the Eastern and Western ends of the platform to install a new bridge.
  • Adding a separate bridge has the big advantage, that during the installation of the bridge, passengers can use the existing subway.
  • Once the bridge is installed, the subway can be refurbished to an appropriate standard.

Passengers will probably prefer the construction of a new bridge.

In Winner Announced In The Network Rail Footbridge Design Ideas Competition, I wrote how the competition was won by this bridge.

So could a factory-built bridge like this be installed at Irlam station?

There is certainly space at both ends of the platform to install such a bridge and the daily business of the station and its passengers would be able to continue unhindered, during the installation.

I’m also sure, that the cafe would be happy to provide the daily needs of the workforce.

Conclusion

From a station and project management point-of-view, adding a new factory-built bridge to Irlam station is the easiest and quickest way to make the station step-free.

It also appears, that Network Rail have made a wise choice in deciding to put Irlam station on their list of stations to be made step-free, as the station could be a major part in creating a new high-capacity route between Liverpool and Manchester.

This could also be one of the first stations to use an example of the new bridge.

  • Installation would be quick and easy.
  • There is no site access problems.
  • There station can remain fully open during the installation.
  • All stakeholders would probably be in favour.

But above all, it would be a superb demonstration site to bring those from stations, where Network Rail are proposing to erect similar bridges.

July 6, 2019 Posted by | Transport | , , , , , , , , , , , , | Leave a comment

Hillside Station To Go Step-Free

This document on the Government web site is entitled Access for All: 73 Stations Set To Benefit From Additional Funding.

Hillside station in Liverpool, is on the list.

These pictures show the station and the current station building, which is on a bridge.

This 3D Google Map shows the station.

Note.

  1. The station appears to have a large forecourt.
  2. The stairs to the platforms have thirty-two steps.
  3. There could be enough space for lifts outside the platforms.

But will a simple solution, be able to cope with major events like the Open Championship at Royal Birkdale?

Perhaps something more radical, but very possible will be done.

One idea, could be to extend the station building at both ends.

  • A set of wide safe stairs and a lift could provide direct access from the street to the platform in the extensions.
  • Once installed, the original stairs could be removed.

There are certainly possibilities for an architect to develop a solution to cope with the biggest events.

June 2, 2019 Posted by | Sport, Transport | , , , , , | Leave a comment

Hunts Cross Station To Go Step-Free

This document on the Government web site is entitled Access for All: 73 Stations Set To Benefit From Additional Funding.

Hunts Cross station is on the list.

These pictures show the station and the current bridge.

Hunts Cross station, like St. Michaels station, has rather unusual long shallow angle ramps, with steps.

This 3D Google Map shows the station.

It may be unusual, but I suspect a conventional lift tower on each platform would make the station fully step-free.

Note.

  1. The station is Grade II Listed and is described as”A good example of the stations built for the Cheshire Lines Committee.”
  2. The ramps and bridge look to be in excellent condition and could be reasonably recent. Some repainting was actually in progress.
  3. For those that are in need of a drink, after climbing the ramps, there is a handy pub called the Waiting Room. It was busy, when I went to the station.
  4. As well as providing step-free entrance and exit to the station, the lifts would provide step-free interchange for passengers from Manchester needing to transfer to Merseyrail.
  5. Passengers arriving at the station, who need to go to Manchester, would do as they do now and walk across the platform.
  6. Do the last two pictures in the gallery show that the bridge was built or has been modified for lifts to be added? The bridge seems to have a lower wall, which could be removed.
  7. There may be some adjustments needed to the path that Links the station entrance to the bridge.

I’m also pretty certain, that the layout of the station, would allow works to be done, whilst the station is in full operation.

Preparation For Class 777 Trains

Unlike most other stations, that I saw on on the Merseyrail network, work appears to be outstanding to create level access between the new Class 777 trains and platform.

Future Electrification

The bridge would appear to be high enough to clear any future 25 KVAC electrification.

Conclusion

This shouldn’t be the most difficult of projects, unless the Heritage Lobby get upset.

The only problem, I can see would be, it might attract more passengers and create a need for a larger car park.

June 2, 2019 Posted by | Transport | , , , , , , , | 1 Comment

A Scrapyard Special Ready For The Blowtorch

I took these pictures of possibly the worst train, I’ve ridden in for some years.

I took this Class 313 train between Hertford North and Old |Street stations.

Not all trains of this age have to be so dirty and unkempt.

In Liverpool’s Underground Trains, I showed these pictures.

 

These Merseyrail Class 507/508 trains are only three years younger, than those in London.

Both fleets are being replaced before the end of 2020.

So it’s not that if trains are going to the scrapyard they have to be let go!

I do wonder whether that this illustrates the point, that if trains are run as a concession from the Local Authority, like those of Merseyrail and London Overground, there is much better control of service quality.

In Gibb Report – Moorgate Services Could Be Transferred To The London Overground, I laid out Chris Gibb’s view of what should happen.

This was my conclusion.

Chris Gibb has made an interesting proposal.

There are good reasons to transfer the Great Northern Metro to London Overground.

  • London Overground have the expertise to introduce the new trains.
  • Transport for London have the expertise to redevelop the stations on the route at the Southern end.
  • GTR will be able to concentrate on Thameslink
  • Moorgate, Old Street, Essex Road and Highbury and Islington stations become Transport for London-only stations.
  • London would gain a new Metro line between Moorgate and Alexandra Palace via Highbury and Islington and Finsbury Park, that extends into Hertfordshire and has a frequency of at least twelve tph.
  • Crossrail gets another North-South feeder line.
  • Highbury and Islington and Finsbury Park will become high quality interchanges.
  • The Hertford Loop Line can be developed independently of Thameslink and the East Coast Main Line to be a high-capacity North-South Metro from North London to Stevenage.
  • The Victoria Line gets a cross-platform connection to the Great Northern Metro for Crossrail at Highbury and Islington.
  • The only problem, is that it might remove some of the reasons for extending Crossrail 2 to New Southgate.

Overall it strikes me that GTR have been working totally without any vision or any idea about how their new trains will transform the Great Northern Metro.

I hope Sadiq Khan is watching what is happening from his bunker in South London.

 

April 29, 2019 Posted by | Transport | , , , | 3 Comments

Should Railways Have A Pop-Up Service Capability?

Most of us will be familiar with the concept of Pop-Up Retail.

This is the first paragraph of the Wikipedia entry.

Pop-up retail, also known as pop-up store (pop-up shop in the UK, Australia and Ireland) or flash retailing, is a trend of opening short-term sales spaces that started in Los Angeles and now pop up all over the United States, Canada, China,Japan, Mexico, France, Germany, the United Kingdom and Australia. The pop-up industry is now estimated to be a $50 billion industry. Pop-up retail has been an increasing factor during the retail apocalypse of the 2010s, including seasonal Halloween retailer Spirit Halloween, who has operated stores in vacant spaces during the season.
Chris Stokes in his column in the December 2018 Edition of Modern Railways, gives a summary of and praises Adrian Shooter’s Vivarail project and its Class 230 train.
He then says.
Two of the units are scheduled for export to the United States, to demonstrate for the potential for ‘pop-up’ commuter services; the cost of a one-year period are said to be equivalent to the consultancy costs for opening a new route. Should such an approach be considered in this country too? The gestation period for new services on freight-only routes is probably the best part of 10 years, but it doesn’t have to be like that.
So is Chris’s concept a viable proposition?
Examples In The UK
Chris then goes on to give an example of a successful pop-up station.
When floods swept away the road bridge at Workington in 2009; Network Rail and Northern constructed a pop-up station and introduced additional trains in less than two weeks.
Recently, Liverpool Lime Street station was partly-closed for rebuilding, so Network Rail extended Platform 4 at Liverpool South Parkway station, so that it could be used as a terminus for trains from London and the South.
The picture shows a Virgin Pendelino in the temporary platform.
Passengers could then transfer to Merseyrail to complete their journey to Liverpool City Centre.
Incidentally, I’d like to know how many passengers to and from Liverpool, found it more convenient to catch their London train from Liverpool South Parkway station. Perhaps, after Merseyrail has its new trains, many passengers would like to use Liverpool South Parkway for longer journeys?
Does anybody know of any other instances of pop-up stations like these in the UK?
What Is Needed To Create These Pop-Up Stations?
Various elements must be brought together to build a pop-up station.
Types Of Stations

I can envisage three types of simple stations.

  1. A one-platform station on a single-track line.
  2. A two-platform station on a double-track line.
  3. A one-platform station on a double-track line.

Note

  1. Type One, would be the simplest and would be worked bidirectionally.
  2. Type Two, would probably require a bridge across the tracks.
  3. Type Three, would need crossovers at both ends of the station, to allow the single platform to be worked bidirectionally.

Obviously, Type 1 would be the most affordable and probably easiest to install.

The Platforms
This picture shows the temporary extended platform at Liverpool South Parkway station.
Only, if you look to the left, do you realise, it is not a permanent structure.
The only problem was that at 150 metres in length, it was a long walk. But most pop-up stations would not be for eleven-coach Class 390 trains.
Scaffolding and prefabricated platforms, should be able to cope with most situations.
Station Buildings
The platform extension at Liverpool South Parkway station didn’t need any buildings, as it was added to an existing station.
But surely, Portakabin and their ilk can come up with something that would work for a couple of years, with perhaps a waiting room or shelter, a ticket machine and even toilets.
A Station Bridge
A proportion of two-platform stations will need a bridge, so that passengers can get from one platform to the other.
At the present time, where a temporary bridge is needed, Network Rail generally put up vast scaffolding structures, like this one at Forest Gate station, used during station reconstruction for Crossrail.
Passenger-friendly it is not!
What is needed is a well-designed temporary footbridge system, that can be lifted in place in sections from a train.
Some footbridge versions might even have lifts and could be installed as pop-up bridges at stations, which urgently need step-free access.
Perhaps, pop-up stations could use a version of Heatherwick Studio’s rolling bridge.
I shall add some pictures of the open bridge, when they fix it.
  • It would certainly bridge the gap between two platforms with a double-track railway in between.
  • In a rail application, the bridge would be interlocked with the signalling and controlled by the signaller.
  • Signals and lights could be added to the bridge  to ensure complete safety.
  • Wikipedia says the original at the Paddington Basin cost £500,000, which could probably be reduced if more were built.
  • This page on the Merchant Square web site, shows the bridge in action.
  • I suspect this bridge would work on single- or double-track lines, without electrification, or with third-rail or with overhead electrification.
  • At many stations it could just be dropped in place from a rail-mounted crane, after preparing the existing platforms.
  • I suspect though, that there would be a limit to the number of trains per hour it could handle.
One of Heatherwick’s bridges, would certainly help in telling the locals, that they have a new station or step-free bridge across the railway.
I wonder if Heatherwick Studio has been talking to Network Rail.
Signalling
The signalling might have to be modified to ensure safety.
When all trains were fitted with in-cab digital signalling, as is planned, then this would surely make pop-up stations and services easier to install.
Tracks
The installation would surely be designed to minimise work on the tracks.
Only the Type Three station would require more than minimal work to the tracks, but the station would only have one platform, which would not require a bridge.
Modern Trains And The Pop-Up Station
Chris Stokes talks about running new pop-up services on freight-only lines, but I believe that there will be calls to use pop-up stations to provide extra stops on existing services.
As an example, suppose that Greater Anglia wanted to assess the demand for a new Soham station. In a year or two, the company will be operating at least an hourly service along the line with their new Class 755 trains.
These trains are part of the new breed of modern trains, which will have the following.
  • The ability to execute a fast stop at a station.
  • Level access will be possible between train and platform.
  • On-board CCTV systems to ensure safe loading and unloading of passengers.
  • Modern in-cab digital signalling.

This will enable the trains to make a station stop without causing problems to the existing timetable.

So if Network Rail, had the ability to quickly install a pop-up station, modern trains would allow a service to be tested at a reasonable cost.

The Practicalities Of Installing A Pop-Up Station

Suppose a station were to be installed at Soham or any other suitable place.

I would expect Network Rail to produce standard designs for the foundations of their pop-up stations.

Network Rail periodically close a line to replace track or do various other work. When a line is closed for this work and a pop-up station might be needed on the route, the standard foundations would be installed.

Then, when the budget for the station had been obtained, the station would be installed and commissioned in a suitable possession.

Conclusion

I believe a pop-up station is a feasible proposition.

If a pop-up station is a feasible proposition, then it follows that to install perhaps five stations on a freight-only line to create a totally new passenger service is also a feasible proposition.

 

December 5, 2018 Posted by | Transport | , , , , , , , , | Leave a comment