The Anonymous Widower

Nervous Operators Force Network Rail To Defer King’s Cross Plan

The title of this post is the same as that of this article on Rail Magazine.

King’s Cross station has to be closed for three months, so that tracks, electrification and signalling can be replaced and modernised for about 1.5 miles from the buffer stops at the station.

The original dates of the closure were to have been between December 2019 and March 2020, but now it looks like it could be delayed by up to a year.

The article on the web site, is a shortened version of the article in the magazine, where this is said.

Closure dates have yet to be announced, and NR is still developing a passenger handling strategy which could include long-distance services at Finsbury Park or some services terminating at Peterborough. Some trains could even be rerouted into London Liverpool Street.

I wonder, if Network Rail’s planners are cursing that the around thirty miles between Peterborough and Ely is not electrified.

If it were electrified, it would allow electric trains as well as diesel and bi-mode trains to access Liverpool Street station via the West Anglia Main Line.

What Benefits Would There Be From Electrifying Peterborough To Ely?

I can imagine Oxford-educated civil servants in the Department of Transport and The Treasury dismissing calls for more electrification in the backwater of East Anglia, after the successful electrification to Norwich in the 1980s.

But now Cambridge is powering ahead and East Anglia is on the rise, with the massive Port of Felixstowe needing large numbers of freight trains to other parts of mainland UK.

This East Anglian success gives reasons for the electrification of the Peterborough-Ely Line.

Direct Electric Trains Between Peterborough And Cambridge

I have met Cambridge thinkers, who believe that Peterborough is the ideal place for businesses, who need to expand from Cambridge.

Peterborough has the space that Cambridge lacks.

But the transport links between the two cities are abysmal.

  • The A14 is only a two-lane dual-carriageway, although a motorway-standard section is being added around Huntingdon.
  • Peterborough station has been improved in recent years.
  • The direct train service is an hourly three-car diesel service between Birmingham and Stansted Airport, which doesn’t stop at the increasingly-important Cambridge North station.

The road will get better, but the rail service needs improvement.

  • There needs to be at least two direct trains per hour (tph) between Cambridge and Peterborough.
  • They would stop at Cambridge North, Waterbeach, Ely and March.
  • End-to-end timing would be under an hour.
  • Greater Anglia will have the four-car bi-mode Class 755 trains, which would be ideal for the route from next year.

If the Peterborough- Ely Line was electrified, Greater Anglia could use five-car Class 720 trains.

An Electric Diversion Route For The East Coast Main Line

The works at Kings Cross station, and the possible proposal to run some trains into Liverpool Street station, show that an electric diversion route would be useful, when there are closures or problems on the East Coast Main Line.

In the case of the Kings Cross closure, if Peterborough were to be used as the terminal for some trains from the North, then I suspect some high-capacity Class 800 trains could shuttle passengers to Liverpool Street.

If the date of the Kings Cross closure is 2020, then certain things may help.

  • Crossrail will be running.
  • Extra trains will be running from Finsbury Park to Moorgate.
  • Hull Trains will be running bi-mode Class 802 trains.
  • There could be more capacity on the West Anglia Main Line.
  • There could be more capacity and some longer platforms at Liverpool Street.

What would really help, is the proposed four-tracking of the West Anglia Main Line.

The latter could prove extremely useful, when Network Rail decide to bite the bullet and four-track the Digswell Viaduct.

Extending Greater Anglia’s Network

Greater Anglia have bought new bi-mode Class 755 trains.

This would appear to be more than enough to covering the current services, as they are replacing twenty-six trains with a total of fifty-eight coaches with thirty-eight trains with a total of one hundred and thirty-eight coaches.

That is 46 % more trains and 137 % more coaches.

The new trains are also genuine 100 mph trains on both electricity and diesel.

Obviously, Greater Anglia will be running extra services, but with the explosive growth around Cambridge, coupled with the new Cambridge North station, I feel they will be running extra services on the Peterborough to Cambridge route and perhaps further.

The new Werrington Grade Separation will make a difference.

  • It will open in a couple of years.
  • Trains between Peterborough and Lincoln won’t block the East Coast Main Line.
  • The Leicester route could also be improved.

So services to and from Lincoln and Leicester would probably be easier to run from Cambridge and Stansted Airport.

CrossCountry run a service between Birmingham New Street and Stansted Airport stations.

  • The service stops at Coleshill Parlway, Nuneaton, Leicester, Melton Mowbray, Oakham, Stamford, Peterborough, March, Ely and.Cambridge and Audley End stations.
  • The service doesn’t stop at Cambridge North station.
  • The service is run by an inadequate Class 170 train, which sometimes is only two coaches and totally full.
  • Trains take just over three hours ten minutes for the journey.

Will Greater Anglia take over this route? Or possibly run a second train as far as Leicester?

Their Class 755 trains with better performance and specification would offer the following.

  • Electric running between Ely and Stansted Airport stations.
  • Greater passenger capacity.
  • wi-fi, plugs and USB sockets.
  • A three hour journey both ways.
  • The extra performance would probably allow an extra important stop at Cambridge North station.

The new trains would certainly offer what passengers want.

CrossCountry run an extra train between Birmingham New Street and Leicester, so perhaps at the Western end, the Greater Anglia service need only go as far as Leicester.

At the Stansted end of the route, there will be an hourly train between Stansted Airport and Norwich, so there could be scope for perhaps cutting one the services back to Cambridge.

Obviously, time-tabling would sort it out to the benefit of the train operators and passengers, but I can envisage a set of services like this.

  • Norwich and Stansted Airport – Greater Anglia – 1 tph
  • Birmingham New Street and Stansted Airport – CrossCountry – 1 tph
  • Leicester and Cambridge – Greater Anglia – 1 tph
  • Colchester and Peterborough – 1 tph
  • Norwich and Nottingham (Currently Liverpool Lime Street) – 1 tph

Adding these up you get.

  • Stansted Airport and Cambridge – 2 tph – As now!
  • Stansted Airport and Cambridge North – 2 tph – New service!
  • Cambridge and Ely – 4 tph – At least!
  • Ely and Peterborough – 4 tph – At least!
  • Cambridge and Peterborough – 2 tph – Up from 1 tph
  • Stansted Airport and Peterbough – 1 tph – As now!
  • Cambridge and Leicester – 2 tph = Up from 1 tph.

This pattern or something like it would be much better for all.

If the Ely-Peterborough section of the were to be electrified then it would enable the following.

  • A reduced journey time for electric or bi-mode trains.
  • If required Greater Anglia could run an extra electric service using Class 720 trains between Stansted Airport and Peterbough.

I said earlier that the Werrington Grade Separation will make it easier to run services between Peterborough and Lincoln.

So why not add an hourly service between Cambridge and Lincoln?

I can envisage, when the West Anglia Main Line is four-tracked at the southern end, that there might be enough capacity for a Liverpool Street to Lincoln service via Cambridge, Cambridge North, Ely, Peterborough, Spalding and Sleaford.

But whatever happens Greater Anglia’s choice of bi-mode Class 755 trains, seems to give them the flexibility to match services to passengers needs.

Electro-Diesel and Battery-Electric Freight Locomotives

The Class 88 locomotive is an electro-diesel freight locomotive, that can use either power from overhead electrification or an pnboard diesel engine.

I believe that locomotives like this will become more common and that eventually, we’ll see a battery-electric heavy freight locomotive.

I wrote about the latter in Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive.

The Peterborough-Ely Line will see increasing numbers of trains hauled by these powerful electric locomotives, with either diesel or battery power to propel them over the gaps in the electrification.

Electrifying the line would speed these hybrid trains through and increase the capacity of the route.

Conclusion

Network Rail have annoyed the train operators with their planning and timing of the upgrade at Kings Cross station.

It looks to me, that the part of the problem, is that there is no viable electrified secondary route to London.

Bi-mode trains can use the Peterborough-Ely Line to go to Liverpool Street via Cambridge.

This line is one of those routes that sits in a sea of electrification, which carries a lot of traffic, that would bring several benefits if it were to be electrified.

  • Direct electric trains between Cambridge and Peterborough, would greatly improve the spasmodic service between the two cities, with large economic benefits to the county.
  • An electric diversion route would be created from Peterborough to Liverpool Street via Ely and Cambridge.
  • It would allow Greater Anglia to develop routes West of Cambridge to places like Lincoln and Leicester using their future fleet of Class 755 trains.
  • It would also make it easier for battery-electric freight locomotives to cover the busy freight route between Felixstowe and Peterborough.

I also feel that it wouldn’t be the most difficult route to electrify.

The Fens are flat.

There is no history of mining.

The track is fairly straight and simple.

I suspect that it could become a high-quality 90-100 mph, electrified line.

 

 

 

 

 

 

 

With

 

 

December 8, 2018 Posted by | Transport | , , , , , , , , , , , | Leave a comment

Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive

Many of the long freight routes from Felixstowe and Southampton are hauled by diesel locomotives like the environmentally-unfriendly Class 66 locomotive.

Electric haulage can’t be used because of significant gaps in the 25 KVAC overhead electrification. Gaps and a typical transit time of a Class 66-hauled heavy freight train include.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

Would it be possible to design a battery/electric hravy locomotive, that could bridge these gaps?

Consider the following.

  • A Class 66 locomotive has a power output of around 2500 kW.
  • To run for two hours on battery would require a battery of 5000 kWh.
  • A 5000 kWh battery would weigh around fifty tonnes.
  • A Class 70 locomotive is a heavy freight diesel Co-Co locomotive with a weight of 134 tonnes with a full tank of diesel.
  • A Class 88 locomotive is an electro-diesel locomotive, that without the diesel engine weighs about 80 tonnes.
  • A Class 88 locomotive has a power output of 4,000 kW on 25 KVAC  overhead electrification

Putting this information together and I think it would be possible to design a battery/electric locomotive with the following specification.

  • 4000 kW on 25 KVAC  overhead electrification
  • Ability to use 750 VDC third-rail electrification
  • A 5000 kWh battery.
  • Ability to use a rapid charging system.
  • Two hour range with 2500 kW on battery power.
  • Regenerative braking to the battery.
  • Co-Co configuration
  • Dimensions, weight and axle loading similar to a Class 70 locomotive.

These are a few other thoughts.

Last Mile Applications

Ports and Container Terminals are often without electrification.

The proposed locomotive would be able to work in these environments.

A couple of yeas ago, I had a long talk with a crane operator at the Port of Felixstowe, who I met on a ytain going to football. He was of the opinion, that Health and Safety is paramount and he would not like 25 KVAC overhead electrification all over the place.

So if freight locomotives used battery power inside the port, most would be pleased.

The only cost for ports and freight terminals would be installing some form of charging.

Maximum Power On Batteries

I suspect that the maximum power on battery would also be the same as the 4,000 kW using 25 KVAC overhead electrification, as the locomotive may have applications, where very heavy trains are moved on partially electrified lines.

Diesel-Free Operation

The proposed lovomotive will not use any diesel and will essentially be an electric locomotive, with the ability to use stored onboard power.

Environmentally-Friendly Operation

Freight routes often pass through areas, where heavy diesel locomotives are not appreciated.

  • The proposed locomotive will not be emitting any exhaust or noxious gases.
  • Noise would be similar to an electric locomotive.
  • They would be quieter using battery-power on lines without overhead electrification, as there would be no pantograph noise.

I think on balance, those living by freight routes will welcome the proposed locomotive.

Would Services Be Faster?

This would depend on the route, but consider a heavy freight train going from Felixstowe to Leeds.

  • On the electrified East Coast Main Line, the proposed battery-electric locomotive would have a power of 4,000 kW, as opposed to the 2,500 kW of the Class 66 locomotive.
  • On sections without electrification, the locomotive would have more power if required, although it would probably be used sparingly.
  • The locomotive would have a Driver Assistance System to optimise power use to the train weight and other conditions.

I feel on balance, that services could be faster, as more power could be applied without lots of pollution and noise.

Creeping With Very Heavy Loads

I suspect they would be able to creep with very heavy loads, as does the Class 59 locomotive.

Class 59 Locomotive Replacement

The proposed locomotive may well be able to replace Class 59 locomotives in some applications.

Any Extra Electrification Will Be Greatly Appreciated

Some gaps in electrification are quite long.

For example, Didcot and Birmingham takes about two and a half hours.

  • Didcot is on the electrified Great Western Main Line.
  • Birmingham has a lot of electrified lines.

So perhaps there could be some extra electrification at both ends of busy freight routes.

Electrification between Didcot and Wolvercote Junction would be a possibility.

  • It would be about twelve miles
  • It is very busy with heavy freight trains.
  • The natives complain about the railway.
  • It would allow Great Western Railway to run electric trains to and from London.
  • If Chiltern Railways were to run battery-electric trains to Oxford, it would provide electrification for charging at Oxford.
  • Electrification could be extended to Oxford Parkway station to make sure battery-electric trains would get a good send-off to Cambridge

This simple example shows, why bi-mode and battery/electric trains don’t mean the end of electrification.

All vehicles; rail or road and especially electric ones, need to take on fuel!

I also think, that there is scope to electrify some passing loops, so that locomotives can top-up en route.

Conclusion

It would be a heavyweight locomotive with a performance to match.

I believe that such a locomotive would be a very useful addition to the UK’s fleet of freight locomotives.

 

December 8, 2018 Posted by | Transport | , , , , | 3 Comments

Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes

In Issue 864 of Rail Magazine, there is an article, which is entitled Johnson Targets A Bi-Mode Future.

As someone, who has examined the mathematics of battery-powered trains for several years, I wonder if the Age of the Hybrid Battery/Electric Locomotive is closer than we think.

A Battery/Electric Class 88 Locomotive

 After reading Dual Mode Delight (RM Issue 863), it would appear that a Class 88 locomotive is a powerful and reliable locomotive.

  • It is a Bo-Bo locomotive with a weight of 86.1 tonnes and an axle load of 21.5 tonnes.
  • It has a rating on electricity of 4,000 kW.
  • It is a genuine 100 mph locomotive when working from 25 KVAC overhead electrification.
  • The locomotive has regenerative braking, when working using electrification.
  • It would appear the weight of the diesel engine is around seven tonnes
  • The closely-related Class 68 locomotive has a 5,600 litre fuel tank and full of diesel would weight nearly five tonnes.

It is worth looking at the kinetic energy of a Class 88 locomotive hauling five forty-three tonne CAF Mark 5A coaches containing a full load of 340 passengers, who each weigh 90 Kg with baggage, bikes and buggies. This gives a total weight would be 331.7 tonnes.

The kinetic energy of the train would be as follows for various speeds.

  • 90 mph – 75 kWh
  • 100 mph – 92 kWh
  • 110 mph – 111 kWh
  • 125 mph – 144 kWh

The increase in energy is because kinetic energy is proportional to the square of the speed.

Supposing the seven tonne diesel engine of the Class 88 locomotive were to be replaced by a battery of a similar total weight.

Traction batteries seem to have an energy/weight ratio of about 0.1kWh/Kg, which is increasing with time, as battery technology improves.

A crude estimate based on this energy/weight ratio would mean that at least a 700 kWh battery could be fitted into a Class 88 train and not make the locomotive any heavier. Given that lots of equipment like the alternator and the fuel tank would not be needed, I suspect that a 1,000 kWh battery could be fitted into a Class 88 locomotive, provided it just wasn’t too big.

A short length of electrification could be installed at terminal stations without electrification to charge the batteries during turnround.

This size of battery would be more than large enough to handle the braking energy of the train from full speed, so would improve the energy efficiency of the train on both electrified and non-electrified lines.

It would also contain more than enough energy to accelerate the train to line speeds that are typical of non-electrified routes.

TransPennine Express will soon run similar rakes of coaches hauled by Class 68 diesel locomotives between Liverpool and Manchester Airport and the North East.

The following sections of the Northern TransPennine route, are not electrified.

  • Stalybridge and Leeds – 35 miles taking 46 minutes
  • Leeds and Colton Junction – 20 miles taking 18 minutes
  • Northallerton and Middlesbrough – 21 miles taking 29 minutes
  • York and Scarborough – 42 miles taking 56 minutes

When running on these sections without electrification, consider the following.

  • The train consists of modern coaches, which must be energy efficient.
  • The train would enter the sections with a full battery, that had been charged using the 25 KVAC electrification on part of the route.
  • Scarborough and possibly Middlesbrough stations, would have means to charge the battery.
  • The train would enter the sections as close to line speed as possible, after accelerating using electrification.
  • Regenerative braking would help conserve energy at any planned or unplanned stops.
  • The driver will be assisted by a modern in-cab signaling and a very capable Driver Assistance System.
  • Stadler and Direct Rail Services must have extensive theoretical and measured data of the performance of Class 88 locomotives and the related Class 68 locomotive, when they are hauling trains across the Pennines, which will enable extensive mathematical models to be built of the route.

For these reasons and especially the last about mathematical modelling, I believe that Stadler could create a battery/electric locomotive based on the Class 88 locomotive, that would be able to bridge the electrification gaps on battery power and haul a five-coach train on the Northern routes across the Pennines.

A Quick Look At The Mathematics

As I said earlier, the weight of a Class 88 locomotive and five Mark 5A coaches, full of passengers is 331.7 tonnes.

There would appear to be little weight difference between a diesel Class 68 locomotive and an electro-diesel Class 88 locomotive, so in this rough exercise, I will assume the train weight is the same.

The current Class 185 trains, that run across the Pennines have the following characteristics.

  • Three-cars
  • A weight of 168.5 tonnes.
  • A passenger capacity of 169.
  • Installed power of 560 kW in each coach, which means there is 1560 kW in total.

If each passengers weighs 90 Kg, with all their extras, a full train will weigh 183.7 tonnes.

So a full train has a power-weight ratio of nine kW/tonne, which must be sufficient to maintain the timetable across the Pennines.

The diesel Class 68 locomotive, which will be hauling trains on the route in the New Year,  has an installed power of 2,800 kW, which gives a power/weight ratio of 8.4 kW/tonne.

I would be interested to know, if a Class 88 locomotive running in diesel mode with a power output of only 700 kW, could take one of the new trains across the Pennines. I suspect Stadler and/or DRS know the answer to this question.

But it would be a power/weight ratio of only 2.1 kW/tonne!

The challenging route is between Stalybridge and Leeds via Huddersfield, where the Pennines has to be crossed. I’m pretty certain, that all the other sections lack the gradients of the section between Stalybridge and Leeds.

So would a Class 88 locomotive with a 1,000 kWh battery be able to cross the Pennines with a full train?

Theoretically, up and down routes are good for battery/electric trains with regenerative braking, as energy used going uphill can be recovered on the other side.

The thirty-five miles between Stalybridge and Leeds take forty-six minutes, so for how long on this journey will the locomotive be applying full power? Perhaps for twenty minutes. If the locomotive applied an average of 2,000 kW for twenty minutes or a third of an hour, that would be 667 kWh.

With an electric multiple unit like an Aventra, where most if not all axles are driven and they can also contribute to regenerative braking, reasonably high rates of braking energy can be recycled.

But what proportion can be recycled, when the locomotive is doing all the regenerative braking. Any braking done by disc brakes on the coaches will result in lost energy.

As an aside, I wouldn’t be surprised to find out that train manufacturers simulate train braking in order to develop braking systems, that turn less energy into wasted heat.

I’d also love to see a simulation using Stadler’s real data of a Class 88 locomotive with batteries attempting to cross the Pennines, with a rake of Mark 5A coaches!

  • What size of battery will be needed?
  • Can this battery be fitted in the locomotive?
  • Would distributing the batteries along the train increase performance?
  • Would short lengths of electrification on the route, increase performance?

I was doing problems of similar complexity to attempt to design efficient chemical plants nearly fifty years ago. We had our successes, but not as great as we hoped. But we certainly eliminated several blind alleys.

My figures don’t show conclusively, that a Class 88 locomotive with a 1,000 kWh battery instead of a diesel engine and all the related gubbings, would be able to perform services across the Pennines.

But.

  • Battery technology is improving at a fast pace.
  • Train manufacturers are finding surprising ways to use batteries to improve performance.
  • I don’t have access to Stadler’s real performance figures of their diesel locomotives.
  • Finding a way to make it work, has a very high cost benefit.

Who knows what will happen?

125 Mph Running

The Class 88 locomotive, has a similar power output to the 125 mph Class 91 locomotive of the InterCity 225 and I believe that the locomotive might have enough power, when running on 25 KVAC overhead wires to be able to haul the train at 125 mph on the East Coast Main Line.

Conclusion

I believe that it is possible to create a battery/electric version of the Class 88 locomotive, that should be able to take a rake of five Mark 5A coaches across the Pennines.

Timings across the Pennines would benefit substantially, without any new infrastructure, other than that already planned and the charging system at Scarborough.

December 8, 2018 Posted by | Transport | , , , , | 2 Comments

The Design And Development Of Crossrail’s Unique Luminaires

The title of this post is the same as that of this article on Global Railway Review.

It is a very informative article and the lights look well-designed.

The lights were developed by a company called Future Designs.

December 8, 2018 Posted by | Transport | , , | Leave a comment

2022 Opening For £80m Eden Project North Which Would Attract Up To 8,000 People A Day To Morecambe

The title of this post is the same as that of this article in the Lancaster Guardian.

This is the first paragraph.

The Eden Project North would open in autumn 2022 at a cost of £80m and attract up to 8,000 people a day to Morecambe – if planning and funding can be agreed.

Given the undoubted success of the Eden Project in Cornwall, I would be very surprised if this project doesn’t go ahead.

December 8, 2018 Posted by | World | , | 3 Comments

New Lifts At Newbury Park Station

Newbury Park station now has lifts.

It also looks like the station has had a bit of upsprucing, as well!

The two clocks looked superb, alongside what is a top quality lift installation.

Two mothers with babies in prams were especially pleased, as neither knew that the station now had lifts, as they didn’t live in the area.

Transport for London are putting in several step-free installations at the outer reaches of the Central Line and like a thousand American lawyers at the bottom of the sea, it’s a good start!

December 8, 2018 Posted by | Transport | , , , | Leave a comment

It Pays To Complain Politely!

I like Nakd bars.

My favourite was the Cocoa Mint bar, but I was having difficulty getting them.

I complained politely and found out that they had been discontinued.

The company said they’d send a few others for me to try.

I wasn’t expecting a box of nine.

Note the box came in the padded bag on the left, so it came through my letterbox, without needing to be collected from the Post Office.

How many Christmas parcels have to be collected, because companies don’t pack them properly?

 

December 7, 2018 Posted by | Food | , , , | 2 Comments

Exciting Renewable Energy Project for Spennymoor

The title of this post is the same as that of this article on the Durham University web site.

This is the first paragraph.

In January 2016, local residents Alan Gardner, Cllr Kevin Thompson and Lynn Gibson from the Durham Energy Institute at Durham University, met a team of academics to explore the advantages renewable energy and specifically the use of geothermal resources could bring to Spennymoor.

And this is the last.

Durham University is one of the world leaders in this research field. Spennymoor now has an opportunity to be at the forefront of that research. What the outcomes will eventually be is unknown at this stage but being able to explore the opportunity by the best in the business is encouraging.

Charlotte Adams mentioned in the article is the academic, who did the presentation I saw yesterday and talked about in Can Abandoned Mines Heat Our Future?.

Everybody, who lives in a mining area, should read this article and show it to everyone they know.

 

 

December 7, 2018 Posted by | World | , , , , , | Leave a comment

Funding Nemo: £600m Power Cable Connects UK And Belgium

The title of this post is the same as this article in The Guardian.

This is the first paragraph.

A £600m cable connecting the UK and Belgium’s energy systems is about to be switched on, becoming the first of a new generation of interconnectors that will deepen the UK’s ties to mainland Europe just as it prepares to leave the EU.

It runs between Richborough in Kent and Zeebrugge in Belgium and is the fifth interconnector to be connected to Great Britain.

Other interconnectors connect to Ireland, Northern Ireland, France and the Netherlands.

In Large Scale Electricity Interconnection, I discuss the rest of the interconnectors, that are being constructed or planned.

We could see up to fifteen in operation in a few years.

As to Nemo, it was originally thought that the UK would be importing energy from Belgium, but as Belgium needs to service its nuclear power stations and will be shutting them in the next few years, the power will sometimes be flowing the other way. Especially, as more large wind farms come on stream in the UK!

It is my view that Icelink could change everything and Belgium’s possible future power shortage, makes Icelink for likely.

Wikipedia describes the interconnector between Iceland and Scotland like this.

At 1000–1200 km, the 1000 MW HVDC link would be the longest sub-sea power interconnector in the world.

As more interconnectors are built between the UK and the Continent, including a possible link between Peterhead in North-East Scotland to Stavanger in Norway, which is called NorthConnect, the UK will begin to look like a giant electricity sub-station, that connects all the zero-carbon power sources together.

  • Denmark will supply wind power.
  • France will supply nuclear power.
  • Iceland will supply hydro-electric and geothermal power.
  • Norway will supply hydro-electric power.
  • The UK will supply nuclear and wind power.

Other sources like wind power from France and Ireland and tidal and wave power from the UK could be added to the mix in the next decade.

The Consequences For Gas

Our use of gas to generate electricity in Western Europe will surely decline.

If projects, like those I discussed in Can Abandoned Mines Heat Our Future?, come on stream to provide heat, the role of gas in providing heating in housing and other buildings will decline in the UK.

We also shouldn’t forget the role of hydrogen, which could also replace natural gas in many applications. It would be created by electrolysis of water or as a by-product of some industrial processes.

Hydrogen could also become a valuable way of storing excess electricity produced by tidal, wave and wind power.

It is unlikely, we will develop a totally gas-free economy, as methane is a valuable chemical feedstock to produce other chemical products we need.

Conclusion

Not many people will be sorry, except for President Putin and a few equally nasty despots in the Middle East.

 

 

 

 

December 7, 2018 Posted by | World | , , , , , , , | Leave a comment

Arup Called In To Help New Zealand Run Ports And Trains On Hydrogen

The title of this post is the same as that of this article on Global Construction Review.

This is the first paragraph.

UK consulting engineer Arup has been brought in to help design and deliver a hydrogen factory for New Zealand’s second largest port. Ports of Auckland said it plans to build a production facility to make the gas from tap water, which it will use to fuel ships, trucks, buses, cars and trains.

It is all part of the aim of making the port of Auckland, zero-carbon by 2040.

I think we’ll see other large self-contained sites like ports, airports, rail container terminals and large industrial complexes using hydrogen, as it may offer advantages over batteries in terms of range, lifting capacity and vehicle size and weight.

There is also no problem with the regular replacement of batteries in equipment like mobile cranes, which in New Zealand’s case will mean importing new ones.

I suspect, hydrogen may be more affordable to run than batteries for Auckland.

 

December 7, 2018 Posted by | World | , , , , | Leave a comment