The Anonymous Widower

Could Chiltern Go Battery-Electric?

In the October 2022 Edition of Modern Railways, there is an article, which is entitled Chiltern Considers Turbo Future, with a sub-title of Battery Replacement Could Be On The Cards.

These are the first two paragraphs.

In early September Chiltern Railways was preparing to launch a market sounding exercise to consider options for the future of the Class 165 Turbo DMU fleet.

The operator has 28×2-car and 11×3-car ‘165s’. which operate alongside its more modern Class 168 DMUs and its loco-hauled sets. The market sounding exercise will consider two options for the future of the fleet – some sort of hybrid conversion, or outright replacement.

The Class 165 Trains

The Class 165 trains were built in 1990-1991.

  • Maximum Speed – 75 mph
  • Prime Movers – One per car, Perkins 2006-TWH
  • 2-car Trains – 28
  • 3-car Trains – 11

One is being converted to a diesel/battery hybrid.

The Class 168 Trains

The Class 168 trains were built in 1998-2004.

  • Maximum Speed – 100 mph
  • Prime Movers – One per car, MTU 6R 183TD13H
  • 2-car Trains – 9
  • 3-car Trains – 8
  • 4-car Trains – 11

One has been converted to a diesel/battery hybrid.

Conversion To Hybrid Operation

If this proves to be feasible, it will surely be the more affordable of the two options.

But it does leave Chiltern with a mixed fleet with two types of train with different maximum speeds and these lengths.

  • 2-car Trains – 37
  • 3-car Trains – 19
  • 4-car Trains – 11

Would a fleet of similar trains, with perhaps a maximum speed of 100 mph, be better operationally?

Battery-Electric Operation

The Modern Railways article introduces the concept of battery-electric operation with this paragraph.

If a replacement fleet is considered the best option for the Turbo units, the replacements could take the form of a straight battery EMU, taking advantage of recent advances in ‘fast charge’ technology.

The article also says this about battery technology and electrification.

There is optimism that advances in battery technology will provide a smooth pathway to decarbonise Chiltern’s operations – the company serves the only non-electrified London terminus.

In the longer-term, it is hoped electrification from Birmingham to Banbury as part of a strategy to decarbonise CrossCountry and freight services would enable Chiltern to run a battery EMU on London to Birmingham duties, running under battery power as far north as Banbury and switching to overhead wires from there, both powering the unit and enabling the batteries to be recharged.

The Modern Railways article looked at each route and I will do this in more detail.

London Marylebone And Aylesbury via High Wycombe

London Marylebone and Oxford would be under battery operation for 40 miles.

Trains would be charged at London Marylebone and Aylesbury stations.

London Marylebone And Aylesbury Vale Parkway

London Marylebone and Oxford would be under battery operation for 41 miles.

Trains would be charged at London Marylebone and Aylesbury Vale Parkway stations.

It might be better to electrify between Aylesbury and Aylesbury Vale Parkway stations.

London Marylebone And Banbury

London Marylebone and Oxford would be under battery operation for 69 miles.

Trains would be charged at London Marylebone and Banbury stations.

Leamington Spa And Birmingham Moor Street

Assuming the Birmingham and Banbury section of the route is electrified, this route will be electrified.

London Marylebone And Birmingham Moor Street Or Birmingham Snow Hill

Assuming the Birmingham and Banbury section of the route is electrified, this route can be considered to be in two sections.

  • London Marylebone and Banbury – Battery operation – 69 miles
  • Banbury and Birmingham – Electric operation – 42 miles

Trains would be charged at London Marylebone station and on the electrified section.

London Marylebone And Gerrards Cross

London Marylebone and Oxford would be under battery operation for 19 miles or 38 miles both ways.

Trains would be charged at London Marylebone station.

London Marylebone And High Wycombe

London Marylebone and Oxford would be under battery operation for 28 miles or 56 miles both ways.

Trains would be charged at London Marylebone station.

London Marylebone And Oxford

London Marylebone and Oxford would be under battery operation for 66.8 miles.

Trains would be charged at London Marylebone and Oxford stations.

London Marylebone And Stratford-upon-Avon

Assuming the Birmingham and Banbury section of the route is electrified, this route can be considered to be in two sections.

  • London Marylebone and Banbury – Battery operation – 69 miles
  • Banbury and Hatton Junction – Electric operation – 26 miles
  • Hatton Junction and Stratford-upon-Avon – Battery operation – 9 miles

Trains would be charged at London Marylebone station and on the electrified section.

Chiltern’s Mainline Service

Chiltern’s Mainline service between London and Birmingham is run by either a Class 68 locomotive pulling a rake of six Mark 3 coaches and a driving van trailer or two or three Class 168 trains.

As the locomotive-hauled train is about eight coaches, it could surely be replaced by two four-car multiple units working together.

I believe that if Chiltern obtained a fleet of four-car battery electric trains, this would be the most efficient fleets for all their routes.

Charging At London Marylebone Station

I took these pictures at Marylebone station today.

Note.

  1. It is a surprisingly spacious station and I feel that Furrer+Frey or some other specialist company could add some form of charging to the platforms.
  2. Charging would probably performed using the train’s pantograph.

It appears that the turnround time in Marylebone is typically twelve minutes or more, which should be adequate to fully charge a train.

 

Conclusion

Both solutions will work for Chiltern.

But I prefer the new battery-electric train, which has some crucial advantages.

  • Battery-electric trains will be quieter than hybrid trains.
  • Marylebone station has a noise problem and battery-electric trains are very quiet.
  • Chiltern have ambitions to built new platforms at Old Oak Common and to serve Paddington. This could be easier with a battery electric train.

Rhe only disadvantage is that Banbury and Birmingham would need to be electrified.

 

 

September 25, 2022 Posted by | Transport/Travel | , , , , , , , , , , , | 5 Comments

Running Battery Electric Trains Between London Marylebone And Aylesbury

This post was suggested by Fenline Scouser in a comment to Vivarail Targets Overseas Markets, where they said.

I have long thought that one UK application that would make sense is the Marylebone – Aylesbury via Harrow on the Hill service, the intermediate electrified section lending itself to full recharge on each trip. ? stabling facility at Aylesbury with overnight charging.

It does look to be an idea worth pursuing.

Current And Future Services

Currently, the services between London Marylebone and Aylesbury are as follows.

  • London Marylebone and Aylesbury via High Wycombe
  • London Marylebone and Aylesbury via Amersham
  • London Marylebone and Aylesbury Vale Parkway via Amersham

All services are one train per hour (tph)

In the future, it is planned to extend the Aylesbury Vale Parkway service to Milton Keynes, according to information I found on the East West Rail web site.

  • It looks like the service will go via High Wycombe, Saunderton, Princes Risborough, Monks Risborough, Little Kimble, Aylesbury, Aylesbury Vale Parkway, Winslow and Bletchley.
  • The service will have a frequency of 1 tph.
  • Time between Milton Keynes and Aylesbury is quoted as 33 minutes.
  • Time between High Wycombe and Milton Keynes is quoted as 63 minutes.

Will this leave the Marylebone and Aylesbury are as follows?

  • 1 tph – London Marylebone and Aylesbury via High Wycombe.
  • 2 tph – London Marylebone and Aylesbury via Amersham

Passengers between London Marylebone and Aylesbury would have the same service.

Distances

These are a few distances, of which some have been estimated.

  • London Marylebone and Harrow-on-the-Hill – 9.18 miles.chains
  • Amersham and Harrow-on-the-Hill – 14.27 miles.chains – Electrified
  • Aylesbury and Amersham – 15.23 miles.chains
  • London Marylebone and High Wycombe – 28.11 miles.chains
  • Aylesbury and High Wycombe – 15.28 miles.chains
  • Aylesbury and Aylesbury Vale Parkway – 2.25 miles.chains
  • Aylesbury Vale Parkway and Calvert – 8.19 miles.chains
  • Aylesbury and Milton Keynes – 16.40 miles.chains – Estimated

Note that there are eighty chains to the mile.

Hitachi’s Regional Battery Train

Hitachi’s Regional Battery Train, is the only battery electric train intended for the UK network for which a detailed specification has been released.

This infographic from Hitachi gives the specification.

Note that ninety kilometres is fifty-six miles.

I would suspect that battery trains from other manufacturers, like Bombardier, CAF and Stadler, will have a similar specification.

Battery Electric Trains Between London Marylebone And Aylesbury

I’ll take each possible route in turn.

London Marylebone And Aylesbury Via Amersham

The three sections of the route are as follows.

  • London Marylebone and Harrow-on-the-Hill – 9.23 miles – Not Electrified
  • Harrow-on-the-Hill and Amersham – 14.34 – Electrified
  • Amersham and Aylesbury – 15.29 miles – Not Electrified

Note.

  1. The total distance is 38.85 miles
  2. A typical service takes just under twenty minutes to travel between Harrow-on-the-Hill and Amersham. This should be enough to fully charge the batteries.
  3. A train going South from Harrow-on-the-Hill could reach London Marylebone and return.
  4. A train going North from Amersham could reach Aylesbury and return.

I am fairly confident, that a battery electric train, with the range of a Hitachi Regional Battery Train could work this route.

London Marylebone And Aylesbury Vale Parkway Via Amersham

The four sections of the route are as follows.

  • London Marylebone and Harrow-on-the-Hill – 9.23 miles – Not Electrified
  • Harrow-on-the-Hill and Amersham – 14.34 – Electrified
  • Amersham and Aylesbury – 15.29 miles – Not Electrified
  • Aylesbury and Aylesbury Vale Parkway – 2.31 miles – Not Electrified

Note.

  1. The total distance is 41.16 miles
  2. A typical service takes just under twenty minutes to travel between Harrow-on-the-Hill and Amersham. This should be enough to fully charge the batteries.
  3. A train going South from Harrow-on-the-Hill could reach London Marylebone and return.
  4. A train going North from Amersham could reach Aylesbury Vale Parkway and return.

I am fairly confident, that a battery electric train, with the range of a Hitachi Regional Battery Train could work this route.

London Marylebone And Aylesbury Via High Wycombe

The two sections of the route are as follows.

  • London Marylebone and High Wycombe- 28.14 miles – Not Electrified
  • High Wycombe and Aylesbury – 15.35 miles – Not Electrified

Note.

  1. The total distance is 43.50 miles
  2. There is no electrification to charge the trains.

A battery electric train, with the range of a Hitachi Regional Battery Train will need charging to work this route.

However, with charging at both ends, this would be a route for a battery electric train.

At the London Marylebone end, there are two possible solutions.

  • Electrify the station traditionally, together with perhaps the tracks as far as Neasden, where the routes split. Either 750 VDC third-rail or 25 KVAC overhead electrification could be used.
  • Fit fast charging systems into all the platforms at the station.

Note.

  1. Turnround times in Marylebone station are typically nine minutes or more, so using a charging system should be possible.
  2. Power for the electrification should not be a problem, as the station is close to one of London’s central electricity hubs at Lisson Grove by the Regent’s Canal.

The final decision at Marylebone, would be one for the engineers and accountants.

At the Aylesbury end, it should be noted that much of the under twenty miles of track between Princes Risborough and Aylesbury and on to Aylesbury Vale Parkway and Calvert us single-track.

So why not electrify from Princes Risborough and Calvert, where the route joins the East West Railway?

The electrification in Aylesbury station could also be used to top-up trains going to London via Amersham.

I would use 25 KVAC overhead electrification, using lightweight gantries like these, which use laminated wood for the overhead structure.

There is also a video.

Electrification doesn’t have to be ugly and out-of-character with the surroundings.

London Marylebone And Milton Keynes Via High Wycombe, Aylesbury and Aylesbury Vale Parkway

The three sections of the route are as follows.

  • London Marylebone and High Wycombe- 28.14 miles – Not Electrified
  • High Wycombe and Aylesbury – 15.35 miles – Not Electrified
  • Aylesbury and Milton Keynes – 16.50 miles – Partially Electrified

Note.

  1. The total distance is sixty miles
  2. There is some electrification to charge the trains between Bletchley and Milton Keynes.

A battery electric train, with the range of a Hitachi Regional Battery Train should be able to work this route, if they can work London Marylebone and Aylesbury, with charging at Aylesbury.

Milton Keynes Central is a fully-electrified station.

The picture shows Platform 2A, which is South-facing electrified, five-car platform, which could be used by the Chiltern service.

Train Specification

Consider.

  • Chiltern Railway’s workhorse is a Class 168 train, which is a diesel multiple unit of up to four cars, with a 100 mph operating speed.
  • The longest leg without electrification could be London Marylebone and Aylesbury via High Wycombe, which is 43.5 miles.
  • Hitachi’s Regional Battery Train has a range of fifty-six miles.
  • As there is a need to work with London Underground electrification, a dual-voltage train will be needed.

So a battery electric train with this specification would probably be ideal.

  • Four cars
  • Ability to work with both 750 VDC third-rail and 25 KVAC overhead electrification.
  • 100 mph operating speed.
  • Battery range of perhaps 55 miles.

Could the specification fit a battery-equipped Class 385 train, which will probably be built for Scotland?

Conclusion

I am convinced that battery electric trains can run between London Marylebone and Aylesbury, Aylesbury Vale Parkway and Milton Keynes stations.

The following would be needed.

  • A battery electric range of perhaps fifty-five miles.
  • Some form of charging at Marylebone and Aylesbury stations.

I would electrify, the single-track route between Princes Risborough and Aylesbury Vale Parkway.

September 4, 2020 Posted by | Transport/Travel | , , , , , , , , , , , | Leave a comment