The Anonymous Widower

25kV Battery Train Charging Station Demonstration

This project was one of the winners in the First Of A Kind 2022 competition run by Innovate UK.

In this document, this is said about the project.

Project No: 10037158

Project title: 25kV Battery Train Charging Station Demonstration
Lead organisation: SIEMENS MOBILITY LIMITED
Project grant: £59,910

Public description: The UK rail industry is committed to decarbonisation, including the removal of diesel trains by 2040.

Replacing diesel trains with electric, hydrogen or battery bi-mode rolling stock provides faster, smoother and more reliable journeys, as well as eliminating local pollution and greatly reducing carbon dioxide. To enable clean, green electric bi-mode operation without continuous electrification requires enhancement of the power supply to existing electrification and novel charging facilities to support bi-mode trains. No small, low-cost solution is currently available for charging facilities that are compatible with standard UK trains and locally available power supplies and space.

Siemens Mobility, working with ROSCO, TOCs and Network Rail, will deliver a novel AC charging solution enabling simple installation of small, low-cost rapid charging facilities fed from existing standard local power supply cables. Compatible with all OLE-powered trains, the novel design enables the removal of diesel passenger train operation on non-electrified routes across the UK, while minimising land requirements and modifications required to existing station structures.

My Thoughts And Conclusion

Consider.

  • The solution works with all 25 KVAC trains.
  • It looks like it is a compact overhead electrification system, which might have originally been designed for a European tram or German S-Bahn system.
  • It is claimed to be low-cost.
  • Siemens were not asking for a lot of money.
  • ROSCO, TOCs and Network Rail are all involved, which must be good.

It looks to me, that someone at Siemens has raided the parts bin and found some small, low-cost overhead electrification, that can be installed in the UK gauge and powered by a fairly standard mains supply.

It strikes me, that this system would be ideal to install in a station like Marylebone, if services to the station were to be run by battery-electric trains.

November 17, 2022 Posted by | Energy, Transport/Travel | , , , , , , | 1 Comment

Could Chiltern Go Battery-Electric?

In the October 2022 Edition of Modern Railways, there is an article, which is entitled Chiltern Considers Turbo Future, with a sub-title of Battery Replacement Could Be On The Cards.

These are the first two paragraphs.

In early September Chiltern Railways was preparing to launch a market sounding exercise to consider options for the future of the Class 165 Turbo DMU fleet.

The operator has 28×2-car and 11×3-car ‘165s’. which operate alongside its more modern Class 168 DMUs and its loco-hauled sets. The market sounding exercise will consider two options for the future of the fleet – some sort of hybrid conversion, or outright replacement.

The Class 165 Trains

The Class 165 trains were built in 1990-1991.

  • Maximum Speed – 75 mph
  • Prime Movers – One per car, Perkins 2006-TWH
  • 2-car Trains – 28
  • 3-car Trains – 11

One is being converted to a diesel/battery hybrid.

The Class 168 Trains

The Class 168 trains were built in 1998-2004.

  • Maximum Speed – 100 mph
  • Prime Movers – One per car, MTU 6R 183TD13H
  • 2-car Trains – 9
  • 3-car Trains – 8
  • 4-car Trains – 11

One has been converted to a diesel/battery hybrid.

Conversion To Hybrid Operation

If this proves to be feasible, it will surely be the more affordable of the two options.

But it does leave Chiltern with a mixed fleet with two types of train with different maximum speeds and these lengths.

  • 2-car Trains – 37
  • 3-car Trains – 19
  • 4-car Trains – 11

Would a fleet of similar trains, with perhaps a maximum speed of 100 mph, be better operationally?

Battery-Electric Operation

The Modern Railways article introduces the concept of battery-electric operation with this paragraph.

If a replacement fleet is considered the best option for the Turbo units, the replacements could take the form of a straight battery EMU, taking advantage of recent advances in ‘fast charge’ technology.

The article also says this about battery technology and electrification.

There is optimism that advances in battery technology will provide a smooth pathway to decarbonise Chiltern’s operations – the company serves the only non-electrified London terminus.

In the longer-term, it is hoped electrification from Birmingham to Banbury as part of a strategy to decarbonise CrossCountry and freight services would enable Chiltern to run a battery EMU on London to Birmingham duties, running under battery power as far north as Banbury and switching to overhead wires from there, both powering the unit and enabling the batteries to be recharged.

The Modern Railways article looked at each route and I will do this in more detail.

London Marylebone And Aylesbury via High Wycombe

London Marylebone and Oxford would be under battery operation for 40 miles.

Trains would be charged at London Marylebone and Aylesbury stations.

London Marylebone And Aylesbury Vale Parkway

London Marylebone and Oxford would be under battery operation for 41 miles.

Trains would be charged at London Marylebone and Aylesbury Vale Parkway stations.

It might be better to electrify between Aylesbury and Aylesbury Vale Parkway stations.

London Marylebone And Banbury

London Marylebone and Oxford would be under battery operation for 69 miles.

Trains would be charged at London Marylebone and Banbury stations.

Leamington Spa And Birmingham Moor Street

Assuming the Birmingham and Banbury section of the route is electrified, this route will be electrified.

London Marylebone And Birmingham Moor Street Or Birmingham Snow Hill

Assuming the Birmingham and Banbury section of the route is electrified, this route can be considered to be in two sections.

  • London Marylebone and Banbury – Battery operation – 69 miles
  • Banbury and Birmingham – Electric operation – 42 miles

Trains would be charged at London Marylebone station and on the electrified section.

London Marylebone And Gerrards Cross

London Marylebone and Oxford would be under battery operation for 19 miles or 38 miles both ways.

Trains would be charged at London Marylebone station.

London Marylebone And High Wycombe

London Marylebone and Oxford would be under battery operation for 28 miles or 56 miles both ways.

Trains would be charged at London Marylebone station.

London Marylebone And Oxford

London Marylebone and Oxford would be under battery operation for 66.8 miles.

Trains would be charged at London Marylebone and Oxford stations.

London Marylebone And Stratford-upon-Avon

Assuming the Birmingham and Banbury section of the route is electrified, this route can be considered to be in two sections.

  • London Marylebone and Banbury – Battery operation – 69 miles
  • Banbury and Hatton Junction – Electric operation – 26 miles
  • Hatton Junction and Stratford-upon-Avon – Battery operation – 9 miles

Trains would be charged at London Marylebone station and on the electrified section.

Chiltern’s Mainline Service

Chiltern’s Mainline service between London and Birmingham is run by either a Class 68 locomotive pulling a rake of six Mark 3 coaches and a driving van trailer or two or three Class 168 trains.

As the locomotive-hauled train is about eight coaches, it could surely be replaced by two four-car multiple units working together.

I believe that if Chiltern obtained a fleet of four-car battery electric trains, this would be the most efficient fleets for all their routes.

Charging At London Marylebone Station

I took these pictures at Marylebone station today.

Note.

  1. It is a surprisingly spacious station and I feel that Furrer+Frey or some other specialist company could add some form of charging to the platforms.
  2. Charging would probably performed using the train’s pantograph.

It appears that the turnround time in Marylebone is typically twelve minutes or more, which should be adequate to fully charge a train.

 

Conclusion

Both solutions will work for Chiltern.

But I prefer the new battery-electric train, which has some crucial advantages.

  • Battery-electric trains will be quieter than hybrid trains.
  • Marylebone station has a noise problem and battery-electric trains are very quiet.
  • Chiltern have ambitions to built new platforms at Old Oak Common and to serve Paddington. This could be easier with a battery electric train.

Rhe only disadvantage is that Banbury and Birmingham would need to be electrified.

 

 

September 25, 2022 Posted by | Transport/Travel | , , , , , , , , , , , | 5 Comments

A Chiltern Class 68 Locomotive At Marylebone Station

As I was passing through Marylebone station, I took these pictures of a very clean Class 68 locomotive.

If I’m going to Birmingham, I generally use Chiltern, as often you get to travel in one of these well-restored Mark 3 coaches hauled by a Class 68 locomotive.

With the Mark 3 coach, you get a full size table and a large window to enjoy the countryside.

  • The Class 68 locomotives were all built by Stadler in Spain, within the last ten years.
  • The UK has a fleet of 34 Class 68 locomotives.
  • They are powered by a Caterpillar diesel engine.
  • The only problem with the trains is that the Class 68 locomotives are diesel.

But is Caterpillar working on a simple solution?

Search the Internet for “Caterpillar Hydrogen” and you find press releases and other items, like this press release, which is entitled Caterpillar to Expand Hydrogen-Powered Solutions to Customers.

I wouldn’t be surprised to find out, that Stadler and Caterpillar were working on a program to provide a solution to convert Class 68 locomotives to hydrogen.

April 10, 2022 Posted by | Hydrogen, Transport/Travel | , , , , , , | 1 Comment