The Anonymous Widower

Centrica Energy And Exodus Sign Landmark LNG Agreement

The title of this post, is the same as that of this press release from Centrica.

This is the sub-heading.

Centrica Energy has announced the signing of a long-term Sale and Purchase Agreement (SPA) to supply liquefied natural gas (LNG) to Exodus for Honduras, marking a new milestone in the country’s energy development.

These two paragraphs add more details.

Under the terms of the agreement, Centrica will deliver approximately six LNG cargoes per year to Exodus through a ship-to-ship operation into the Floating Storage Unit (FSU) Bilbao Knutsen, located in Puerto Cortes. The 15-year contract is expected to commence in 2026.

“This agreement reflects Centrica Energy’s commitment to expanding global LNG access through strategic partnerships,” said Arturo Gallego, Global Head of LNG at Centrica Energy. “By leveraging our global reach and operational expertise, we’re proud to support Exodus and Honduras in its journey toward a more sustainable and resilient energy future.”

It looks a good deal for Centrica, that has been snatched from under the American’s noses.

I also asked Google AI, if Honduras produced any natural gas and received this reply.

No, Honduras does not produce natural gas, but it is importing it through a new liquefied natural gas (LNG) agreement that begins in 2026. The country relies on imports to meet its energy needs, and this new deal aims to diversify its energy mix and provide cleaner energy for power generation.

That’s clear and it’s interesting that Honduras are looking to provide cleaner energy.

These two paragraphs from Centrica’s press release add details on power generation in Honduras.

The LNG will be transported to the Brassavola Combined Cycle Power Plant, an operating 150 MW thermal facility with its combined cycle under construction and set to reach 240 MW of power capacity, marking the first-ever import of natural gas for power generation in Honduras. This initiative represents a significant step toward diversifying the nation’s energy mix and reducing its reliance on less environmentally friendly fossil fuels.

Once operational, the FSU will serve as the backbone of LNG storage at a new terminal currently under construction on Honduras’ Caribbean coast. The project is designed to enhance energy security, improve generation efficiency, and support industrial growth.

This article on Riviera is entitled Honduras Turns To LNG To Meet Energy Needs and provides these points.

  • Honduras is grappling with a 250 MW power shortage.
  • Genesis Energías is spearheading efforts to introduce a reliable and cost-effective energy source by importing liquefied natural gas (LNG).
  • Hyundai, who are one of Centrica’s partners in HiiROC, are converting the Bilbao Knutsen for its new role as a Floating Storage Unit (FSU).

It would certainly help Honduras’s economy, if they had more power generation.

I asked Google AI, if Honduras was developing offshore wind power and received this reply.

While Honduras has been actively developing onshore wind power for over a decade, there is currently no information to suggest it is developing offshore wind power projects. The country’s wind energy development has focused exclusively on land-based projects, with a number of operational farms and more in the pipeline.

I also asked Google AI if Honduras was developing solar power and received this reply.

Yes, Honduras is actively and significantly developing its solar power capacity as a cornerstone of its national energy strategy. The country has been a regional leader in solar energy penetration and continues to invest heavily in new projects to reduce its dependence on fossil fuels.

But, whether its offshore wind, onshore wind or solar power, these renewals will need backup and the 240 MW Brassavola Combined Cycle Power Plant, will be a good start.

I have some further thoughts.

Does HiiROC Have A Part To Play?

If would be good, if the 240 MW Brassavola Combined Cycle Power Plant could be zero-carbon, so that Honduras could be more zero-carbon.

Consider.

  • Centrica own part of HiiROC, who can generate turquoise hydrogen efficiently from natural gas.
  • Honduras will from 2026, have plenty of natural gas.
  • In Hydrogen Milestone: UK’s First Hydrogen-to-Power Trial At Brigg Energy Park, I talked about how Centrica powered Brigg power station with a hydrogen blend.
  • If the Brassavola Combined Cycle Power Plant was reasonably-modern like Brigg, I suspect it could be run on hydrogen or a hydrogen-blend.
  • A reliable supply of hydrogen in Honduras would have its uses.

I wouldn’t be surprised to see a HiiROC plant in Honduras to help decarbonise the country.

HiiROC Creates A Lot Of Carbon Black

When a HiiROC system produces turquoise hydrogen, it produces carbon black as a by-product.

I asked Google AI, if Honduras has a use for carbon black, and received this reply.

Honduras likely has a use for carbon black because the material is a vital component in the production of many common industrial and consumer goods that are used globally. The primary applications are universal across most countries, including those in Central America.

But carbon black can also be used to improve poor agricultural land.

So I asked, Google AI, if Honduras has a lot of land to improve and received this reply.

Yes, Honduras has significant land to improve, but this is complicated by issues like deforestation, land degradation, and a lack of clear land rights for many communities. There is a need to balance economic activities like coffee plantations with conservation, improve sustainable agriculture practices, and address illegal land occupation.

It seems to me, that a sensible hollistic approach could use some of the carbon black.

I also believe, that there are many universities, who could advise Honduras on land restoration.

Does Highview Power Have A Part To Play?

Consider.

  • Centrica are one of the backers of Highview Power, who are building their first two environmentally-friendly liquid air batteries in the UK.
  • Their flagship battery is a 300 MW/3.2 GWh monster that can incorporate a stability island, that controls the grid.
  • Highview Power’s batteries are zero-carbon, with a 40-50 year life.

As a Control Engineer, I believe that one of these batteries would be superb backup for the Brassavola Combined Cycle Power Plant and all those renewables.

Where Will Centrica Get Their LNG For Honduras?

I have already reported on two deals, where Centrica is purchasing LNG.

I can expect more deals like this around the world.

Also, as the Grain LNG Terminal has the ability to export LNG could we be seeing UK natural gas being exported by Centrica to Honduras and the other countries hinted at in the PTT purchase?

Are Centrica Proposing A Comprehensive Solution To A Nation’s Power Problem?

It certainly looks like they are.

And Honduras would be getting a zero-carbon energy system.

This could be repeated all around the world.

 

Conclusion

This certainly looks like a good deal for Centrica, that can be repeated in other places.

 

 

November 28, 2025 Posted by | Artificial Intelligence, Energy, Energy Storage, Environment, Hydrogen | , , , , , , , , , , , , | Leave a comment

Hydrogen Milestone: UK’s First Hydrogen-to-Power Trial At Brigg Energy Park

The title of this post, is the same as that of this press release from Centrica.

This is the sub-heading.

Centrica and HiiROC, supported by the Net Zero Technology Centre (NZTC), have successfully demonstrated the injection of hydrogen into a gas-fired peak power plant at Centrica’s Brigg Energy Park, North Lincolnshire. The trial that took place last Thursday (11 September) marks a UK first in using hydrogen to decarbonise peak power generation supplying power directly to the electricity grid.

These three opening paragraphs add detail.

HiiROC’s modular hydrogen production technology, using Thermal Plasma Electrolysis (TPE), produced hydrogen on site which was then blended at a 3% ratio for the purposes of a one-hour trial.

The trial marks a further step forward in Centrica’s ongoing efforts to advance innovative solutions for the decarbonisation of its portfolio of gas plants, demonstrating that existing gas infrastructure can operate on a hydrogen blend to provide reliable, low carbon electricity to UK homes and businesses. More broadly, the trial shows a viable route for delivering on decarbonisation readiness obligations for peaker generation as part of the UK’s journey to net zero.

It is also a key milestone in HiiROC’s journey, demonstrating the effectiveness and affordability of HiiROC’s TPE process, which produces hydrogen without CO2 emissions, making it compliant with the UK’s Low Carbon Hydrogen Standard (LCHS). By leveraging the existing gas network and co-locating hydrogen production where it is needed, operators can decarbonise without costly new infrastructure.

Note.

  1. This test was only at a low level of hydrogen.
  2. Brigg power station is a 240 MW power station, which is fuelled by natural gas.

A long journey starts with a single step.

September 16, 2025 Posted by | Energy, Hydrogen | , , , , , , | 4 Comments

North Sea Oil Group Equinor Scales Back Investment In Renewables

The title of this post, is the same as that of this article in The Times.

This is the sub-heading.

Equinor, which is attempting to develop one of the largest untapped oilfields in UK waters, also raised its fossil fuel production targets

This is the first paragraph.

The Norwegian state-backed oil company that is attempting to develop one of the largest untapped oil fields in UK waters, has dramatically scaled back its investment in renewables and raised its fossil fuel production targets, becoming the latest of the world’s energy giants to row back on the push towards green power.

A quiet revolution is happening that will change our use of natural gas very much for the better.

  • In Rhodesia, which is a suburb of Worksop, a 24 MW Rolls-Royce mtu diesel peaker power plant, that runs on natural gas, but is also hydrogen-ready, has been installed to boost the electricity supply. The diesel engine is fitted with carbon capture and produces food-grade CO2, which is sold for food and engineering uses.
  • Most of the excellent British tomatoes and soft fruit, we have been eating this winter, is grown in greenhouses, heated by natural gas-powered combined heat and power units, where the CO2 produced is captured and fed to the plants.
  • HiiROC is a start-up from Hull, who are backed by Centrica, who use a plasma process to split any hydrocarbon gas including waste gas from a chemical plant, biomethane from a sewage works or natural gas into pure hydrogen and carbon black, which is needed to manufacture tyres and other products, and also to improve soil.
  • In the last few months, a HiiROC device has been installed at Brigg power station, to generate zero-carbon electricity from natural gas.
  • Imagine a housing or factory estate, a farm or perhaps a large country house, that wants to decarbonise. The gas feed to the property would be fitted with a HiiROC device and all gas appliances and boilers would be converted to hydrogen.
  • I also believe that houses and other premises could have their own hydrogen pumps to fill up cars, ride-on mowers and other vehicles.
  • Avnos is a company from the US, that captures CO2 from the air. What makes Avnos unique is that for every ton of CO2 it captures, it captures five tons of pure water.

More ideas like these are being developed.

What is wrong in using natural gas, to generate heat and electricity, if it doesn’t emit any CO2 into the atmosphere?

 

I suspect, that Equinor believe there will be a market for natural gas for years, as more and more clever ways to use it and turn it into hydrogen are developed.

February 7, 2025 Posted by | Energy, Food, Hydrogen | , , , , , , , , , , , | Leave a comment

Construction Under Way To Double Power Station Capacity At Centrica’s Brigg Energy Park

The title of this post, is the same as that of this press release from Centrica.

This is the sub-heading.

Four ultra-efficient engines have arrived at Centrica’s former combined cycle gas power station at Brigg, with construction work underway on an expansion of the peaking plant at the Lincolnshire site.

These three paragraphs give more details about the project.

The business is installing the four engines inside the former turbine hall at the power station, which was decommissioned in 2020, helping to create nearly 100MW of fast response assets capable of meeting demand when renewable generation is low.

The expanded power plant will be hydrogen-ready, and form part of a trial due to start in late 2024 to blend hydrogen into the gas, ramping up from a three per cent blend to 20 per cent, with a long term vision to move towards 100 per cent hydrogen and to deploy similar technology across all peaking plants.

Work at Brigg is expected to last around nine months and the plant will be fully operational in early 2025.

These are my thoughts.

Hydrogen Blend Operation

The second paragraph indicates that Centrica will be using Brigg power station to research the use of hydrogen blends.

Hydrogen blends could offer a way an easy way to cut hydrogen emissions, so it is good, that Centrica are researching their use in gas-fired power stations.

Brigg As A Peaking Plant

 

This paragraph from the press release, explains what Centrica means by a peaking plant.

Peaking plants only generate electricity when there’s high or peak demand for electricity, or when generation from renewables is too low to meet demand. Once connected to the grid, the engines will have the capacity to power 20,000 homes for a full day when required, which will maintain stability and deliver reliable power across the grid.

The second paragraph also says this.

A long term vision to move towards 100 per cent hydrogen and to deploy similar technology across all peaking plants.

Does this mean that all peaking plants will move to hydrogen-fired generation?

Brigg Redevelopment

This paragraph from the press release, outlines Centrica’s plans for Brigg power station.

Centrica is redeveloping the Brigg energy park which, once complete, will be home to a 50MW battery, commercial-scale hydrogen production using HiiROC technology (in which Centrica has a five per cent stake), and 100MW of gas peaking plant.

Note.

  1. I would assume that the battery, will be able to provide 50 MW for at least two hours, so the battery electric storage system (BESS) will be at least a 50 MW/100 MWh unit.
  2. The HiiROC technology is being developed on the other side of the Humber in Hull.
  3. HiiROC technology captures the carbon in the gas as carbon black, which has uses in its own right, in agriculture and tyre and other manufacturing.
  4. Both a battery and a gas peaking plant, will be used at Brigg to match generation with demand.

I wouldn’t be surprised that to use both a battery and a gas peaking plant, is the most efficient way to balance the renewable energy.

Hydrogen Production

The HiiROC technology that will be used at Brigg can extract hydrogen from a variety of sources including biomethane, chemical plant off gas or natural gas.

The HiiROC technology can be scaled to fit the application.

I feel that the versatility of the HiiROC technology, may result in using some unusual feeds to produce hydrogen.

As an example of the deployment of a small HiiROC system , one at a sewage works could provide hydrogen for the utility company’s vehicles.

The main use of the hydrogen would be to provide a clean fuel for the gas-fired peaking plant.

I also wouldn’t be surprised to see the hydrogen, sold and distributed to the local area, from an energy park, like Brigg.

Conclusion

Increasingly, backup for renewables will use a wide range of zero-carbon technologies.

May 28, 2024 Posted by | Energy, Energy Storage, Hydrogen | , , , , | Leave a comment

Centrica Completes Work On 20MW Hydrogen-Ready Peaker In Redditch

The title of this post, is the same as that of this press release from Centrica.

This is the sub-heading.

Construction is complete on Centrica’s new 20MW hydrogen-blend-ready gas-fired peaking plant in Worcestershire, transforming the previously decommissioned Redditch power plant.

These paragraphs give more details of the project.

The plant is designed to support times of high or peak demand for electricity. Peaking plants only operate when production from renewables can’t meet demand, supporting the energy transition by maintaining a stable electricity supply. The Redditch site can power the equivalent of 2,000 homes for a full day, helping to maintain stability and reliability on the grid.

The plant is capable of using a blend of natural gas and hydrogen, futureproofing the site and supporting the UK’s transition towards a decarbonised energy system.

The Redditch peaking plant forms part of Centrica’s plans to invest between £600m – £800m a year until 2028 in renewable generation, security of supply, and its customers, including building out a portfolio of flexible energy assets. That includes the redevelopment of several legacy power stations, including the Brigg Energy Park in to a power generation and battery storage asset, and the first power station in the UK to be part-fuelled by hydrogen.

I also wrote Centrica Business Solutions Begins Work On 20MW Hydrogen-Ready Peaker In Redditch, about this project.

HiiROC

I wonder if this power station will be fitted with a HiiROC system, which will split the natural gas into two useful products; hydrogen and carbon black.

I wrote about HiiROC in Centrica Partners With Hull-Based HiiRoc For Hydrogen Fuel Switch Trial At Humber Power Plant.

I can see lots of HiiROC systems creating a hydrogen feed, to decarbonise various processes.

Whose Engines Are Used At Redditch?

Centrica still haven’t disclosed, whose engines they are using.

 

March 6, 2024 Posted by | Energy, Hydrogen | , , , , , , | 2 Comments

Plans Submitted For Hydrogen Pilot Plant At Humber Power Station

The title of this post, is the same as that of this article on Business Live.

This is the sub-heading.

HiiRoc and Centrica partnership at Brigg moves forward as consent sought.

These two paragraphs complete the original article.

Plans for a hydrogen pilot plant to sit alongside Centrica’s Brigg Power Station have been submitted to North Lincolnshire Council.

The low carbon fuel is set to be blended with gas at the peaking plant, in a tie-up between the energy giant and green-tech start up HiiRoc, in which it has invested. The well-backed Hull-based firm is pioneering a new production method, and was named as KPMG’s Global Tech Innovator for 2022.

I have very high hopes for HiiROC, who in addition to Centrica, have Hyundai and Kia as investors.

Endorsement from KPMG is surely positive.

May 20, 2023 Posted by | Energy | , , , , , | 1 Comment

Centrica Business Solutions Begins Work On 20MW Hydrogen-Ready Peaker In Redditch

The title of this post, is the same as that as this news item from Centrica Business Systems.

This is the sub-heading.

Centrica Business Solutions has started work on a 20MW hydrogen-ready gas-fired peaking plant in Worcestershire, as it continues to expand its portfolio of energy assets.

These three paragraphs outline the project.

Centrica has purchased a previously decommissioned power plant in Redditch, and is set to install eight UK assembled containerised engines to burn natural gas.

Expected to be fully operational later this year, the peaking power plant will run only when there is high or peak demand for electricity, or when generation from renewables is low. The Redditch project will have the capacity to power the equivalent of 2,000 homes for a full day when required, helping to maintain stability and reliability on the grid.

The engines will also be capable of burning a blend of natural gas and hydrogen, futureproofing the site and helping the UK transition towards a decarbonised energy system.

  • The original power station had Rolls-Royce generators.
  • Cummins and Rolls-Royce mtu and possibly other companies can probably supply the dual fuel generators.
  • Cummins have received UK Government funding to develop hydrogen-powered internal combustion engines.
  • This press release from Cummins, which is entitled Dawn Of A New Chapter From Darlington, gives more details on Cummins’ plans for the Darlington factory and hydrogen.

Given that Cummins manufactured sixty-six thousand engines in Darlington in 2021 and it is stated that these containerised engines will be assembled in the UK, I feel, that these engines may be from Cummins.

Centrica’s Plans

This paragraph in the Centrica Business Systems news item, outlines their plans.

The Redditch peaking plant is part of Centrica’s plans to deliver around 1GW of flexible energy assets, that includes the redevelopment of several legacy-owned power stations, including the transformation of the former Brigg Power Station in Lincolnshire into a battery storage asset and the first plant in the UK to be part fuelled by hydrogen.

As Redditch power station is only 20 MW, Centrica could be thinking of around fifty assets of a similar size.

Brigg Power Station

The Wikipedia entry for Brigg Power station gives these details of the station.

  • The station was built in 1993.
  • It is a combined cycle gas turbine power station.
  • The primary fuel is natural gas, but it can also run on diesel.
  • It has a nameplate capacity of 240 MW.

Brigg power station is also to be used as a test site for hydrogen firing.

This news item from Centrica is entitled Centrica And HiiROC To Inject Hydrogen At Brigg Gas-Fired Power Station In UK First Project.

These paragraphs from the news item explains the process.

The 49MW gas fired plant at Brigg is designed to meet demand during peak times or when generation from renewables is low, typically operating for less than three hours a day. Mixing hydrogen in with natural gas reduces the overall carbon intensity.

It’s anticipated that during the trial, getting underway in Q3 2023, no more than three per cent of the gas mix could be hydrogen, increasing to 20% incrementally after the project. Longer term, the vision is to move towards 100% hydrogen and to deploy similar technology across all gas-fired peaking plant.

HiiROC’s proprietary technology converts biomethane, flare gas or natural gas into clean hydrogen and carbon black, through an innovative Thermal Plasma Electrolysis process. This results in a low carbon, or potentially negative carbon, ‘emerald hydrogen’.

Because the byproduct comes in the form of a valuable, solid, pure carbon it can be easily captured and used in applications ranging from tyres, rubbers and toners, and in new use cases like building materials and even as a soil enhancer.

It looks to me, that HiiROC are using an updated version of a process called pyrolysis, which is fully and well-described in this Wikipedia entry. This is the first paragraph.

The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. It involves a change of chemical composition. The word is coined from the Greek-derived elements pyro “fire”, “heat”, “fever” and lysis “separating”.

Pyrolysis is more common than you think and is even used in cooking to do things like caramelise onions. This is a video of a chef giving a demonstration of caramelising onions.

On an industrial scale, pyrolysis is used to make coke and charcoal.

I came across pyrolysis in my first job after graduating, when I worked at ICI Runcorn.

ICI were trying to make acetylene in a process plant they had bought from BASF. Ethylene was burned in an atmosphere, that didn’t have much oxygen and then quenched in naphtha. This should have produced acetylene , but all it produced was tonnes of black soot, that it spread all over Runcorn.

I shared an office with a guy, who was using a purpose-built instrument to measure acetylene in the off-gas from the burners.

When he discovered that the gas could be in explosive limits, ICI shut the plant down. The Germans didn’t believe this and said, that anyway it was impossible to do the measurement.

ICI gave up on the process and demolished their plant, but sadly the German plant blew up.

It does look like HiiROC have tamed the process to be able to put hydrocarbons in one end and get hydrogen and carbon black out the other.

I wonder how many old and possibly dangerous chemical processes can be reimagined using modern technology.

It certainly appears that Centrica are not holding back on innovation.

Conclusion

I’ve never run a large electricity network. Not even a simulated one.

But I’m fairly sure that having a large number of assets of different sizes, that can be optimised to the load and the fuel available, creates a more reliable and efficient network.

Heavy energy users may even have their own small efficient power station, that is powered by gases piped from the local landfill.

April 6, 2023 Posted by | Energy, Hydrogen | , , , , , , , , , | 2 Comments