The Anonymous Widower

UK Hydrogen Train Demonstrator To Be Tested In 2019

The title of this post, is the same as that on this article on Railway Gazette.

This is the first two paragraphs.

A memorandum of understanding for the development of a hydrogen fuel cell demonstrator train was signed by leasing company Porterbrook and the University of Birmingham’s Centre for Railway Research & Education at InnoTrans on September 19.

Porterbrook is to provide an ex-Thameslink Class 319 25 kV 50 Hz/750 V DC third rail electric multiple-unit for the Hydro Flex project. The partners expect it to be equipped with a fuel cell system and ready for demonstration runs in mid-2019. It would retain the ability to use electrical power.

Action is certainly happening in the development of low-emission trains and it appears, that the train leasing companies are taking an active lead.

 

 

September 21, 2018 Posted by | Travel | , , , | 1 Comment

An Analysis Of The Route Between Buxtehude And Cuxhaven

Alstom have chosen the route between Buxtehude and Cuxhaven, as the launch route for their hydrogen-powered Coradia iLint train.

I’ll now look at the route.

Buxtehude Station

Buxtehude station is on the outskirts of Hamburg.

This Google Map shows the station.

Note.

  1. There is a double-track electrified line through the station.
  2. There appears to be a West-facing bay platform, which conveniently has what looks to be a train in DB red, in the platform.

Services at Buxtehude include.

  1. Line S3 of the Hamburg S-Bahn between Pinneberg  and Stade. This line appears to be electrified with 15 KVAC overhead wires.
  2. Service RE 5 between Cuxhaven and Hamburg via Otterndorf, Stade and Buxtehude. This route is only electrified between Hamburg and Stade.
  3. Service RE 33 between Cuxhaven and Buxtehude via Bremerhaven and Bremervörde. This route is not electrified.

Service three is the one that from yesterday has been run by the Coradia iLint trains.

Between Buxtehude And Bremervörde

I followed this route in my helicopter and it is a single-track line through reasonably open country with in places trees along the line.

If this line was in the UK, it would be something like the Breckland Line or Great Eastern Main Line. through Norfolk, both of which have an operating speed of between 140-160 kph.

So I wouldn’t be surprised that the Coradia iLint could be almost at its maximum speed of 140 kph for long periods between stations.

Bremervörde Station

This Google Map shows Bremervörde station.

It would appear to be on a large site and there might even be a depot.

There’s certainly space to add a couple of large wind turbines to generate electricity, that could be used to create hydrogen through electrolysis.

Between Bremervörde And Bremerhafen HBf

As with the line to the East of Bremervörde, it is fairly straight across what appears to be fairly flat and through a mixture of open countryside and woodland.

This Google Map shows Bremerhafen Wulfdorf station.

The line from Buxtehude can be seen joining from the East.

The line is electrified to Bremerhafen HBf station.

So will the Coradia iLint trains change to overhead power at Bremerhafen Wulfdorf?

From Bremerhafen HBf To Cuxhaven

This Google Map shows Bremerhaven HBf station.

It looks to be a typical functional German station with four platforms, which are all electrified.

The electrification continues Northwards for a few kilometres, but once out of Bremerhaven, the line becomes single track without electrification.

I found this passing loop at the two-platform Dorum station, shown here on a Google Map.

Note how the tracks go either side of an island platform.

I suspect there are other places for trains to pass or they could easily be created.

The route ends at Cuxhaven station, shown in this Google Map.

In addition to the service to Buxtehude, there is also a another service on a shorter and more direct route to Hamburg along the estuary of the River Elbe.

Summing up this section of the route.

  • It is single-track with at least one passing loop.
  • There are just four stations.
  • It is electrified for a few miles at the Southern end.

I’ve also never seen a line with so many level crossings.

Services Between Cuxhaven And Buxtehude Via Bremerhaven HBf

The current service is hourly, with what looks to be these timings.

  • Buxtehude to Bremerhaven HBf  – 1:43 – Incldes 14 stops
  • Bremerhaven HBf to Buxtehude – 1:37
  • Bremerhaven HBf to Cuxhaven  0:51 – Includes 4 stops
  • Cuxhaven to Bremerhaven HBf – 0:44
  • Buxtehude to Cuxhaven – 2:34
  • Cuxhaven to Buxtehude – 2:21

Turnrounds are the following times.

Buxtehute – 28 minutes

Cuxhaven – 12 minutes

This gives a round trip of five hours and thirty-five minutes.

So it would appear that at least five Coradia Lint 41 trains are needed to provide the service.

Coradia Lint Trains

From what I can find on the Internet, the Coradia Lint trains are diesel-mechanical units, where the wheels are driven directly from the two diesel engines.

I’m not sure, but the engines may be mounted under the cabs!

Coradia iLint Trains

I suspect that the hydrogen-powered iLint trains could be driven by simply replacing the diesel engine, with a suitable traction motor.

What surprises me, is that there appears to be no plans to fit a pantograph  to the iLint, so that the intelligent brain on the train can use overhead electrification, when it exists.

This would mean that the range of the train on hydrogen would be increased, if the route was partially electrified.

Coradia iLint Trains Between Buxtehude to Cuxhaven

On the Buxtehude to Cuxhaven route, using electrification could be used to advantage to power the train and charge the batteries  through Bremerhaven, where about ten kilometres is electrified using 15 KVAC overhead wires.

Also, in Buxtehude station, which has 15 KVAC electrification on other lines, the bay platform that it appears will be used for the hydrogen-powered trains could be electrified to charge the batteries, during the  twenty-eight minutes, that the train is in the station. Perhaps, they could use a system such as I wrote about in Is This The Solution To A Charging Station For Battery Trains?

A similar system could be installed at Cuxhaven.

Surely, it is better to use the turnround times at each end of the route to charge the batteries, as this means less hydrogen will be consumed and the train’s range on a tankful will be increased!

There is an interesting comparison to be made here, with a route, I know well in the UK; Cambridge to Norwich.

  • Both routes are around 100 km.
  • Both routes are fairly flat and reasonably straight.
  • The operating speed of the UK line is 140 kph and I suspect the German line is about the same.
  • The UK line has six intermediate stops, whereas the German route has fourteen stops.
  • Both lines are run by diesel trains with similar operating speeds.

But the UK route is timed at one hour and nineteen minutes, as opposed to the two hours thirty-four minutes of the German one.

The German route does have twelve more stops, but even if two minutes is allowed for each stop, that doesn’t explain the difference.

The German route must be run at a slower speed than the UK one.

As the Germans improve the speed, journey times will surely reduce.

Conclusion

I am led to the conclusion, that Buxtehude to Cuxhaven route is an ideal route on which to test hydrogen-powered trains, but that as the trains develop, journey times will reduce substantially.

 

 

September 18, 2018 Posted by | Travel, Uncategorized | , , , , | 8 Comments

Hydrogen Trains Have Arrived

According to this page on the Internet, Alstom launched the Coradia iLint today.

These are some of the pictures.

I shall go for a ride.

The web page says this about the test route.

On behalf of LNVG, the Coradia iLint trains will be operated on nearly 100km of line running between Cuxhaven, Bremerhaven, Bremervörde and Buxtehude, replacing EVB’s existing diesel fleet.

As Buxtehude is close to Hamburg, the easiest way to experience the trains would be to fly to Hamburg.

September 16, 2018 Posted by | Travel | , , | 5 Comments

Alstom And Eversholt Rail Develop Hydrogen Train For Britain

The title of this post, is the same as that of this article in the International Rail Journal.

This is the first paragraph.

Alstom confirmed on September 11 that it is working with British rolling stock leasing company Eversholt Rail to refit class 321 EMUs with hydrogen tanks and fuel cells for hydrogen operation, in response to the British government’s challenge to eliminate diesel operation on the national network by 2040.

Other points about the conversion of Class 321 trains include.

  • Alstom will convert trains in batches of fifteen.
  • The first trains could be ready by 2021.
  • Up to a hundred trains could be converted..
  • A range of up to 1000 km on a tank of hydrogen.
  • A maximum speed of 160 kph.

The article also suggests that the Tees Valley Line and Liverpool to Widnes could be two routes for the trains.

A few points of my own.

  • Fifteen is probably a suitable batch size considering how Class 769 trains have been ordered.
  • Hydrogen is produced in both areas for the possible routes and could be piped to the depots.
  • In Runcorn it is plentiful supply from the chlorine cell rooms of INEOS and that company is thinking of creating a pipeline network to supply the hydrogen to users with high energy needs.
  • As the maximum speed of the hydrogen train is the same as the current Class 321 trains, I would suspect that it is likely that the hydrogen-powered train will not have an inferior performance.
  • I’ve now travelled in Class 321 Renatus trains on three occasions and in common with several passengers I’ve spoken to, I like them.
  • I hope the Class 321 Hydrogen trains have as good an interior!

I very much feel that there is a good chance that the Class 321 Hydrogen could turn out to be a good train, powered by a fuel, that is to a large extent, is an unwanted by-product of the chemical industry.

A Comparison Between The Alstom Coradia iLint And The Class 321 Hydrogen

It is difficult for me to compare the Alstom Coeadia iLint or even a bog-standard iLint , as I’ve never rode in either.

Hopefully, I’ll ride the iLint in the next few weeks.

The following statistics are from various sources on the Internet

  • Cars – 321 – 4 – iLint – 2
  • Electric Operation – 321 – Yes – iLint – Not Yet!
  • Loading Gauge – 321 – UK – iLint – European
  • Operating Speed – 321 – 160 kph – iLint – 140 kph
  • Range – 321 – 1000 km. – iLint – 500-800 km.
  • Seats – 321 – 309 – iLint – 150-180

Although the Class 321 Hydrogen will be a refurbished train and the iLint will be new, I suspect passengers will just both trains as similar, given the experience with refurbished trains in the UK.

In some ways, they are not that different in terms of performance and capacity per car.

But the Class 321 Hydrogen does appear to have one big advantage – It can run at up to 160 kph on a suitable electrified line, This ability also means the following.

  • Hydrogen power is not the sole way of charging the battery.
  • On some routes, where perhaps a twenty kilometre branch line, which is not electrified, is to be served, the train might work as a battery-electric train.
  • A smaller capacity hydrogen power unit could be fitted for charging the battery, when the train is turned back at a terminal station and for rescuing trains with a flat battery.
  • The depot and associated filling station, doesn’t have to be where the trains run most of their passenger services.

I also suspect that a Class 321 hydrogen could run on the UK’s third-rail network after modification, if required.

If you were an operator choosing between the two trains, you would probably find that because of your location, there would be a strong preference for one of the two trains.

I also doubt we’ll see iLints running in the UK because of the loading gauge problem.

Will the platform height scupper the running of Class 321 Hydrogen trains in Europe?

In Riding Docklands Light Railway Trains In Essen, I reported on seeing redundant Docklands Light Railway trains running in Essen.

For this reason, I wouldn’t totally rule out Class 321 Hydrogen trains invading Europe!

 

September 14, 2018 Posted by | Travel | , , , , , | 4 Comments

Clean Drivers To Sport Green Numberplates

The title of this post is the same as that as an article on page 11 of today’s Sunday Times.

The first paragraph gives a few more details.

Electric and hydrogen-powered cars, vans and taxis may be awarded green numberplates in a public display of virtue.Chris Grayling, the transport secretary, said giving clean vehicles a “green badge of honour” was a “brilliant way of helping increase awareness” ans “might just encourage people to think about” getting one themselves.

I think it’s a good idea and apparently Norway, Canada and China have green plates.

I like it as it would be easier to spot a battery taxi, which are so much nicer than the older models.

Jesse Norman, a junior Government minister is also thinking about tax breaks for e-Bikes and for ecargobikes for “last mile” deliveries.

September 9, 2018 Posted by | Travel | , , , , , | 2 Comments

Thoughts On The Morecambe Bay Eden Project

When the BBC reported this on Friday, they got a generally good reaction from the local residents they interviewed.

Articles in the Guardian and The Times have been positive, with support from local and national politicians and other worthies. The Times too, has extensive positive comments from readers.

For a project like this to be built, let alone be successful, it needs to have this sort of response on the first day.

It is a project that obviously touches a happy nerve, sirs memories or just ticks all the right boxes with lots of people.

So where will the Eden Project be built?

This Google Map shows the town of Morecambe and psart of the coast and bay to the North of the town.

Nothing has been said about the location, but there would appear to be plenty of space.

I’ve only ever been to Morecambe once, when I visited the town on my trek to visit all 92 English football clubs to raise money for pancreatic cancer research at Liverpool University. My brief visit to Morecambe is described in 92 Clubs – Day 21 – Milton Keynes, Morecambe, Newcastle. This was my initial comment on the town.

The town was a bit of a surprise, as I thought it would be like Blackpool only smaller. It is smaller, but it is in much better state than its larger resort down the coast. You wouldn’t see anything as tasteful as this on a roundabout in Blackpool.

My previous visit was very much a quickie, as I had to continue to Newcastle.

The Eden Project By Train

On their web site, the Eden Project, says this about getting to their Cornish attraction by train.

We are just a few miles from St Austell railway station, which is on the main line from London Paddington and is well served by buses to Eden. You could also take the train to Luxulyan, Bugle or Par, for a more scenic journey or to continue your trip on foot or bike.

They also give a discount for visitors that arrive by public transport. As they should!

If I was going, I’d take the Night Riviera to St. Austell and then use a bus to the Eden Project from the bus station at St. Austell station to complete the journey.

The Proposed Morecambe Eden Project By Train

So how would getting to the proposed Eden Project at Morecambe compare?

Morecambe is served by the Morecambe Branch Line, This diagram from Wikipedia, shows how Morecambe is well-connected to Lancaster and the West Coast Main Line.

The line has two stations in the town at Bare Lane and Morecambe and another at the nearby Heysham Port.

Service between Morecambe and Lancaster seems to have a frequency of two trains per hour (tph) and a journey time of around ten minutes.

There are also upwards of three services a day to and from Skipton and Leeds, which reverse at Lancaster.

As both Bare Lane and Morecambe stations have two platforms and there used to be extra tracks along the route, I think it would be possible to create a railway system to Morecambe that could include.

  • Two tph to and from Lancaster.
  • One tph to and from Leeds via Lancaster, Carnforth, Hellifield for the Settle & Carlisle Railway and Skipton
  • Trains to and from Windermere via Lancaster, Carnforth and Oxenholme Lake District.
  • Trains to and from Carlisle via Lancaster, Carnforth, Barrow and the Cumbrian Coast Line.

There is tremendous scope to expand rail services in an area of scenic beauty, that includes the Lake District and the Pennines.

Creating an iconic attraction at Morecambe could be a catalyst to develop the rail services in the wider area.

A decent rail service with good provision for bicycles and wheelchairs, might also encourage more tourism without the need for cars.

In my view, the short Morecambe and Windermere Branch Lines are ideal for services that use battery trains, which would charge the batteries on the electrified West Coast Main Line.

All trains between Lancaster and Morecambe could use battery power and others to Leeds and Barrow might use hydrogen power after they left the electrified West Coast Main Line.

Morecambe to Windermere could even be a 125 mph electric train on the West Coast Main Line, that used batteries on the short ranch lines at either end.

  • Bombardier are talking about a 125 mph bi-mode Aventra with batteries. Diesel power would not be needed, so add more batteries.
  • Battery trains are talking about ranges of thirty miles, in a few years.
  • Batteries would be charged on the West Coast Main Line.
  • The trains would not be slow enough to interfere with the expresses on the West Coast Main Line.

How cool is that?

The battery-powered trains would surely fit in well with the message of the Eden Project.

 

August 27, 2018 Posted by | Travel | , , , , , | 2 Comments

More Thoughts On Aberdeen Crossrail

In A Crossrail For Aberdeen, I put down my initial thoughts for Aberdeen Crossrail.

Now that I’ve been to Aberdeen and travelled on most of the Aberdeen Crossrail route between Inverurie and Montrose stations, I can add more thoughts.

I shall express my thoughts in generally a Southerly direction.

Inverurie Station

Currently, this is a two-platform station on a passing loop.

This picture gives a flavour of the station, which is Grade B Listed.

You can just see, the rather elderly iron footbridge across the tracks.

I suspect that platform usage will be as follows.

  • Platform 1 – All through trains to and from the West and Inverness.
  • Platform 2 – All trains starting or terminating at Inverurie.

If platform 2 is to be in regular use, then there will be pressure to improve the footbridge.

Double Track From Inverurie To Aberdeen

Most of this section seems to be single track, with passing loops at Inverurie and Dyce stations.

The only difficult bit is probably where the track goes under the new Aberdeen Western By-Pass.

This Google Map shows where they cross to the West of Dyce station.

The difficulty is not the engineering, but the insolvency of Carrilion, who were the contractor for the road.

Dyce Station

These pictures show Dyce station, where I changed from train to bus.

I’m pretty sure that once the track is complete, Dyce station will only need a small amount of work.

Aberdeen Station

Aberdeen station is not only a transport hub with a bus station, but it is also connected directly to the Union Square development.

It is certainly ready for Aberdeen Crossrail.

InterCity 125s

In my travels up and down between, Aberdeen, Montrose, Stonehaven and Dundee, it surprised me, how many journeys were made on an InterCity 125.

I’ve read somewhere, that one of the reasons, ScotRail are bringing in shortened InterCity 125s, is that passengers tend to use these faster trains on journeys like those between Stonehaven and Aberdeen.

Although the shorterned InterCity 125s will be limited to 100 mph, their bags of grunt, will mean good acceleration and surely faster times between Aberdeen and Dundee, Edinburgh, Glasgow and Stirling.

Trains For Aberdeen Crossrail

I timed the InterCity 125s at 100 mph on large sections of the route between Aberdeen and Montrose, as this picture of the SpeedView App on my phone shows.

I think this means, that any trains working passenger services on the Edinburgh-Aberdeen and Glasgow-Aberdeen Lines must be capable of continuous operation at 100 mph.

As Wikipedia gives the operating speeds of both lines as being this figure, it does appear that Aberdeen Crossrail will be a fast local service, very much in line with the performance of services from London to Basingstoke, Brighton, Chelmsford and Oxford.

Initially, I suspect that ScotRail will be using Class 170 trains to provide the stopping service on Aberedeen Crossrail. Class 158 trains could also provide the service, but their 90 mph operating speed may not be enough.

ScotRail certainly have enough Class 170 trains, but I suspect that running two-car trains between Montrose and Inverurie stations, which stop everywhere will not have enough capacity. So a pair of trains will need to be used for each service.

In A Crossrail for Aberdeen, I said this under Frequency Issues.

The route of Inverrurie to Montrose has been deliberately chosen.

  • Inverurie to Aberdeen takes around 23 minutes.
  • Montrose to Aberdeen takes around 35 minutes.

So with slightly faster trains and line speed, than currently used, it should be possible for a train to go from Inverurie to Montrose and back in two hours to include a few minutes to turn the train round.

A two hour round trip means that a train leaving Inverurie at say 06:00 in the morning, will if all goes well, be back in Inverurie to form the 08:00 train.

How convenient is that?

This means that one tph will need two trains, two trph will need four trains and four tph will need eight trains.

These figures would be doubled if four-car trains were to be run on the route.

I feel that four-car trains will be needed on all services on Aberdeen Crossrail, if some of the passenger loading I saw, were to increase. As it surely will do, if they have a more convenient and much better quality service.

Passengers will also see the lots of seats on the shortened InterCity 125s, speeding past and will want some of that.

Two two-car trains working as a four-car train can provide the capacity, but in my view they are not what passengers want, as they can’t circulate in the train to find a preferred seat.

I also think, that at least two tph should run between Montrose and Inverurie stopping at all stations.

This would require four four-car trains.

ScotRail doesn’t at present have any suitable four-car trains.

Will It Be Hydrogen Trains For Aberdeen Crossrail?

Trains will need to be independently powered, as I think it unlikely that the route will be electrified.

I’m sure that CAF, Stadler or another manufacturer, will be happy to supply a small fleet of four-car diesel trains.

But would Abellio want to introduce more diesel trains, when they have enough Class 170 trains to provide a pretty good four-car service

Class 769 trains, which are bi-mode could be used, but they only do around 90 mph on diesel.

I am led to the conclusion, that the only suitable train available to a reasonable time-scale will be Alstom’s proposed conversion of a Class 321 train, running on hydrogen.

  • The trains are capable of 100 mph using electric power.
  • I would be very surprised if these trains couldn’t do 100 mph on hydrogen power.
  • The new interiors fitted under the Renatus project, are a quality upgrade, as I said in A Class 321 Renatus.
  • The trains could be available from 2020.

There is plenty of wind in the Aberdeen area to generate the hydrogen.

Conclusion

Aberdeen Crossrail will become a two trains per hour service using four-car trains.

I wouldn’t be surprised if those trains are Alstom’s Class 321 trains, powered by hydrogen.

August 15, 2018 Posted by | Travel | , , , , , | Leave a comment

A Railway That Needs Electric Trains But Doesn’t Need Full Electrification

This article on Rail Magazine is entitled ScotRail Targets Further Electrification Schemes.

This is the first paragraph.

The five years from 2019 could feature more wiring in Scotland, with ScotRail Alliance Managing Director Alex Hynes telling RAIL: “I’d love to see more electrification – Stirling to Perth, East Kilbride and the Edinburgh South Suburban.”

In this post, I will look at electrification of the Busby Railway to East Kilbride station.

  • The station is 11.5 miles from Glasgow Central station.
  • The station has an altitude of 504 feet.
  • It is a single platform station.
  • The route to Glasgow is double-track, except for the last section from Busby station, which is single track, with a passing loop at Hairmyres station.
  • A two trains per hour (tph) service is provided between Glasgow Central and East Kilbride using two two-car diesel Class 156 trains.

This picture shows East Kilbride station.

Nothing complicated at this station and it comfortably handles two tph.

In the UK, there are several stations where four tph are handled using a single platform.

Transport for Wales also intend to run four tph to several single-platform stations including Rhymney, which is high in the valleys.

I suspect that with modern signalling and driver aids, Glasgow’s drivers would be capable of running four tph between Glasgow Central and East Kilbride stations.

Judging by my trip on the route, there is certainly a need for more capacity, as if every seat is taken at two in the afternoon, two-car trains running at a frequency of two tph is just not enough.

So surely running new four-car electric trains to the current timetable, would be the standard solution for this route?

But!

Look at these pictures of the route..

It wouldn’t be a nightmare to electrify, but because of the stone bridges and the steel footbridges, it would be expensive and very disruptive.

The following should also be noted.

  • The railway has never gone further than East Kilbride station.
  • There is no freight on the line, except for that needed for maintenance.

I am very much drawn to the conclusion, that to electrify the whole route would use money that would probably be better spent on improving step-free access at some of the stations.

Electric Trains To East Kilbride Without Full Electrification

Before I detail the solutions, I shall look at the energy required to raise a train from Glasgow to East Kilbride station.

Consider.

  • A four-car electric train like a Class 321 train weighs 138 tonnes.
  • This train has 309 seats, so could probably accommodate 400 passengers.
  • Assuming each weighs 90 kg with buggies, baggage, bicycles and bagpipes, this gives a train fully-loaded train weight of 174 tonnes.

Using Omni’s Potential Energy Calculator, it would take 73 kWh of energy to raise the train to the 504 feet altitude of East Kilbride station.

It should also be noted that Glasgow Central station and the approaches to the station are fully electrified almost as far as Crossmyloof station.

What solutions are available to have as-new electric trains running between Glasgow Central and East Kilbride station?

The Rhymney Line Solution

The Rhymney Line runs between Cardiff Central and Rhymney stations.

In the design of the new South Wales Metro, the highest section of this line between Ystrad Mynach and Rhymney stations will be run on battery power.

  • This section is about eleven miles long.
  • It is a mixture of single and double-track.
  • The height difference is 410 feet.

This is very similar in severity to the Busby Railway.

Transport for Wales are proposing to use Tri-Mode Stadler Flirt trains on this route.

These trains would be able to handle the East Kilbride route without any modification to the track or electrification.

It would just mean.

  • Trains identical to those on the South Wales Metro.
  • Building and delivering the trains.
  • Training the drivers and other staff.

There would be other advantages.

  • Stadler trains seem to be one of the best for step-free access, with automatic gap fillers between platform and train.
  • They are 100 mph trains.
  • They are ready for modern signalling.
  • They can change mode at line speed.

These trains which will be Class 755 trains in Abellio Greater Anglia service, have a central power-pack, that can incorporate diesel or battery power to supplement power from the electrification.

Good engineering design would probably mean.

  • The four slots in the power pack, can be fitted with a diesel engine, battery or perhaps even a hydrogen fuel cell to give a power profile tailored to the route.
  • The battery would weigh a similar amount to the Deutz diesel engine, which would give a battery capacity of perhaps 100-120 kWh.
  • There is an intelligent computer system controlling the power and braking systems.
  • The trains come in various lengths from three-cars upwards.

This is a summary of the Stadler multi-mode trains ordered for the UK.

  • Abellio Greater Anglia – Electric/Diesel – 14 x three-cars – Two Deutz diesel engines
  • Abellio Greater Anglia – Electric/Diesel – 24 x four-cars  – Four Deutz diesel engines
  • Trains for Wales – Electric/Diesel – 11 x four-cars  – Four (?) Deutz diesel engines
  • Trains for Wales – Electric/Diesel/Batteries – 7 x three-cars – One Deutz diesel engine and three batteries (?)
  • Trains for Wales – Electric/Diesel/Batteries – 17 x four-cars – One Deutz diesel engine and three batteries

I’m sure Abellio Greater Anglia won’t leave Abellio ScotRail, short of operational information.

In addition, they might be ideal for other routes in the Glasgow area.

They would use the electrification, when close to Glasgow.

I can’t see any reason, why another version of the Tri-Mode Stadler Flirt won’t be able to run services between Glasgow Central and East Kilbride stations.

The Battery Solution

Transport for Wales intend to run their Tri-Mode Stadler Flirts on battery from Ystrad Mynach to Rhymney. I can’t see any reason why a well-designed battery train can’t do the similar climb to East Kilbride station.

Of the major train manufacturers, only Stadler seem to have declared their hand with the Rhymney Line proposal.

  • Bombardier have run prototypes in the UK and Germany, but are very protective with solid information.
  • CAF have run battery trams and will introduce them to the UK in the next year or so.
  • Hitachi use batteries in their trains and have run battery trains in Japan.

Also, consider that between Glasgow Central and Pollokshields East stations is electrified and extending this electrification to say Busby Junction. where the Busby Railway leaves the Glasgow South Western Line, would have the following benefits.

  • The distance to run on batteries would be reduced by about three miles.
  • There would be more electrification to ensure that train batteries were full before the climb to East Kilbride.
  • If bi-mode trains were to run to Kilmarnock, Dumfries and Carlisle, they would have more electrified line to use.

This short section of electrification would certainly improve the mathematics of running battery trains to East Kilbride.

As Busby Junction to Kilmarnock is around twenty miles, it might even make it possible to run battery trains between Glasgow Central and Kilmarnock stations.

I have no doubts that, a battery train can be built to handle services between Glasgow Central and East Kilbride.

The Hydrogen Solution

I tend to think of trains powered by a hydrogen fuel cell, as battery trains with an environmentally-friendly onboard power source.

The Busby Line route is ideal for battery trains, especially, if there is a few miles of new electrification at the Glasgow Central end of the route.

Alstom’s proposed hydrogen-powered Class 321 train, could also be ideal for this route.

Four-car trains with a decent interior, would certainly solve the overcrowding on the route.

In A Class 321 Renatus, a comment was put, that says that the hydrogen-powered Class 321 trains will share the Renatus interior.

I’d suspected that would be the case, as why would the train’s owners; Eversholt Rail Group, design two different interiors for the same purpose?

The train would be able to leave Glasgow Central station with a full battery and with the help of electricity from the hydogen fuel cell, it would be able to climb to East Kilbride.

Coming down, the train would be partly powered by the battery, but mainly by gravity. Energy generated by the regenerative braking would be stored in the battery.

Alstom will be building a mathematical model of the train and its performance on various routes, so they will know the energy flows, when the train is working.

I said earlier that the following routes would be ideal for Stadler’s bi-mode trains.

  • The Glasgow South Western Line to Kilmarknock, Dumfries and Carlisle.
  • The Ayrshire Coast Line to Ayr and Stranraer.
  • The West Highland Line to Oban and Mallaig.

I feel the same logic applies to Alstom’s hydrogen trains.

Conclusion

All three solutions, I outlined in this post, could be possible.

The solutions have several things in common.

  • All will be fully tested elsewhere on the UK rail network.
  • None need any electrification between Busby Junction and East Kilbride.
  • All would benefit from a few extra miles of electrification between Busby Junction and Glasgow Central station.
  • All solutions are backed by respected train building companies.

I think there will be a very keen contest to see who supplies the trains for this and other related routes from Glasgow.

 

 

 

 

 

 

 

 

 

August 12, 2018 Posted by | Travel | , , , , | Leave a comment

Zillertalbahn Orders Stadler Hydrogen-Powered Trains

The title of this post is the same as that of this article on the International Railway Journal.

This is the first paragraph.

Austria’s narrow-gauge Zillertalbahn announced on May 15 that Stadler is the successful bidder for a €80m contract to supply five hydrogen fuel cell multiple-units.

The Zillertal Railway is in the Tyrol district of Austria and has a gauge of 760 mm.

It looks like Stadler are supplying another market, that is rather special.

August 6, 2018 Posted by | Travel | , , | Leave a comment

A Class 321 Renatus

I finally got to ride in a Class 321 Renatus today.

Quite frankly I was impressed.

  • The seats were more comfortable than those in a Class 700 train.
  • There was wi-fi.
  • There were plugs to charge a phone or a laptop everywhere.
  • There was air-conditioning.
  • There was a new Universal Access Toilet.
  • There was new lighting.

Generally, the trains also seemed to have more space.

Will Alstom’s hydrogen-powered version of the Class 321 train have interiors as good as these?

July 25, 2018 Posted by | Travel | , , | 3 Comments