The Anonymous Widower

Bolton-Wigan £78m Rail Electrification Project Announced

The title of this post, is the same as that of this article on the BBC.

This is a small electrification project compared to many, but it still includes.

  • 13 miles of electrification.
  • 450 new overhead line equipment stanchions.
  • Modifications to 17 bridges and two level crossings.
  • Platform extensions at Westhoughton, Hindley and Ince stations, so that they can handle six-car trains.

Completion is expected to be 2025.

The numbers indicate it could be be a small project with quite a bit of work.

I have a few specific thoughts.

How Far Will The Electrification Go?

This document on the Government web site is entitled Green Light Given For Wigan To Bolton Electrification.

These are two paragraphs.

The track between Wigan North Western station and Lostock Junction near Bolton will receive a £78 million upgrade, targeted to complete in 2024/2025.

Through electrifying almost 13 miles of infrastructure and lengthening platforms, this investment will ensure that CO2 emitting diesel trains are replaced by electric rolling stock. As longer trains with additional capacity, these will provide passengers with greener, more comfortable and more reliable journeys.

Note.

  1. Lostock junction is on the Manchester and Preston Line which was electrified in 2019.
  2. As is typical, the electrification continues for a short distance from Lostock junction towards the Wigan stations.
  3. Wigan North Western station is a fully-electrified station on the West Coast Main Line.
  4. Wigan Wallgate station is not electrified.
  5. The distance between Lostock junction and Wigan Wallgate station is 6.9 miles.
  6. Lostock junction and Wigan Wallgate station is double-track all the way.
  7. My Track Atlas shows crossovers that allow trains to and from Lostock junction to access some platforms at Wigan North Western.

These facts lead me to these conclusions.

  • As thirteen files of electrification would be 6.5 miles of double-track electrification, the new electrification would create a fully-electrified line between Lostock junction and Wigan Wallgate station.
  • By electrifying the crossovers at Wigan Station junction, electric trains would to able to access both Wigan stations.

But this does mean, that electric trains can’t run past Wigan Wallgate station, as the wires seem to stop there.

Electrification At Wigan Wallgate Station

Mark Clayton has made this comment to this post.

Yes there is a single track connecting from the track through Hindley to the WCML and vice versa, however at Wallgate there are buildings straddling the line and the station itself. Maybe the track could be lowered, but it could well be a major engineering project to get the wires under Wallgate.

The best picture, that I can get of the tracks under Wallgate is this 3D image from Google Maps.

It does seem a bit tight in terms of height.

I have also looked at several videos of trains going trough the station and I suspect that the tracks may need lowering to get the wires through.

Or they could use some of the discontinuous tricks being used on the South Wales Metro.

It could be difficult, but I don’t think it will be impossible.

I do suspect though for operational reasons, Network Rail and the train operators would want the wires to extend to the station.

  • Train operators probably prefer to raise and lower the pantograph in a station, in case anything goes wrong.
  • If battery-electric trains should be used on the line, then if necessary, they could wait in the station to charge the batteries.
  • If the station is wired, then the West-facing bay-platform can also be wired, so that it could be used for a battery-electric shuttle train to Kirkby or Southport.

It looks to me, that for lots of reasons, the engineers will have to find a way of getting the wires under the low bridge under Wallgate.

Services That Use All Or Part Of The Route Between Lostock Junction And Wigan

These services use all or part of the route.

  • 1 tph – Southport and Alderley Edge via Ince (irregular), Hindley, Westhoughton and Bolton
  • 1 tph – Southport and Stalybridge via Hindley, Westhoughton and Bolton
  • 1 tph – Kirkby and Manchester Victoria via Ince (irregular), Hindley, Daisy Hill, Hag Fold, Atherton, Walkden, Moorside, Swinton and Salford Crescent.
  • 1 tph – Wigan Wallgate and Blackburn via Hindley, Daisy Hill, Atherton, Walkden, Swinton and Salford Crescent.
  • 1 tph – Wigan Wallgate and Leeds via Daisy Hill, Atherton, Walkden and Salford Crescent.

Note.

  1. tph is trains per hour.
  2. The two services that terminate at Wigan Wallgate sometimes terminate in Wigan North Western station.
  3. Wigan Wallgate station would appear to get up to five tph to Manchester, via a variety of routes.

I wonder how many of these services could be run by a battery-electric train, with a performance like the Hitachi Regional Battery Train, which is described in this Hitachi infographic.

Note 90 kilometres is 56 miles.

I will look at each route in detail.

Southport And Alderley Edge

The only section without electrification will be between Wigan Wallgate and Southport stations, which is a distance of 17.4 miles.

With a battery range of 56 miles, a battery-electric train should be able to run a return trip between Wigan Wallgate and Southport stations on battery power and have time for a leisurely turnround in Southport.

The batteries would be charged on the fully electrified section of the line between Wigan Wallgate and Alderley Edge stations.

Southport And Stalybridge

There are two sections without electrification.

  • Wigan Wallgate and Southport stations – 17.4 miles
  • Manchester Victoria and Stalybridge stations – 7.6 miles

With a battery range of 56 miles, a battery-electric train should be able to run a return trip on both sections without electrification.

The batteries would be charged on the fully electrified section of the line between Wigan Wallgate and Manchester Victoria stations.

Kirkby And Manchester Victoria

There are two sections without electrification.

  • Wigan Wallgate and Kirkby stations – 12.1 miles
  • Hindley and Salford Crescent stations – 13.4 miles

With a battery range of 56 miles, a battery-electric train should be able to run services on both sections without electrification.

The batteries would be charged on the two fully electrified sections of the line between Wigan Wallgate and Manchester Victoria stations.

Wigan Wallgate And Blackburn

There are two sections without electrification.

  • Hindley and Salford Crescent stations – 13.4 miles
  • Manchester Victoria and Blackburn stations – 39.4 miles

The first section could be easily run by a battery electric train, but the second section would need a charger at Blackburn station to return to Manchester Victoria station.

The batteries would be charged on the two fully electrified sections of the line between Wigan Wallgate and Manchester Victoria stations.

Wigan Wallgate And Leeds

There are two sections without electrification.

  • Hindley and Salford Crescent stations – 13.4 miles
  • Manchester Victoria and Leeds stations – 50.2 miles

The first section could be easily run by a battery electric train.

But the second section would be very much touch-and-go with a battery-electric train with a range of 56 miles, despite the fact that both Manchester Victoria and Leeds stations are electrified.

It should also be noted that Network Rail has plans in the TransPennine Upgrade to electrify the route between Leeds and Heaton Lodge junction between Mirfield and Brighouse stations. This would reduce the second section without electrification to a more manageable 37.1 miles.

I suspect that by the time the TransPennine Upgrade is complete, battery range would have improved to allow Manchester Victoria and Leeds stations to handle the route.

Battery-Electric Trains That Could Run The Services Through Wigan Wallgate Station

I have used the Hitachi Regional Battery Train as an example of a train that might run the services through Wigan Wallgate station.

  • It has an operating speed of 100 mph.
  • It could be based on a Class 385 train, which have three or four cars.
  • It would have a battery range of 56 miles.

I suspect a demonstration train will run by 2025, which is the expected date of completion of the Lostock and Wigan electrification project.

But other manufacturers and rolling stock companies could also supply trains, with this specification.

  • Alstom could create a battery-electric train based on an Electrostar, like a Class 379 or Class 387 train.
  • CAF are developing a battery-electric train based on a Class 331 train.
  • Porterbrook are developing a battery-electric train, based on a Class 350 train.
  • Stadler could probably deliver a battery-electric Flirt based on a Class 755 train.

Competition would hopefully result in an excellent train, that would be suitable for many routes in the UK.

Northern’s Battery Plans And CAF

I suspect though that CAF could be the front runner as Northern already have forty-three Class 331 trains in service.

In Northern’s Battery Plans, I describe how CAF and Northern are planning to convert a number of three-car Class 331 trains into four-car battery-electric trains.

  • The fourth car would contain batteries.
  • Batteries would also be added to the PTS (pantograph) car.

I suspect that the battery range could be arranged so that all routes suitable for battery-electric operation could be handled.

In this article on Rail Magazine, which is entitled Northern Plans More New Trains After CAF Milestone, this is a paragraph.

A CAF source confirmed that a lot of work was ongoing with Northern, including the continued development of a battery EMU that is planned to be tested on the Oxenholme-Windermere route.

As the article dates from January 2021, things should be progressing.

Possible routes for battery-electric operation could be.

  • Northumberland Line – Under construction
  • Csrlisle and Newcastle – 61.5 miles between electrification at both ends
  • Wigan Wallgate and Leeds via Dewsbury – 50.2 miles between electrification at both ends
  • Manchester Victoria and Leeds via Hebden Bridge – 49.8 miles between electrification at both ends
  • Leeds And Carlisle via Settle – 86.8 miles between electrification at both ends.
  • Leeds and Morecambe – 37.8 miles between electrification.
  • Manchester Airport and Barrow-in-Furness – 28.7 miles from electrification
  • Manchester Airport and Windermere – 10.9 miles from electrification

Note.

  1. The distance is the longest section without electrification.
  2. Some routes have electrification at both ends.
  3. Some need an out-and-back journey at one end of the route.

I was surprised that the Settle and Carlisle Line could be included and as battery technology improves it certainly will be possible.

What a tourist attraction that line would be if worked by battery-electric trains.

Conclusion

This electrification of just 6.5 miles of double-track between Lostock junction and Wigan Wallgate station seems to be one of the smaller electrification projects.

But on closer examination, when linked to a fleet of battery-electric trains with a range of perhaps forty miles, the electrification enables battery-electric trains to run these services.

  • Southport And Alderley Edge
  • Southport And Stalybridge
  • Kirkby And Manchester Victoria

With a charging station in Blackburn station, then the Wigan Wallgate And Blackburn service can be added.

It also looks that with the completion of the TransPennine Upgrade between Huddersfield and Leeds, that it might even be possible to run Wigan Wallgate and Leeds using battery-electric trains.

There will be a long list of stations, previously served by diesel trains, that will now only be served by electric or battery-electric trains.

  • Appley Bridge
  • Atherton
  • Bescar Lane
  • Burscough Bridge
  • Daisy Hill
  • Gathurst
  • Hag Fold
  • Hindley
  • Hoscar
  • Ince
  • Kirkby
  • Meols Cop
  • Moorside
  • New Lane
  • Orrell
  • Parbold
  • Pemberton
  • Rainford
  • Southport
  • Swinton
  • Upholland
  • Walkden
  • Wigan Wallgate
  • Westhoughton

That is a total of twenty-four stations.

Never in the field of railway engineering, has one small section of electrification delivered electric trains to so many stations.

 

September 1, 2021 Posted by | Transport | , , , , , , , , , , , | 7 Comments

Where Are All The Battery-Electric Trains?

Consider these dates and notes

February 10th, 2015

, I wrote Is The Battery Electric Multiple Unit (BEMU) A Big Innovation In Train Design?, after an excellent first ride in Bombadier’s experimental battery-electric multiple unit or BEMU based on a Class 379 train.

October 10th, 2018

I wrote Battery Class 230 Train Demonstration At Bo’ness And Kinneil Railway, after a ride on Vivarail’s Class 230 train in Scotland.

October 15th, 2018

This article on Railway Gazette, which was entitled BatteryFLEX Desiro EMU Conversion Proposed, announced Porterbrook’s plan to convert their Class 350/2 trains to battery-electric operation.

September 30th, 2019

I wrote Battery Electrostars And The Uckfield Branch.

I indicated that according to Modern Railways, battery Electrostars were on their way to replace Class 171 trains, that need to be cascaded to East Midlands Railway by September 2021.

February 28th, 2020

I wrote Northern’s Battery Plans.

This described a plan by Northern Trains and CAF to convert three-car Class 331 trains into four-car battery electric trains, by adding a battery car.

July 6th, 2020

I wrote Hyperdrive Innovation And Hitachi Rail To Develop Battery Tech For Trains, which announced Hitachi’s Regional Battery Train, which is shown in this Hitachi infographic.

Hitachi are now testing Class 803 trains, which have batteries, but only for hotel purposes and not traction.

Although, I do suspect that the batteries in Class 803 trains will be very similar to those in other Hitachi trains.

It’s just not good engineering to do the same job twice and all Hitachi trains are members of the same A-train family.

August 12, 2020

In Converting Class 456 Trains Into Two-Car Battery Electric Trains, I mused on some remarks made by Mark Hopwood, who then was the interim Managing Director of South Western Railway.

December 15th, 2020

Hitachi released a press release which was entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

This is the Hitachi Intercity Tri-Mode Battery Train, which is described in this Hitachi infographic.

Details given in the press release include.

  • A five-car train will be used as the prototype.
  • The objective is fuel savings of 20 %.
  • Battery power will be used in stations.

I have read elsewhere that testing will start in 2022, with trains entering service a year later.

In addition, I have written many posts on this blog about the possible deployment of battery-electric trains.

There are certainly a lot of ideas and aspirations for the development and use of battery trains, but except for the Class 803 trains, which only use batteries for emergency hotel power and are now under test, no battery-electric trains have been seen on the UK rail network.

I have a few thoughts.

Existing Trains That Could Be Converted To Battery-Electric Trains

The following trains would appear to be candidates for conversion to battery-electric operation for passenger operations.

  • Class 350 trains – 87 trains of four cars – 110 mph – Will be replaced by Class 730 trains.
  • Class 360 trains – 21 trains of four cars – 110 mph – In service with East Midlands Railway between St. Pancras and Corby, but with batteries could extend the route to Oakham and Melton Mowbray.
  • Class 379 trains – 30 trains of four cars – 100 mph – Have been replaced by Class 745 trains and now filling in for late delivery of new Class 720 trains.
  • Class 385 trains – 24 trains of four cars – 100 mph – In service with Scotrail and could be upgraded to Regional Battery Trains.
  • Class 385 trains – 46 trains of three cars – 100 mph – In service with Scotrail and could be upgraded to Regional Battery Trains.
  • Class 387 trains – 107 trains of four cars – 110 mph – Some are being replaced with new trains and it appears that some may be available for conversion. There must also be question marks over Heathrow and Gatwick Express services.

Note.

  1. All trains have an operating speed of 100 or 110 mph.
  2. I suspect most of the 100 mph trains could be upgraded to 110 mph trains.
  3. There is a total of nearly three hundred four-car trains.

In addition, there are other trains like Class 377 trains, Class 444 trains, Class 450 trains and Class 707 trains. that could be converted to battery-electric operation should it be necessary or the trains were withdrawn from service due to being replaced with new trains.

We could have access to over five hundred battery-electric trains, if all were to be converted.

Does that mean that until fleets start to wear out, we will not need to buy any new electric multiple units for the standard gauge UK rail network?

A Comparison Between A Hitachi Regional Battery Train And An Existing Electric Multiple Unit With Added Batteries

If you compare an Hitachi Regional Battery train based on a four-car Class 385 train with a four-car Class 350 train you get the following with Hitachi figures first.

  • Cars – 4 – 4
  • Operating Speed – 100 mph – 110 mph
  • Seats – 273 – 270
  • Length – 92 metres – 82 metres
  • Dual-voltage – Probably possible – Yes

The two trains could share a route and few passengers would complain or even notice the difference.

Will Battery-Electric Trains Have Collateral Benefits?

All these trains, that are available to conversion to battery-electric trains are modern 100 mph four-car units that meet all the regulations.

They will offer a better standard of service than say a Class 156 diesel train, but most importantly, their size will mean that most services in the UK would be run by a four-car train, which would help to ease overcrowding in a lot of places.

Where Are The Battery Electric Trains?

Could it be that someone has added up the number of trains we already have and has decided that with decarbonisation to the fore, that by using a mix of battery-electric trains and discontinuous electrification, we can create a unified electric train network in England, Scotland and Wales, without ordering large fleets of new trains.

The specification for the UK’s standard battery-electric local train may need to emerge first, but I suspect that train manufacturers and upgraders like Wabtec, want to make sure they create a battery-electric train to these standards.

  • Very reliable.
  • A range as long as feasibly possible.
  • Long-lasting

So with this technology change from pure-electric, bi-mode and diesel trains to pure-electric and battery-electric, is everybody making sure, that it ends up as a success, rather than a disaster?

Over the last few years, there have been a lot of late train deliveries for various reasons and releasing battery-electric trains too early might not be prudent.

 

 

 

 

 

 

August 18, 2021 Posted by | Transport | , , , , , , | 7 Comments

Northern Rail Apologises Over Disruption On Durham Coast Line

The title of this post, is the same as that of this article on the Northern Echo.

These is the first two  paragraphs.

Easington MP Grahame Morris has invited Northern Rail executives and the Rail Minister to travel on the Durham Coast Line following “another weekend of rail chaos”.

As the football season kicked off and Seaham Food Festival attracted thousands of people, travellers were left angry and disappointed as they were unable to board overcrowded rail services at Horden and Seaham train stations.

The article then goes on to say that this has been an ongoing problem for several years.

I would have thought that to maximise revenue on any transport service, it is best to provide enough stagecoaches, charabancs, buses, trams or trains.

Could this business naivety be why the original Northern went bust?

What Should The Government Do?

As Northern is now run by the Government’s Operator Of Last Resort, it is up to the Government.

In Boris Johnson Backs Station Opening Which Could See Metro Link To County Durham, I report on an exchange between Boris Johnson and an MP in Prime Minister’s Questions.

These are my two main improvements.

Reopen Ferryhill Station And The Leamside and Stillington Lines To Create A New Route

Boris Johnson talked about reopening Ferryhill station, which could be key to opening up a second route between Teesside and Newcastle and Sunderland.

  • Ferryhill station would be on the East Coast Main Line and electrified to handle battery-electric trains.
  • Ferryhill terminal would be an ideal Southern terminal for a reopened Leamside Line, which most stakeholders seem in favour of, as it would take the pressure off the East Coast Main Line to the South of Newcastle and connect large areas to the rail network and in particular, the Tyne and Wear Metro.
  • Ferryhill station would be at the Northern end of the freight-only  Stillington Line, which runs South-Eastwards from the East Coast Main Line at Ferryhill to Stockton and Hartlepool or Middlesbrough.
  • A combination of the Leamside and Stillington Lines would open up a second route between the two conurbations.

It might also be possible to run a semi-fast York and Newcastle service via Northallerton, Yarm, Thornaby, Stockton, Ferryhill and the Leamside Line.

  • This service would only run on the East Coast Main Line, where there were four tracks to the South of Northallerton.
  • It could be run by a battery-electric train.
  • A battery-electric train could be charged at York, Ferryhill and Newcastle.

This article on the Northern Echo is entitled ‘Rapid’ Progress On Reopening Leamside Line, Connecting County Durham And Washington.

Things don’t seem to be standing still.

There would appear to be lots of scope for rail development between the Tyne and Wear in the North and the Tees in the South.

If the go-ahead is given by Government to develop the Leamside and Stillington Lines, the great thing is that construction of the new route will not affect anything on the important East Coast Main Line, as Network Rail would just be creating a railway by-pass around one of busiest sections of main line, that will be used by local and freight trains.

Two routes through the area, would certainly double the capacity, if both had an hourly train.

Battery-Electric Trains

I mentioned battery-electric trains as the rolling stock for a possible semi-fast service between York and Newcastle.

We are accumulating a large pile of surplus Class 350, 387 and 379 trains.

  • They are being replaced by modern units.
  • They were built within the last twenty years.
  • They are all high-quality four car trains.
  • They can all be modified for a 110 mph operating speed, so could venture on the East Coast Main Line if needed.

These trains have been mentioned several times as possibilities for conversion to battery-electric trains.

With a few strategically-placed charging systems, these would be ideal trains for services in the area.

Conclusion

It would be a great improvement for train services in the North-East.

My first step would be to convert the Hexham and Nunthorpe service via Newcastle, Sunderland, Seaham, Horden and Middlesbrough to battery-electric operation, by adding charging at Hexham and Nunthorpe stations.

Some are keen on hydrogen trains for this route, but these will have a longer gestation period.

I would also suspect that travellers in the North-East would prefer jam today, rather than possibly inferior jam sometime in the future.

Battery-electric trains based on the train classes I named would also be ideal for the Northumberland Line and the Salburn and Bishop Auckland service.

 

August 17, 2021 Posted by | Transport | , , , , , , , , , , , , | 3 Comments

Solving The Electrification Conundrum

The title of this post, is the same as an article in the July 2021 Edition of Modern Railways.

This is the introductory sub-heading.

Regional and rural railways poses a huge problem for the railway to decarbonise.

Lorna McDonald of Hitachi Rail and Jay Mehta of Hitachi ABB Power Grids tell Andy Roden why they believe they have the answer.

These are my thoughts on what is said.

Battery-Electric Trains

The article starts by giving a review of battery-electric trains and their use on routes of moderate but important length.

  • Some short routes can be handled with just a charge on an electrified main line.
  • Some will need a recharge at the termini.
  • Other routes might need a recharge at some intermediate stations, with a possible increase in dwell times.

It was in February 2015, that I wrote Is The Battery Electric Multiple Unit (BEMU) A Big Innovation In Train Design?, after a ride in public service on Bombardier’s test battery-electric train based on a Class 379 train.

I also wrote this in the related post.

Returning from Harwich, I travelled with the train’s on-board test engineer, who was monitoring the train performance in battery mode on a laptop. He told me that acceleration in this mode was the same as a standard train, that the range was up to sixty miles and that only minimal instruction was needed to convert a driver familiar to the Class 379 to this battery variant.

It was an impressive demonstration, of how a full-size train could be run in normal service without connection to a power supply. I also suspect that the partners in the project must be very confident about the train and its technology to allow paying passengers to travel on their only test train.

A couple of years later, I met a lady on another train, who’d used the test train virtually every day during the trial and she and her fellow travellers felt that it was as good if not better than the normal service from a Class 360 train or a Class 321 train.

So why if the engineering, customer acceptance and reliability were proven six years ago, do we not have several battery electric trains in service?

  • There is a proven need for battery-electric trains on the Marshlink Line and the Uckfield Branch in Sussex.
  • The current Class 171 trains are needed elsewhere, so why are no plans in place for replacement trains?
  • The government is pushing electric cars and buses, but why is there such little political support for battery-electric trains?

It’s almost as if, an important civil servant in the decision process has the naive belief that battery-electric trains won’t work and if they do, they will be phenomenally expensive. So the answer is an inevitable no!

Only in the South Wales Metro, are battery-electric trains considered to be part of the solution to create a more efficient and affordable electric railway.

But as I have constantly pointed out since February 2015 in this blog, battery-electric trains should be one of the innovations we use to build a better railway.

Hydrogen Powered Trains

The article says this about hydrogen powered trains.

Hybrid hydrogen fuel cells can potentially solve the range problem, but at the cost of the fuel eating up internal capacity that would ideally be used for passengers. (and as Industry and Technology Editor Roger Ford points out, at present hydrogen is a rather dirty fuel). By contrast, there is no loss of seating or capacity in a Hitachi battery train.

I suspect the article is referring to the Alstom train, which is based on the technology of the Alstom Coradia iLint.

I have ridden this train.

  • It works reliably.
  • It runs on a 100 km route.
  • The route is partially electrified, but the train doesn’t have a pantograph.
  • It has a very noisy mechanical transmission.

Having spoken to passengers at length, no-one seemed bothered by the Hindenburg possibilities.

It is certainly doing some things right, as nearly fifty trains have been ordered for train operating companies in Germany.

Alstom’s train for the UK is the Class 600 train, which will be converted from a four-car Class 321 train.

Note.

  1. Half of both driver cars is taken up by a hydrogen tank.
  2. Trains will be three-cars.
  3. Trains will be able to carry as many passengers as a two-car Class 156 train.

It is an inefficient design that can be improved upon.

Porterbrook and Birmingham University appear to have done that with their Class 799 train.

  • It can use 25 KVAC overhead or 750 VDC third-rail electrification.
  • The hydrogen tanks, fuel cell and other hydrogen gubbins are under the floor.

This picture from Network Rail shows how the train will appear at COP26 in Glasgow in November.

Now that’s what I call a train! Let alone a hydrogen train!

Without doubt, Porterbrook and their academic friends in Birmingham will be laying down a strong marker for hydrogen at COP26!

I know my hydrogen, as my first job on leaving Liverpool University with my Control Engineering degree in 1968 was for ICI at Runcorn, where I worked in a plant that electrolysed brine into hydrogen, sodium hydroxide and chlorine.

My life went full circle last week, when I rode this hydrogen powered bus in London.

The hydrogen is currently supplied from the same chemical works in Runcorn, where I worked. But plans have been made at Runcorn, to produce the hydrogen from renewable energy, which would make the hydrogen as green hydrogen of the highest standard. So sorry Roger, but totally carbon-free hydrogen is available.

The bus is a Wightbus Hydroliner FCEV and this page on the Wrightbus web site gives the specification. The specification also gives a series of cutaway drawings, which show how they fit 86 passengers, all the hydrogen gubbins and a driver into a standard size double-deck bus.

I believe that Alstom’s current proposal is not a viable design, but I wouldn’t say that about the Porterbrook/Birmingham University design.

Any Alternative To Full Electrification Must Meet Operator And Customer Expectations

This is a paragraph from the article.

It’s essential that an alternative traction solution offers the same levels of performance and frequency, while providing an increase in capacity and being economically viable.

In performance, I would include reliability. As the on-board engineer indicated on the Bombardier  test train on the Harwich branch, overhead electrification is not totally reliable, when there are winds and/or criminals about.

Easy Wins

Hitachi’s five-car Class 800 trains and Class 802 trains each have three diesel engines and run the following short routes.

  • Kings Cross and Middlesbrough- 21 miles not electrified – Changeover in Northallerton station
  • Kings Cross and Lincoln – 16.6 miles not electrified – Changeover in Newark Northgate station
  • Paddington and Bedwyn – 13.3 miles not electrified – Changeover in Newbury station
  • Paddington and Oxford – 10.3 miles not electrified – Changeover in Didcot Parkway station

Some of these routes could surely be run with a train, where one diesel engine was replaced by a battery-pack.

As I’m someone, who was designing, building and testing plug-compatible transistorised electronics in the 1960s to replace  older valve-based equipment in a heavy engineering factory, I suspect that creating a plug-compatible battery-pack that does what a diesel engine does in terms of power and performance is not impossible.

What would be the reaction to passengers, once they had been told, they had run all the way to or from London without using any diesel?

Hopefully, they’d come again and tell their friends, which is what a train operator wants and needs.

Solving The Electrification Conundrum

This section is from the article.

Where electrification isn’t likely to be a viable proposition, this presents a real conundrum to train operators and rolling stock leasing companies.

This is why Hitachi Rail and Hitachi ABB Power Grids are joining together to present a combined battery train and charging solution to solve this conundrum. In 2020, Hitachi and ABB’s Power Grids business, came together in a joint venture, and an early outcome of this is confidence that bringing together their expertise in rail, power and grid management, they can work together to make electrification simpler cheaper and quicker.

I agree strongly with the second paragraph, as several times, I’ve been the mathematician and simulation expert in a large multi-disciplinary engineering project, that went on to be very successful.

The Heart Of The Proposition

This is a paragraph from the article.

The proposition is conceptually simple. Rather than have extended dwell times at stations for battery-powered trains, why not have a short stretch of 25 KVAC overhead catenary (the exact length will depend on the types of train and the route) which can charge trains at linespeed on the move via a conventional pantograph?

The article also mentions ABB’s related expertise.

  • Charging buses all over Europe.
  • Creating the power grid for the Great Western Electrification to Cardiff.

I like the concept, but then it’s very similar to what I wrote in The Concept Of Electrification Islands in April 2020.

But as they are electrical power engineers and I’m not, they’d know how to create the system.

Collaboration With Hyperdrive Innovation

The article has nothing negative to say about the the collaboration with Hyperdrive Innovation to produce the battery-packs.

Route Modelling

Hitachi appear to have developed a sophisticated route modelling system, so that routes and charging positions can be planned.

I would be very surprised if they hadn’t developed such a system.

Modular And Scalable

This is a paragraph from the article.

In the heart of the system is a containerised modular solution containing everything needed to power a stretch of overhead catenary to charge trains. A three-car battery train might need one of these, but the great advantage is that it is scalable to capacity and speed requirements.

This all sounds very sensible and can surely cope with a variety of lines and traffic levels.

It also has the great advantage , that if a line is eventually electrified, the equipment can be moved on to another line.

Financing Trains And Chargers

The article talks about the flexibility of the system from an operator’s point of view with respect to finance.

I’ve had some good mentors in the area of finance and I know innovative finance contributed to the success of Metier Management Systems, the project management company I started with three others in 1977.

After selling Metier, I formed an innovative finance company, which would certainly have liked the proposition put forward in the article.

No Compromise, Little Risk

I would agree with this heading of the penultimate section of the article.

In February 2015, when I rode that Class 379 train between Manningtree and Harwich, no compromise had been made by Bombardier and it charged in the electrified bay platform at Manningtree.

But why was that train not put through an extensive route-proving exercise in the UK after the successful trial at Manningtree?

  • Was it the financial state of Bombardier?
  • Was it a lack of belief on the part of politicians, who were too preoccupied with Brexit?
  • Was it that an unnamed civil servant didn’t like the concept and stopped the project?

Whatever the reason, we have wasted several years in getting electric trains accepted on UK railways.

If no compromise needs to be made to create a battery-electric train, that is equivalent to the best-in-class diesel or electric multiple units, then what about the risk?

The beauty of Hitachi’s battery-electric train project is that it can be done in phases designed to minimise risk.

Phase 1 – Initial Battery Testing 

Obviously, there will be a lot of bench testing in a laboratory.

But I also believe that if the Class 803 trains are fitted with a similar battery from Hyperdrive Innovation, then this small fleet of five trains can be used to test a lot of the functionality of the batteries initially in a test environment and later in a real service environment.

The picture shows a Class 803 train under test through Oakleigh Park station.

This phase would be very low risk, especially where passengers are concerned.

Phase 2 – Battery Traction Testing And Route Proving

I am a devious bastard, when it comes to software development. The next set of features would always be available for me to test earlier, than anybody else knew.

I doubt that the engineers at Hyperdrive Innovation will be any different.

So I wouldn’t be surprised to find out that the batteries in the Class 803 trains can also be used for traction, if you have the right authority.

We might even see Class 803 trains turning up in some unusual places to test the traction abilities of the batteries.

As East Coast Trains, Great Western Railway and Hull Trains are all First Group companies, I can’t see any problems.

I’m also sure that Hitachi could convert some Class 800 or Class 802 trains and add these to the test fleet, if East Coast Trains need their Class 803 trains to start service.

This phase would be very low risk, especially where passengers are concerned.

Possibly, the worse thing, that could happen would be a battery failure, which would need the train to be rescued.

Phase 3 – Service Testing On Short Routes

As I indicated earlier, there are some easy routes between London and places like Bedwyn, Lincoln, Middlesbrough and Oxford, that should be possible with a Class 800 or Class 802 train fitted with the appropriate number of batteries.

Once the trains have shown, the required level of performance and reliability, I can see converted Class 800, 801 and Class 802 trains entering services on these and other routes.

Another low risk phase, although passengers are involved, but they are probably subject to the same risks, as on an unmodified train.

Various combinations of diesel generators and batteries could be used to find out, what is the optimum combination for the typical diagrams that train operators use.

Hitachi didn’t commit to any dates, but I can see battery-electric trains running on the Great Western Railway earlier than anybody thinks.

Phase 4 – Service Testing On Medium Routes With A Terminal Charger System

It is my view that the ideal test route for battery-electric trains with a terminal charger system would be the Hull Trains service between London Kings Cross and Hull and Beverley.

The route is effectively in three sections.

  • London Kings Cross and Temple Hirst junction – 169.2 miles – Full Electrification
  • Temple Hirst junction and Hull station – 36.1 miles – No Electrification
  • Hull station and Beverley station – 8.3 miles – No Electrification

Two things would be needed to run zero-carbon electric trains on this route.

  • Sufficient battery capacity in Hull Trains’s Class 802 trains to reliably handle the 36.1 miles between Temple Hirst junction and Hull station.
  • A charging system in Hull station.

As Hull station also handles other Class 800 and Class 802 trains, there will probably be a need to put a charging system in more than one platform.

Note.

  1. Hull station has plenty of space.
  2. No other infrastructure work would be needed.
  3. There is a large bus interchange next door, so I suspect the power supply to Hull station is good.

Hull would be a very good first destination for a battery-electric InterCity train.

Others would include Bristol, Cheltenham, Chester, Scarborough, Sunderland and Swansea.

The risk would be very low, if the trains still had some diesel generator capacity.

Phase 5 – Service Testing On Long Routes With Multiple Charger Systems

Once the performance and reliability of the charger systems have been proven in single installations like perhaps Hull and Swansea stations, longer routes can be prepared for electric trains.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

The press release talks about Penzance and London, so would that be a suitable route for discontinuous electrification using multiple chargers?

These are the distances between major points on the route between Penzance and London Paddington.

  • Penzance and Truro – 35.8 miles
  • Truro and Bodmin Parkway – 26.8 miles
  • Bodmin Parkway and Plymouth – 26.9 miles
  • Plymouth and Newton Abbot – 31,9 miles
  • Newton Abbot and Exeter – 20.2 miles
  • Exeter and Taunton – 30.8 miles
  • Taunton and Westbury – 47.2 miles
  • Westbury and Newbury – 42.5 miles
  • Newbury and Paddington – 53 miles

Note.

  1. Only Newbury and Paddington is electrified.
  2. Trains generally stop at Plymouth, Newton Abbott, Exeter and Taunton.
  3. Services between Paddington and Exeter, Okehampton, Paignton, Penzance, Plymouth and Torquay wouldn’t use diesel.
  4. Okehampton would be served by a reverse at Exeter.
  5. As Paignton is just 8.1 miles from Newton Abbot, it probably wouldn’t need a charger.
  6. Bodmin is another possible destination, as Great Western Railway have helped to finance a new platform at Bodmin General station.

It would certainly be good marketing to run zero-carbon electric trains to Devon and Cornwall.

I would class this route as medium risk, but with a high reward for the operator.

In this brief analysis, it does look that Hitachi’s proposed system is of a lower risk.

A Few Questions

I do have a few questions.

Are The Class 803 Trains Fitted With Hyperdrive Innovation Batteries?

East Coast Trains‘s new Class 803 trains are undergoing testing between London Kings Cross and Edinburgh and they can be picked up on Real Time Trains.

Wikipedia says this about the traction system for the trains.

While sharing a bodyshell with the previous UK A-train variants, the Class 803 differs in that it has no diesel engines fitted. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies have failed.

Will these emergency batteries be made by Hyperdrive Innovation?

My experience of similar systems in other industries, points me to the conclusion, that all Class 80x trains can be fitted with similar, if not identical batteries.

This would give the big advantage of allowing battery testing to be performed on Class 803 trains under test, up and down the East Coast Main Line.

Nothing finds faults in the design and manufacture of something used in transport, than to run it up and down in real conditions.

Failure of the catenary can be simulated to check out emergency modes.

Can A Class 801 Train Be Converted Into A Class 803 Train?

If I’d designed the trains, this conversion would be possible.

Currently, the electric Class 801 trains have a single diesel generator. This is said in the Wikipedia entry for the Class 800 train about the Class 801 train.

These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails.

So it looks like the difference between the powertrain of a Class 801 train and a Class 803 train, is that the Class 801 train has a diesel generator and the Class 803 train has batteries. But the diesel generator and batteries, would appear to serve the same purpose.

Surely removing diesel from a Class 801 train would ease the maintenance of the train!

Will The System Work With Third-Rail Electrification?

There are three routes that if they were electrified would probably be electrified with 750 DC third-rail electrification, as they have this electrification at one or both ends.

  • Basingstoke and Exeter
  • Marshlink Line
  • Uckfield branch

Note.

  1. Basingstoke and Exeter would need a couple of charging systems.
  2. The Marshlink line would need a charging system at Rye station.
  3. The Uckfield branch would need a charging system at Uckfield station.

I am fairly certain as an Electrical Engineer, that the third-rails would only need to be switched on, when a train is connected and needs a charge.

I also feel that on some scenic and other routes, 750 VDC third-rail electrification may be more acceptable , than 25 KVAC  overhead electrification. For example, would the heritage lobby accept overhead wires through a World Heritage Site or on top of a Grade I Listed viaduct?

I do feel that the ability to use third-rail 750 VDC third-rail electrification strategically could be a useful tool in the system.

Will The System Work With Lightweight Catenary?

I like the design of this 25 KVAC overhead electrification, that uses lightweight gantries, which use laminated wood for the overhead structure.

There is also a video.

Electrification doesn’t have to be ugly and out-of-character with the surroundings.

Isuspect that both systems could work together.

 

Would Less Bridges Need To Be Rebuilt For Electrification?

This is always a contentious issue with electrification, as rebuilding bridges causes disruption to both rail and road.

I do wonder though by the use of careful design, that it might be possible to arrange that the sections of electrification and the contentious bridges were kept apart, with the bridges arranged to be in sections, where the trains ran on batteries.

I suspect that over the years as surveyors and engineers get more experienced, better techniques will evolve to satisfy all parties.

Get this right and it could reduce the cost of electrification on some lines, that will be difficult to electrify.

How Secure Are The Containerised Systems?

Consider.

  • I was delayed in East Anglia two years ago, because someone stole the overhead wires at two in the morning.
  • Apparently, overhead wire stealing is getting increasingly common in France and other parts of Europe.

I suspect the containerised systems will need to be more secure than those used for buses, which are not in isolated locations.

Will The Containerised Charging Systems Use Energy Storage?

Consider.

  • I’ve lived in rural locations and the power grids are not as good as in urban areas.
  • Increasingly, batteries of one sort or another are being installed in rural locations to beef up local power supplies.
  • A new generation of small-footprint eco-friendly energy storage systems are being developed.

In some locations, it might be prudent for a containerised charging system to share a battery with the local area.

Will The Containerised Charging Systems Accept Electricity From Local Sources Like Solar Farms?

I ask the question, as I know at least one place on the UK network, where a line without electrification runs through a succession of solar farms.

I also know of an area, where a locally-owned co-operative is planning a solar farm, which they propose would be used to power the local main line.

Will The System Work With Class 385 Trains?

Hitachi’s Class 385 trains are closely related to the Class 80x trains, as they are all members of Hitachi’s A-Train family.

Will the Charging Systems Charge Other Manufacturers Trains?

CAF and Stadler are both proposing to introduce battery-electric trains in the UK.

I also suspect that the new breed of electric parcel trains will include a battery electric variant.

As these trains will be able to use 25 KVAC overhead electrification, I would expect, that they would be able to charge their batteries on the Hitachi ABB  charging systems.

Will The System Work With Freight Trains?

I believe that freight services will split into two.

Heavy freight will probably use powerful hydrogen-electric locomotives.

In Freightliner Secures Government Funding For Dual-Fuel Project, which is based on a Freightliner press release, I detail Freightliner’s decarbonisation strategy, which indicates that in the future they will use hydrogen-powered locomotives.

But not all freight is long and extremely heavy and I believe that a battery-electric freight locomotive will emerge for lighter duties.

There is no reason it could not be designed to be compatible with Hitachi’s charging system.

In Is This The Shape Of Freight To Come?, I talked about the plans for 100 mph parcel services based on redundant electric multiple units. Eversholt Rail Group have said they want a Last-Mile capability for their version of these trains.

Perhaps they need a battery-electric capability, so they can deliver parcels and shop supplies to the remoter parts of these islands?

Where Could Hitachi’s System Be Deployed?

This is the final paragraph from the article.

Hitachi is not committing to any routes yet, but a glance at the railway map shows clear potential for the battery/OLE-technology to be deployed on relatively lightly used rural and regional routes where it will be hard to make a case for electrification. The Cambrian Coast and Central Wales Lines would appear to be worthy candidates, and in Scotland, the West Highland Line and Far North routes are also logical areas for the system to be deployed.

In England, while shorter branch lines could simply be operated by battery trains, longer routes need an alternative. Network Rail’s Traction Decarbonisation Network Strategy interim business case recommends hydrogen trains for branch lines in Norfolk, as well as Par to Newquay and Exeter to Barnstaple. However, it is also entirely feasible to use the system on routes likely to be electrified much later in the programme, such as the Great Western main line West of Exeter, Swansea to Fishguard and parts of the Cumbrian Coast Line.

Everyone is entitled to their own opinion and mine would be driven by high collateral benefits and practicality.

These are my thoughts.

Long Rural Lines

The Cambrian, Central Wales (Heart Of Wales), Far North and West Highland Lines may not be connected to each other, but they form a group of rail routes with a lot of shared characteristics.

  • All are rural routes of between 100 and 200 miles.
  • All are mainly single track.
  • They carry occasional freight trains.
  • They carry quite a few tourists, who are there to sample, view or explore the countryside.
  • All trains are diesel.
  • Scotrail have been experimenting with attaching Class 153 trains to the trains on the West Highland Line to act as lounge cars and cycle storage.

Perhaps we need a long-distance rural train with the following characteristics.

  • Four or possibly five cars
  • Battery-electric power
  • Space for a dozen cycles
  • A lounge car
  • Space for a snack trolley
  • Space to provide a parcels service to remote locations.

I should also say, that I’ve used trains on routes in countries like Germany, Poland and Slovenia, where a similar train requirement exists.

Norfolk Branch Lines

Consider.

  • North of the Cambridge and Ipswich, the passenger services on the branch lines and the important commuter routes between Cambridge and Norwich and Ipswich are run by Stadler Class 755 trains, which are designed to be converted to battery-electric trains.
  • Using Hitachi chargers at Beccles, Bury St. Edmunds, Lowestoft, Thetford and Yarmouth and the existing electrification, battery-electric Class 755 trains could provide a zero-carbon train service for Norfolk and Suffolk.
  • With chargers at Dereham and March, two important new branch lines could be added and the Ipswich and Peterborough service could go hourly and zero carbon.
  • Greater Anglia have plans to use the Class 755 trains to run a London and Lowestoft service.
  • Could they be planning a London and Norwich service via Cambridge?
  • Would battery-electric trains running services over Norfolk bring in more visitors by train?

Hitachi may sell a few chargers to Greater Anglia, but I feel they have enough battery-electric trains.

Par And Newquay

The Par and Newquay Line or the Atlantic Coast Line, has been put forward as a Beeching Reversal project, which I wrote about in Beeching Reversal – Transforming The Newquay Line.

In that related post, I said the line needed the following.

  • An improved track layout.
  • An hourly service.
  • An improved Par station.
  • A rebuilt Newquay station with a second platform, so that more through trains can be run.

I do wonder, if after the line were to be improved, that a new three-car battery-electric train shuttling between Par and Newquay stations could be the icing on the cake.

Exeter And Barnstaple

The Tarka Line between Exeter and Barnstaple is one of several local and main lines radiating from Exeter St. David’s station.

  • The Avocet Line to Exmouth
  • The Great Western Main Line to Taunton, Bristol and London
  • The Great Western Main Line to Newton Abbott, Plymouth and Penzance
  • The Riviera Line to Paignton
  • The West of England Line to Salisbury, Basingstoke and London.

Note.

  1. The Dartmoor Line to Okehampton is under development.
  2. Several new stations are planned on the routes.
  3. I have already stated that Exeter could host a charging station between London and Penzance, but it could also be an electrified hub for battery-electric trains running hither and thither.

Exeter could be a city with a battery-electric metro.

Exeter And Penzance

Earlier, I said that I’d trial multiple chargers between Paddington and Penzance to prove the concept worked.

I said this.

I would class this route as medium risk, but with a high reward for the operator.

But it is also an enabling route, as it would enable the following battery-electric services.

  • London and Bodmin
  • London and Okehampton
  • London and Paignton and Torquay

It would also enable the Exeter battery-electric metro.

For these reasons, this route should be electrified using Hitachi’s discontinuous electrification.

Swansea And Fishguard

I mentioned Swansea earlier, as a station, that could be fitted with a charging system, as this would allow battery-electric trains between Paddington and Swansea via Cardiff.

Just as with Exeter, there must be scope at Swansea to add a small number of charging systems to develop a battery-electric metro based on Swansea.

Cumbrian Coast Line

This is a line that needs improvement, mainly for the tourists and employment it could and probably will bring.

These are a few distances.

  • West Coast Main Line (Carnforth) and Barrow-in-Furness – 28.1 miles
  • Barrow-in-Furness and Sellafield – 25 miles
  • Sellafield and Workington – 18 miles
  • Workington and West Coast Main Line (Carlisle) – 33 miles

Note.

  1. The West Coast Main Line is fully-electrified.
  2. I suspect that Barrow-in-Furness, Sellafield and Workington have good enough electricity supplies to support charging systems  for the Cumbrian Coast Line.
  3. The more scenic parts of the line would be left without wires.

It certainly is a line, where a good case for running battery-electric trains can be made.

Crewe And Holyhead

In High-Speed Low-Carbon Transport Between Great Britain And Ireland, I looked at zero-carbon travel between the Great Britain and Ireland.

One of the fastest routes would be a Class 805 train between Euston and Holyhead and then a fast catamaran to either Dublin or a suitable rail-connected port in the North.

  • The Class 805 trains could be made battery-electric.
  • The trains could run between Euston and Crewe at speeds of up to 140 mph under digital signalling.
  • Charging systems would probably be needed at Chester, Llandudno Junction and Holyhead.
  • The North Wales Coast Line looks to my untrained eyes, that it could support at least some 100 mph running.

I believe that a time of under three hours could be regularly achieved between London Euston and Holyhead.

Battery-electric trains on this route, would deliver the following benefits.

  • A fast low-carbon route from Birmingham, London and Manchester to the island of Ireland. if coupled with the latest fast catamarans at Holyhead.
  • Substantial reductions in journey times to and from Anglesey and the North-West corner of Wales.
  • Chester could become a hub for battery-electric trains to and from Birmingham, Crewe, Liverpool, Manchester and Shrewsbury.
  • Battery-electric trains could be used on the Conwy Valley Line.
  • It might even be possible to connect the various railways, heritage railways and tourist attractions in the area with zero-carbon shuttle buses.
  • Opening up of the disused railway across Anglesey.

The economics of this corner of Wales could be transformed.

My Priority Routes

To finish this section, I will list my preferred routes for this method of discontinuous electrification.

  • Exeter and Penzance
  • Swansea and Fishguard
  • Crewe and Holyhead

Note.

  1. Some of the trains needed for these routes have been delivered or are on order.
  2. Local battery-electric services could be developed at Chester, Exeter and Swansea by building on the initial systems.
  3. The collateral benefits could be high for Anglesey, West Wales and Devon and Cornwall.

I suspect too, that very little construction work not concerned with the installation of the charging systems will be needed.

Conclusion

Hitachi have come up with a feasible way to electrify Great Britain’s railways.

I would love to see detailed costings for the following.

  • Adding a battery pack to a Class 800 train.
  • Installing five miles of electrification supported by a containerised charging system.

They could be on the right side for the Treasury.

But whatever the costs, it does appear that the Japanese have gone native, with their version of the Great British Compromise.

 

 

 

 

 

 

 

 

 

 

 

July 9, 2021 Posted by | Design, Energy, Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 12 Comments

An Airport Train For A Pandemic?

These pictures show one of Greater Anglia‘s new Class 745 trains on a Stansted Express service at Hackney Downs station, on the way to Liverpool Street station.

Stansted Express services do not usually use Platform 3, but it would appear that the service had started from Bishops Stortford.

The Future Of Stansted Express Trains

The previous Stansted Express trains; the more-than-adequate Class 379 trains are still waiting for a future, after being replaced.

Now because of the pandemic, the excellent Class 745 trains are running virtually empty.

Perhaps, it’s not a lucky route for trains.

June 15, 2021 Posted by | Transport | , , , | 2 Comments

East West Railway Company To Start Second Phase Of Rolling Stock Procurement

The title of this post, is the same as that of this press release from East West Rail.

These are the three introductory paragraphs.

East West Railway Company (EWR Co) is to restart market engagement with potential train suppliers, as its rolling stock procurement process enters a new phase.

The move follows an initial phase of procurement activity, which EWR Co concluded earlier in the year. A new PIN Notice has been published today to restart engagement with potential suppliers, which includes a set of technical specifications taking account of feedback from the market gained during the initial procurement phase.

This procurement aims to secure a short-term, interim solution to leasing a small fleet of self-powered trains for the Western Section of East West Rail.

The press release has a link to the Prior Information Notice or PIN Notice on the EU database.

along with all the usual contact and other details, this is said about the specification.

The East West Railway Company (EWR Co.) is looking to leasing a fleet of 12 or 14 x 3 car self-powered units with modifications including European Train Control System (‘ETCS’) Level 2 and Driver Controlled Operation (‘DCO’) capability, supported by a full maintenance package (under a ‘wet’ lease). These units will ensure timely operation of EWR’s Western Section Phase 2 between Oxford, Milton Keynes, Bedford and Aylesbury. The lease duration would be 4 years, with an option to extend for 2 years.

The date of the notice is the 10th of November 2020, so it has been recently updated.

I commented on these trains in March 2020, when I wrote EWR Targets Short-Term Fleet Ahead Of Possible Electrification.

In the intervening eight months, a lot have things have happened.

Awareness Of Green Issues

The Covid-19 pandemic has arrived, with all its ferocity and seems to be moving people in the direction of thinking about green issues and zero-carbon transport.

Type “build back greener UK” into Google and you get lots of articles. Some feature Boris Johnson, like this article on Business Green, which is entitled Boris Johnson To Pledge To ‘Build Back Greener’.

I don’t think the public, myriad engineers and scientists and a good selection of politicians will find it appropriate for the East West Railway to use any rolling stock, that is not zero-carbon and powered by renewable energy.

Hitachi Have Launched The Regional Battery Train In Conjunction With Hyperdrive Innovation

In July 2020, I wrote Hyperdrive Innovation And Hitachi Rail To Develop Battery Tech For Trains.

Hitachi had been talking for some time, that they were developing battery electric trains for the UK, but this was the first news of a route to their design, manufacture and into service.

Hitachi also published this YouTube video and this infographic of the train’s specification.

They have also called the train, the Hitachi Regional Battery Train.

My estimate is that Oxford and Bedford are under fifty miles apart, so if Hitachi’s train could be charged at both ends of the route, one of their trains could provide a self-powered service between Oxford and Bedford.

It seems that Hitachi have an off-the-shelf train, that fits the specification for the trains required by East West Railway.

Vivarail Have Launched A Fast Charge System

Battery electric trains, like electric vehicles are not much use, if you can’t charge them when it is needed.

The initial Service Pattern of the East West Railway is given in the Wikipedia entry of the East West Railway.

  • Two trains per hour (tph) – Oxford and Milton Keynes Central via Oxford Parkway, Bicester Village, Winslow and Bletchley.
  • One tph – Oxford and Milton Keynes via Oxford Parkway, Bicester Village, Winslow, Bletchley, Woburn Sands and Ridgemont.
  • One tph – Aylesbury and Milton Keynes Central via Aylesbury Vale Parkway, Winslow and Bletchley.

There are four terminal stations.

  • Aylesbury – No electrification
  • Bedford – Full Electrification
  • Milton Keynes Central – Full Electrification
  • Oxford – No electrification

The existing electrification could be used at Bedford and Milton Keynes Central, whereas some type of charging system, would be needed at Aylesbury and Oxford.

It appears that Adrian Shooter of Vivarail has just announced a One-Size-Fits-All Fast Charge system, that has been given interim approval by Network Rail.

I discuss this charger in Vivarail’s Plans For Zero-Emission Trains, which is based on a video on the Modern Railways web site.

There is more about Vivarail’s plans in the November 2020 Print Edition of the magazine, where this is said on page 69.

‘Network Rail has granted interim approval for the fast charge system and wants it to be the UK’s standard battery charging system’ says Mr. Shooter. ‘We believe it could have worldwide implications.’

Vivarail’s Fast Charge system would surely be a front-runner for installation at Aylesbury and Oxford, if battery electric trains were to be run on the East West Railway.

Choosing A Train

East West Rail have said the following about the train specification.

  • Three cars
  • Self-powered
  • European Train Control System (‘ETCS’) Level 2 and Driver Controlled Operation (‘DCO’) capability
  • Available on a wet lease, that includes a full maintenance package

The press release from East West Rail and other documents mentions between twelve and fourteen trains will be leased.

In Trains Needed For The East West Railway, I calculated that the proposed services could need around eight or nine trains.

This must mean one of three things.

  • There are plans for extra services.
  • There are plans for the proposed services to be extended.
  • Trains will run some services in pairs.

Because, of the last reason, the trains must have the ability to run in pairs.

As sections of the East West Railway are being built for 100 mph operation, the trains must also have a 100 mph capability.

When I talked briefly about green issues earlier, I said that I felt the trains should be zero-carbon, which would rule out diesel.

That leaves two options for self-powered operation; battery electric or hydrogen.

So what trains fit the specification?

British Rail Era Trains

A large number of British Rail era trains could be suitable for updating for interim use on the East West Railway.

I even suspect, some fantasist will suggest using shortened versions of InterCity 125 trains, as are used in South-West England and Scotland.

But let’s be serious and not insult the intelligence of the three world-leading universities on the final route of the East West Railway.

A lot of money is also being spent on this railway and tarted-up forty-year-old trains would not encourage people to use the new railway.

Class 170 Trains

There are eighty-seven three-car Class 170 trains with various operators, some of which will be surplus to requirements, as they are being replaced with new trains.

But they are diesel, so surely they don’t fit my perceived need for zero-carbon trains.

That would have been true until a couple of weeks ago, when as I wrote in Vivarail’s Plans For Zero-Emission Trains, Adrian Shooter of Vivarail disclosed an audacious plan to convert, diesel trains into zero-carbon battery electric trains.

Class 170 trains like this were on the list of possible conversions.

  • They 100 mph trains.
  • Some are three-cars.
  • They meet all the disability regulations.
  • They have been used for services much longer than Oxford and Bedford.

They could also start the service as diesel trains and gradually converted to battery electric, if this would be better for operation.

Class 175 Trains

The three-car 100 mph Class 175 trains could be a possibility as there are fifteen trains, but they have two problems.

  • They are powered by diesel.
  • They probably won’t be available until 2023.

So I think they can be ruled out.

Class 185 Trains

All the fifty-one Class 185 trains are currently in service with TransPennine Express. They are due to release fifteen trains in 2021 and it was thought that these trains were in prime position for becoming the interim trains for East West Railway.

  • They 100 mph trains.
  • Some are three-cars.
  • They meet all the disability regulations.
  • They have been used for services much longer than Oxford and Bedford.
  • The fleet is the right size.

But then the Department of Transport decided to change their plans for the Liverpool and Norwich service.

I wrote about one journey on the overcrowded section of this service in Mule Trains Between Liverpool And Norwich.

The picture shows the inadequate train formed of an assorted collection of Class 153 trains, I took from Liverpool to Sheffield.

The service is now being split at Nottingham and East Midlands Railway will receive the released Class 185 trains for the Liverpool and Nottingham portion of the service.

A fleet of these Class 185 trains will surely offer more comfort on a very busy service.

So it is looking unlikely that Class 185 trains will be used on the East West Railway.

Class 220, 221 and 222 Trains

These three fleets of Voyager trains could be a possibility, as they can be shortened to three-car trains.

But they have disadvantages.

I think it is unlikely, that these trains will be used on the East West Railway.

Class 350 Trains

There are thirty-seven Class 350 trains, that were built only twelve years ago, that have been retired. The owner; Porterbrook are planning to convert them into battery electric versions, which they have called BatteryFLEX trains.

Unfortunately, they are four-cars and unlike other trains, it doesn’t appear that they can be shortened to three cars.

Class 375, 377, 379 and 387 Trains

These four fleets of Electrostar trains could be a possibility for running as battery electric trains.

  • Some are three-car trains and four-car trains can be converted to three-car trains, by simply removing a car.
  • They are 100 mph trains.
  • Bombardier converted a Class 379 train for battery operation and I have heard or seen no adverse reports from either passengers, rail staff or journalists.
  • They can work in multiple formations.
  • They are all wired for dual-voltage operation.
  • Pantographs wells have already been fitted to trains that normally work using 750 VDC third-rail electrification.

The picture shows the Class 379 train, that was converted to battery electric operation.

The Class 379 trains, also have the advantage, that there is a fleet of thirty trains, that are being replaced by Greater Anglia, who are homeless.

If I were the owner of the Class 379 trains, I’d do the following.

  • Convert them all into battery electric trains.
  • Shuffle cars around to get a mix of three-, four- and five-car trains to match market opportunities.
  • Make them compatible with Vivarail’s Fast Charge system.
  • Do a licensing deal with Vivarail, so I could supply the chargers.

This plan has some big advantages.

  • Battery electric operation of the Class 379 trains has been successfully proven.
  • Some Class 379 trains are already available for conversion, as they have been replaced by Greater Anglia.
  • The trains could easily be delivered in time for the opening of the East West Railway.
  • The trains would not need to be replaced, if the East West Railway was to be fully electrified in the future.
  • If I leased out all the Class 379 trains, I’m fairly sure that I could acquire some other Electrostars to convert.

The trains would surely be ideal for the Uckfield Branch and Ashford and Hastings, which are to be run by battery electric trains.

  • The order for these services is still to be announced.
  • This use would be a trial application of the highest quality.
  • I suspect that five-car trains would be ideal for these Southern routes.
  • In Battery Electrostars And The Uckfield Branch, I estimated that Southern would need twelve five-car trains for the Uckfield Branch and four trains for the Ashford and Hastings service.

It looks to me, the thirty four-car Class 379 trains could be converted into the following battery electric trains.

  • Twelve five-car trains for the Uckfield Branch.
  • Four four-car trains for Ashford and Hastings.
  • Fourteen three-car trains for the East West Railway.

Using battery electric Class 379 trains for the East West Railway, the Uckfield Branch and Ashford and Hastings. looks from the engineering, numbers and financial points of view to be a very efficient proposition.

Class 385 Trains

As I indicated earlier, Hitachi have the technology to create a Class 385 train with a battery capability.

  • They appear to be talking to ScotRail.
  • Are they talking to Vivarail about using their Fast Charge system?
  • As the trains would be new, East West Railway would get trains to their specification.

Battery electric Class 385 trains must be a serious proposition.

Class 600 Trains

The Class 600 train could be an interesting possibility.

The trains can be powered by both hydrogen and overhead or third-rail electrification.

  • The trains are three-cars long.
  • They are 100 mph trains.
  • First in-service dates are scheduled for 2024, which could be convenient.
  • The trains will have a state-of-the-art Renatus interior.
  • They will not need charging and could probably be refuelled as infrequently as only once per day.

I am not worried, by the train being powered by hydrogen, but because of the large tanks in the train, the passenger capacity will be lower, than a diesel, electric or battery electric train of a similar length.

I suspect though, that Alstom will be pitching for the order.

Aventras

In this article in Global Rail News from 2011, which is entitled Bombardier’s AVENTRA – A new era in train performance, gives some details of the Aventra’s electrical systems. This is said.

AVENTRA can run on both 25kV AC and 750V DC power – the high-efficiency transformers being another area where a heavier component was chosen because, in the long term, it’s cheaper to run. Pairs of cars will run off a common power bus with a converter on one car powering both. The other car can be fitted with power storage devices such as super-capacitors or Lithium-ion batteries if required. The intention is that every car will be powered although trailer cars will be available.

Unlike today’s commuter trains, AVENTRA will also shut down fully at night. It will be ‘woken up’ by remote control before the driver arrives for the first shift

This was published over nine years ago, so I suspect Bombardier have refined the concept.

Bombardier have not announced that any of their trains have energy storage, but I have my suspicions, that both the Class 345 and Class 710 trains use super-capacitors or Lithium-ion batteries, as part of their traction system design.

I believe that Bombardier, have the ability to build an Aventra to this specification.

  • Three-cars
  • 100 mph running
  • Sixty mile range on battery power.
  • Dual voltage.
  • Ability to work in pairs.

Like the Hitachi trains, they would be new build.

CAF

CAF have proposed a battery electric train based on the Class 331 train, which I wrote about in Northern’s Battery Plans.

It is a four-car development of the three-car Class 331 trains.

Can it be built as a three-car train to fit the specification?

Conclusion

There are some good candidates sir supplying an interim fleet of trains for the East West Railway.

My money’s on one of the following.

  • New Hitachi Class 385 trains
  • Converted Class 379 trains.
  • New Aventras

All would be battery electric trains.

But there is a change that Alstom’s Class 600 hydrogen trains could be used.

 

 

 

 

 

 

November 14, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , , , , , | 9 Comments

Gatwick Rail Service Could Link Far Reaches Of The South East

The title of this post, is the same as that of this article on Surrey Live.

Despite being reported on Surrey Live and the fact that Gatwick is in Sussex, the plan has been proposed by Kent County Council’s Rail Project Manager.

The plan would extend the existing Great Western railway line – which runs from Reading to Gatwick via Redhill – to mid and east Kent.

The article suggests the service could go between Reading and Canterbury West stations.

This table sums up the connectivity.

I have a few thoughts.

The Terminal Stations

The suitability of the two proposed terminals can be summed up.

  • Reading has been designed as a terminal station, with five bay platforms, three of which can be used by Gatwick services.
  • Canterbury West has not been designed as a terminal station and has no bay platforms.

Perhaps Ashford International station would be a better Eastern terminal?

  • It has Eurostar services.
  • Trains can terminate in Platform 1 and go to Tonbridge.
  • It has lots of car parking.

Dover Priority and Ramsgate could also be possibilities as they have terminal platforms.

Connecting At Gatwick Airport

It looks like a combined service might get complicated in the Redhill/Gatwick area.

  • Trains between Reading and Gatwick go via Redhill station, where they reverse.
  • There is no direct route between Tonbridge and Gatwick, so trains will probably have to reverse at Redhill, to go between Tonbridge and Gatwick.

Would a service between Reading and Ashford, that reversed twice at Redhill and once at Gatwick, be rather tricky to operate? Or even unpopular with passengers?

This Google Map shows Redhill station and the lines leading South from the station.

Note.

  • Redhill station at the top of the map.
  • The Brighton Main Line running North-South in the middle of the map.
  • The North Downs Line to Guildford and Reading curving West from the station.
  • The Redhill and Tonbridge Line to Tonbridge and Ashford leaving the map in the South-East corner.

I suspect that adding extra tracks in a very crowded area will be very difficult.

What Do The Timings Show?

A quick calculation, which is based on current timings, can give a journey time for between Ashford and Gatwick Airport.

  • Ashford and Tonbridge – Southeastern timing – 38 minutes
  • Tonbridge and Redhill – Southern timing – 35 minutes
  • Reverse at Redhill – GWR timing – 4 minutes
  • Redhill and Gatwick – GWR timing – 8 minutes

This gives a total of eighty-five minutes.

  • Google says that you can drive it in sixty-three minutes.
  • If you took the train today, between Ashford International and Gatwick Airport stations, the fastest rail journey is around 110 minutes with a change at St. Pancras International.

It does look though that a faster train between Kent and Gatwick Airport could be competitive, as going via London certainly isn’t!

Could Simplification And Automation Provide A Solution?

Consider.

  • The Ashford International and Tonbridge timing, that I have used includes five stops.
  • The Tonbridge and Redhill timing, that I have used includes five stops.
  • How much time would be saved by only stopping at Tonbridge between Ashford International and Gatwick?
  • Could automation handle a fast reverse at Redhill, where passengers couldn’t board or leave the train?
  • Would a driver in each cab, allow the reverses to be done faster?

Trains going between Reading and Ashford International, would call at the following stations between Guildford and Tonbridge.

  • Dorking Deepdene
  • Reigate
  • Redhill
  • Gatwick Airport
  • Redhill – A quick Touch-And-Go.
  • Tonbridge
  • Paddock Wood

If two minutes a stop could be saved at each of the nine omitted stops and at each reverse, this would save twenty minutes East of Gatwick, which would give the following timings.

  • Gatwick and Tonbridge – 27 minutes
  • Gatwick and Ashford International – 65 minutes

Timings would be compatible with driving.

West of Gatwick, the service would be as the current GWR service.

  • After arriving at Gatwick from Ashford, the train would reverse.
  • En route it would reverse at Redhill, to continue to Reading.

Passengers wanting to go between say Tonbridge and Redhill, would use this reverse at Redhill to join and leave the train.

It would be an unusual way to operate a train service, but I feel it could be made to work, especially with the right automation and/or a second driver.

Trains For The Service

The service can be split into various legs between Ashford and Reading.

  • Ashford and Tonbridge – Electrified – 26.5 miles – 38 minutes
  • Tonbridge and Redhill – Electrified – 20 miles – 35 minutes
  • Redhill and Gatwick – Electrified – 7 miles – 8 minutes
  • Gatwick and Redhill – Electrified – 7 miles – 8 minutes
  • Redhill and Reigate – Electrified – 2 miles – 4 minutes
  • Reigate and Shalford Junction – Not Electrified – 17 miles – 20 minutes
  • Shalford Junction and North Camp – Electrified – 9 miles – 11 minutes
  • North Camp and Wokingham – Not Electrified – 11 miles – 14 minutes
  • Wokingham and Reading – Electrified – 7 miles and 9 minutes

Note.

  1. Ashford, Tonbridge, Redhill, Gatwick, Guildford, Wokingham and Reading are all fully-electrified main line stations.
  2. Most of the route and the two ends are electrified.
  3. All electrification is 750 VDC third rail.
  4. All sections without electrification are less than twenty miles.

This route would surely be ideal for a battery electric train.

As both the Heathrow and Gatwick Express services are run using Class 387 trains and the Stansted Express has used Class 379 trains for the last few years, similar trains to these might be an ideal choice, if they could be fitted with battery power and the ability to use 750 VDC third-rail electrification.

The facts seem to be on the side of this service.

  • There are spare Class 387 trains and some more will be released by c2c in the next few years.
  • Greater Anglia will be replacing their Class 379 trains with new Class 745 trains.
  • A Class 379 train was used to test the concept of battery electric trains.
  • Both class of trains could be fitted with third-rail gear.

Either of these trains could be used for the service.

As they are 100 or 110 mph trains with good acceleration, they might even save a few minutes on the journey.

Infrastructure Changes

I suspect they could be minimal, once it was worked out how to handle the three reverses in the Gatwick and Redhill area.

Conclusion

I think it would be a feasible plan to run an Ashford and Reading service via Gatwick.

I would also decarbonise the route at the same time, as it must be one of the easiest routes in the country to run using battery electric trains.

  • There is electrification at both ends and in the middle.
  • The longest stretch of track without electrification is just seventeen miles.
  • All charging could be done using existing electrification.
  • There are platforms at both ends, where trains can get a full charge.
  • There are trains available, that are suitable for conversion to battery trains for the route.
  • No extra infrastructure would be needed.
  • Battery electric trains would allow extension of the route to Oxford in the West.

How many extra passengers would be persuaded to take the train to Gatwick, by the novelty of a battery electric Aurport Express?

Marketing men and women would love the last point!

 

 

September 19, 2020 Posted by | Transport | , , , , , , , , , , , , | 1 Comment

Vivarail Targets Overseas Markets

The title of this post, is the same as that of this article on Rail Magazine.

This is an extract from the article.

Shooter told RAIL: “We are at the moment putting together a bid for an operator – not in this country – where the routes would be up to 500 miles long, to be provided totally with battery trains using this device.

“This bid we are putting together contemplates trains that are running for several hours – 60 to 70 miles between charging stations, but possibly going twice that far in emergency if the charging station should go down.”

By this device I suspect they mean their Fast Charge device, which is described in this press release from Vivarail.

This extract describes how it works.

The concept is simple – at the terminus 4 short sections of 3rd and 4th rail are installed and connected to the electronic control unit and the battery bank. Whilst the train is in service the battery bank trickle charges itself from the national grid – the benefit of this is that there is a continuous low-level draw such as an EMU would use rather than a one-off huge demand for power.

The train pulls into the station as normal and the shoegear connects with the sections of charging rail.  The driver need do nothing other than stop in the correct place as per normal and the rail is not live until the train is in place.

That’s it!

That sounds simple to me.

Where Would This Possible Order Be From?

I have ridden in a Vivarail battery train, as I wrote in Battery Class 230 Train Demonstration At Bo’ness And Kinneil Railway.

I have also ridden the diesel variant, as I wrote in A First Ride In A Revenue-Earning Class 230 Train.

I very much feel, I can list a few of the good qualities of the trains.

Big Windows

The big windows give a good view, so I wonder if the trains would work well on a railway noted for its scenery.

Quietness

I have ridden in two battery trains.

The other was Bombardier’s Class 379 BEMU, that I wrote about in Is The Battery Electric Multiple Unit (BEMU) A Big Innovation In Train Design?.

Both were extremely quiet.

No Infrastructure Required

Except for the charging stations, no infrastructure is required.

Sturdy Engineering

Although the trains were only originally built for the London Underground, they are sturdily-built trains, as they used to share tracks with full-size trains.

I suspect, they are certified to share tracks with freight trains, as they do on the Marston Vale Line.

A Range Of Interiors And Customer Facilities

Although the trains tend to use the old London Underground seat frames, they have a range of interiors, which seem to be well-designed and comfortable.

I have been on Class 230 trains, with tables, a single toilet, onboard Wi-Fi, and electrical charging points.

Zero-Carbon

The trains are probably as near to zero-carbon, as any! Especially, if all the Fast Charge stations are powered by renewable electricity.

Remote Servicing

The trains have been designed for remote servicing.

Conclusion

All of these qualities lead me to think, that an ideal line in the UK could be the Far North Line, between Inverness and Wick and Thurso.

Although the train ticks a lot of boxes, it could well be too slow, It is also only a 160 mile route and not five-hundred

But there must be quite a few long, scenic lines in countries, where a passenger service needs to be added to a freight line, that perhaps serves a remote mining town.

Sweden and Norway are surely possibilities, but Finland is ruled out because it is Russian gauge.

Could the trains end up in parts of Africa, Canada and the United States?

Who knows?

September 3, 2020 Posted by | Energy Storage, Transport | , , , , , , | 9 Comments

The Future Of West Midlands Trains’s Class 350 Trains

Currently, West Midlands Trains have four sub-fleets of Class 350 trains.

  • Class 350/1 – 30 trains – Leased from Angel Trains
  • Class 350/2 – 37 trains – Leased from Porterbrook
  • Class 350/3 – 10 trains – Leased from Angel Trains
  • Class 350/4 – 10 trains –  Leased from Angel Trains

Note.

  1. All are 110 mph trains
  2. The trains are capable of being modified for 750 VDC third-rail electrification.

Under Future the Wikipedia entry for Class 350 trains says this.

West Midlands Trains announced that they would be replacing all 37 of their 350/2 units for Class 350/4 units cascaded from TransPennine Express and brand new Class 730 units which both can travel up to speeds of 110 mph.

In October 2018, Porterbrook announced it was considering converting its fleet of 350/2s to Battery electric multiple units for potential future cascades to non-electrified routes.

As West Midlands Trains have ordered 45 Class 730 trains for express services, it looks like they will be expanding services on the West Coast Main Line and around the West Midlands.

But it does appear that as many as thirty-seven trains will be returned to Porterbrook.

Class 350 Trains With Batteries

I believe that if fitted with batteries, these trains would meet or be very near to Hitachi’s specification, which is given in this infographic from Hitachi.

 

Note that 90 kilometres is 56 miles.

Could West Midlands Trains Run Any Services With Class 350 Trains With Batteries?

I think there are some possibilities

  • Birmingham New Street and Shrewsbury – 30 miles without electrification between Shrewsbury and Wolverhampton – Charging facility needed at Shrewsbury.
  • Birmingham New Street and Hereford via Worcester – 41 miles without electrification between Hereford and Bromsgrove – Charging facility needed at Hereford.
  • Leamington Spa and Nuneaton via Coventry – 19 miles without electrification – Charging on existing electrification at Coventry and Nuneaton.
  • The proposed direct Wolverhampton and Walsall service, that i wrote about in Green Light For Revived West Midlands Passenger Service.

There may also be some services added because of the development of the Midlands Rail Hub and extensions to London services,

Who Has Shown Interest In These Trains?

I can’t remember any reports in the media, about any train operator wanting to lease these trains; either without or with batteries.

Conclusion

It does all seem a bit strange to me.

  • As a passenger, I see nothing wrong with these trains.
  • They are less than twenty years old.
  • They are 110 mph trains.
  • They have 2+2 interiors, with lots of tables.
  • They could be fitted with batteries if required.

But then, all of those things could be said about Greater Anglia’s Class 379 trains.

 

July 20, 2020 Posted by | Transport | , , , , , , , | 2 Comments

Hyperdrive Innovation And Hitachi Rail To Develop Battery Tech For Trains

The title of this post, is the same as that of this article on The Engineer.

This is the introductory sub-title.

Hyperdrive Innovation and Hitachi Rail are to develop battery packs to power trains and create a battery hub in the North East of England.

The article gives this information.

  • Trains can have a range of ninety kilometres, which fits well with Hitachi’s quoted battery range of 55-65 miles.
  • Hitachi has identified its fleets of 275 trains as potential early recipients.

Hitachi have also provided an  informative video.

At one point, the video shows a visualisation of swapping a diesel-engine for a battery pack.

As a world-class computer programmer in a previous life, I believe that it is possible to create a battery pack, that to the train’s extremely comprehensive computer, looks like a diesel-engine.

So by modifying the train’s software accordingly, the various power sources of electrification, diesel power-packs and battery packs can be used in an optimum manner.

This would enable one of East Midlands Railway’s Class 810 trains, to be fitted with a mix of diesel and battery packs in their four positions under the train.

Imagine going between London and Sheffield, after the High Speed Two electrification between Clay Cross North Junction and Sheffield has been erected.

  • Between St. Pancras and Market Harborough power would come from the electrification.
  • The train would leave the electrified section with full batteries
  • At all stations on the route, hotel power would come from the batteries.
  • Diesel power and some battery power would be used between stations. Using them together may give better performance.
  • At Clay Cross North Junction, the electrification would be used to Sheffield.

For efficient operation, there would need to be electrification or some form of charging at the Sheffield end of the route. This is why, I am keen that when High Speed Two is built in the North, that the shsared section with the Midland Main Line between Clay Cross North Junction and Sheffield station, should be built early.

Hitachi have said that these trains will have four diesel engines. I think it will more likely be two diesel engines and two batteries.

The World’s First Battery-Electric Main Line

I suspect with electrification between Sheffield and Clay Cross North Junction, that a train fitted with four batteries, might even be able to run on electric power only on the whole route.

In addition, if electrification were to be erected between Leicester and East Midlands Parkway stations, all three Northern destinations would become electric power only.

The Midland Main Line would be the first battery electric high speed line in the world!

Hitachi On Hydrogen Trains

The press release about the partnership between Hitachi and Hyperdrive Innovation is on this page on the Hitachi web site.

This is a paragraph.

Regional battery trains produce zero tailpipe emission and compatible with existing rail infrastructure so they can complement future electrification. At the moment, battery trains have approximately 50% lower lifecycle costs than hydrogen trains, making battery the cheapest and cleanest alternative zero-emission traction solution for trains.

I have ridden in two battery-electric trains and one hydrogen-powered train.

I would rate them out of ten as follows.

It’s not that the iLint is a bad train, as the power system seems to work well, but the passenger experience is nowhere near the quality of the two battery trains.

In my view, battery vehicles are exceedingly quiet, so is this the reason?

On the other hand, it could just be poor engineering on the iLint.

Conclusion

This is as very big day in the development of zero- and low-carbon trains in the UK.

July 6, 2020 Posted by | Transport | , , , , , , , , , , | 30 Comments