The Anonymous Widower

Charging Battery Trains

In Sparking A Revolution, I talked about Hitachi’s plans to develop battery versions of their Class 800 trains.

The article also gives the specification of a Hitachi battery train.

  • Range – 55-65 miles
  • Performance – 90-100 mph
  • Recharge – 10 minutes when static
  • Routes – Suburban near electrified lines
  • Battery Life – 8-10 years

These figures are credited to Hitachi.

Methods Of Charging

I can envisage two main methods of changing battery trains.

  • Static charging in a station, depot or siding.
  • Dynamic charging, whilst the train is on the move.

I am not covering other possible methods like battery swapping in this post.

Static Charging

Hitachi only mention static charging in their specification and they give a charge time of ten minutes.

This is a very convenient time, when you consider quite a few trains take around 10-15 minutes to turn round at a terminus.

Two companies have stated that they have products that can charge battery trains in around this time.

  • Vivarail offers a system based on well-proven third-rail electrification technology.
  • Furrer and Frey offers a system based on overhead electrification technology.

I suspect that other companies are developing systems.

Dynamic Charging

With dynamic charging, the batteries are charged as the trains run along standard electrified routes.

In the UK, this means one of two systems.

  • 750 VDC third rail electrification
  • 25 KVAC overhead electrification

Both systems can be used to charge the batteries.

Note that in the BEMU Trial in 2015, the Class 379 train used for the trial charged the batteries from the 25 KVAC overhead electrification.

A Mixture Of Dynamic And Static Charging

Many routes will be handled by a mixture of both methods.

As an example London Paddington and Cheltenham is electrified except for the 42 miles between Swindon and Cheltenham.

A round trip between London Paddington and Cheltenham could be handled as follows.

  • London Paddington to Swindon using electrification – Dynamic charging battery at the same time!
  • Swindon to Cheltenham using battery power
  • Turnround at Cheltenham – Static charging battery at the same time!
  • Cheltenham to Swindon using battery power
  • Swindon to London Paddington using electrification

Note the following.

  1. Two legs of the round-trip are run using electrification power.
  2. Two legs of the round-trip are run using battery power.
  3. There is one dynamic charge and one static charge of the batteries.

No diesel power would be used on the journey and I suspect journey times would be identical to the current timetable.

I suspect that many routes run by battery electric trains will employ a mixture of both dynamic and static charging.

Here’s a few examples.

  • London Kings Cross and Lincoln
  • London Kings Cross and Harrogate
  • London St Pancras and Melton Mowbray
  • London Euston and Chester
  • London Paddington and Bedwyn

There are probably many more.

Intermediate Charging On A Long Route

South Western Railway has a fleet that is nearly all-electric.

But they do have forty diesel trains, which are mainly used for services between London Waterloo and Exeter.

These don’t fit with any decarbonising strategy.

There is also the problem that the route between London Waterloo and Exeter, is only electrified as far as Basingstoke, leaving a long 124 miles of route without electrification.

This means that a battery train needs to charge the batteries at least twice en route.

Charging At A Longer Stop

The obvious approach to providing en route charging would be to perform a ten minute stop, where the batteries are fast charged.

Looking at Real Time Trains, the stop at Salisbury is often five minutes or more, as trains can join and split and change crews at the station.

But two stops like this could slow the train by fifteen minutes or so.

Charging At A An Electrification Island

On the section of the route, West of Salisbury, there are a series of fairly close-together stations.

  • Tisbury – 7 miles
  • Gillingham – 16 miles
  • Templecombe – 18 miles
  • Sherborne – 23 miles
  • Yeovil Junction – 39 miles
  • Crewkerne – 48 miles
  • Axminster – 61 miles

Note,

The distances are from Salisbury.

  1. Much of this nearly ninety mile section of the West of England Line between Salisbury and Exeter is single track.
  2. The Heart of Wessex Line between Westbury and Weymouth crosses at Yeovil Junction.
  3. There are three sections of double track and four passing loops.
  4. There is a passing loop at Axminster.

It strikes me that the optimal way of charging battery trains on this secondary route might be to electrify both the West of England and Heart of Wessex Lines around Yeovil Junction station.

The power for the electrification island, could come from local renewable sources, as proposed by Riding Sunbeams.

Distances from Yeovil Junction station are.

  • Bath Spa – 50 miles
  • Castle Cary – 12 miles
  • Exeter St. Davids – 49 miles
  • Salisbury – 39 miles
  • Weymouth – 30 miles

With a battery-electric train with a 55-65 mile range, as proposed in Hitachi’s draft specification, SWR’s London Waterloo and Exeter service would certainly be possible. Charging would be at Salisbury and in the Yeovil area.

On Summer Saturdays, SWR also run a London Waterloo and Weymouth service via Salisbury and Yeovil Junction. This would appear to be within the range of a battery-electric train.

As Weymouth is electrified with third-rail, I suspect that arranging charging of a battery-electric train at the station, will not be an impossible task.

The other service through the area is Great Western Railway‘s service between Gloucester and Weymouth, that runs every two hours.

It would appear that in some point in the future, it will be possible to run this service using a Hitachi battery-electric train.

Third-Rail Or Overhead?

The previous example of an electrification island would probably use 750 VDC third-rail electrification, but there is no reason, why 25 KVAC overhead electrification couldn’t be used.

Note that these trains have been talked about as possibilities for running under battery power.

  • Greater Anglia’s Class 379 trains, built by Bombardier
  • Greater Anglia’s Class 755 trains, built by Stadler.
  • Merseyrail’s Class 777 trains, built by Stadler.
  • Scotrail’s Class 385 trains, built my Hitachi
  • Several companies’ Class 800 trains, built by Hitachi
  • Suthern’s Class 377 trains, built by Bombardier

All the manufacturers named have experience of both dual-voltage trains and battery operation.

I would suspect that any future battery-electric trains in the UK will be built to work on both of our electrification systems.

When talking about battery-electric trains, 750 VDC third-rail electrification may have advantages.

  • It can be easily powered by local renewable sources, as Riding Sunbeams are proposing.
  • It is compatible with Vivarail’s Fast-Charging system.
  • Connection and disconnection is totally automatic and has been since Southern Railway started using third-rail electrification.
  • Is is more affordable and less disruptive to install?
  • Third-rail electrification can be installed in visually-sensitive areas with less objections.

Developments in third-rail technology will improve safety, by only switching the power on, when a train is connected.

More Electrification Islands

These are a few examples of where an electrification island could enable a battery-electric train to decarbonise a service.

London Euston and Holyhead

In Are Hitachi Designing the Ultimate Battery Train?, I looked at running Hitachi’s proposed battery-electric trains between London Euston and Holyhead.

I proposed electrifying the fourteen miles between Rhyl and Llandudno Junction stations, which would leave two sections of the route between London Euston and Holyhead without electrification.

  • Rhyl and Crewe is fifty-one miles.
  • Llandudno Junction and Holyhead is forty-one miles.

Both sections should be within the battery range of Hitachi’s proposed battery-electric trains, with their 55-65 mile range.

The following should be noted.

  • The time between arriving at Rhyl station and leaving Llandudno Junction station is nineteen minutes. This should be time enough to charge the batteries.
  • Either 25 KVAC overhead or 750 VDC third-rail electrification could be used.
  • There could be arguments for third-rail, as the weather can be severe.
  • The railway is squeezed between the sea and the M55 Expressway and large numbers of caravans.

The performance of the new trains will be such, that they should be able to run between London Euston and Holyhead in a similar time. Using High Speed Two could reduce this to just under three hours.

Edinburgh And Aberdeen

I’m sure Scotland would like to electrify between Edinburgh and Aberdeen.

But it would be a difficult project due to the number of bridges on the route.

Distances from Edinburgh are as follows.

  • Leuchars – 50 miles
  • Dundee – 59 miles
  • Arbroath – 76 miles
  • Montrose – 90 miles
  • Stonehaven – 114 miles
  • Aberdeen – 130 miles

A quick look at these distances indicate that Hitachi’s proposed battery-electric trains with a 55-65 mile range could cover the following sections.

  • Edinburgh and Dundee – 59 miles
  • Arbroath and Aberdeen – 56 miles

Would it be possible to electrify  the seventeen miles between Dundee and Arbroath?

I have just flown my helicopter along the route and observed the following.

  • Dundee station is new and appears to be cleared for overhead wires.
  • Many of the bridges in Dundee are new and likely to be cleared for overhead wires.
  • There is a level crossing at Broughty Ferry station.
  • Much of the route between Broughty Ferry and Arbroath stations is on the landward side of golf links, with numerous level crossings.
  • Between Arbroath and Montrose stations, the route appears to be running through farmland using gentle curves.
  • There is a single track bridge across the River South Esk to the South of Montrose station.
  • According to Wikipedia, the operating speed is 100 mph.

Montrose might be a better Northern end to the electrification.

  • It has a North-facing bay platform, that could be used for service recovery and for charging trains turning back to Aberdeen.
  • Montrose and Aberdeen is only forty miles.
  • It might be possible to run the service between Montrose and Inverurie, which is just 57 miles on battery power.

The problem would be electrifying the bridge.

Operationally, I can see trains running like this between Edinburgh and Aberdeen.

  • Trains would leave the electrification, just to the North of Edinburgh with a full battery.
  • Battery power would be used over the Forth Bridge and through Fife and over the Tay Bridge to Dundee.
  • Electrification would take the train to Arbroath and possibly on to Montrose. The battery would also be charged on this section.
  • Battery power would take trains all the way to Aberdeen.

Trains would change between battery and electrification in Dundee and Arbroath or Montrose stations.

My one question, is would it be a good idea to electrify through Aberdeen, so that trains returning South could be charged?

I believe that four or five-car versions of Hitachi’s proposed battery-electric trains would be able to run the route.

Glasgow And Aberdeen

This builds on the work that would be done to enable battery-electric trains go between Edinburgh and Aberdeen.

The route between Glasgow and Dundee is partially-electrified with only a forty-nine mile section between Dundee and Dunblane without wires.

I believe that four or five-car versions of Hitachi’s proposed battery-electric trains would be able to run the route.

 

To Be Continued…

 

Conclusion

I don’t think it will be a problem to provide an affordable charging infrastructure for battery trains.

I also think, that innovation is the key, as Vivarail have already shown.

February 20, 2020 Posted by | Transport | , , , , , , , , , | Leave a comment

Akiem Acquires Macquarie European Rail Fleet

The title of this post is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

Leasing company Akiem Group has signed a definitive agreement to acquire Macquarie European Rail’s rolling stock leasing business, subject to regulatory approval.

Included in the deal are thirty Class 379 trains, currently used on the Stansted Express and soon to be replaced by new Class 745 trains.

Because of the lack of any published plans about where the Class 379 trains will be cascaded, I have been wondering if there is something wrong with the trains or perhaps their owner.

As the latter looks now to be changing from Macquarie to Akiem, perhaps we’ll hear some news on what is happening to the Class 379 trains.

I still feel the Class 379 trains would make excellent battery-electric trains, possibly for an airport service.

But which train operating company would need a fleet of thirty four-car electric trains?

Most have now sorted their fleet requirements and when Bombardier get their production working smoothly, perhaps with Alstom’s backing, there will be more trains being delivered to train operating companies.

But there is one fleet replacement, where battery-electric Class 379 trains may be ideal; the replacement of South Western Railway (SWR)‘s fleet of Class 158 and Class 159 trains.

Consider.

  • 10 x two-car Class 158 trains and 30 x three-car Class 159 trains could be replaced by 30 x four-car Class 379 trains, which would be a near ten percent increase in carriages.
  • 90 mph diesel trains, that were built in the 1990s, will be replaced by 100 mph battery-electric trains, that are not yet ten years old.
  • The Class 379 trains are Electrostars and fitting third-rail shoes, will be straight out of Bombardier’s parts bins.
  • Waterloo station will become another diesel-free London terminus.
  • Fellow French company; Alstom could step in to the picture with their battery knowledge from other products like the iLint hydrogen train and convert the trains at Widnes or one of their other maintenance depots.
  • South Western Railway and Akiem would need to procure a charging system and could probably do worse than see what Vivarail or Furrer and Frei can supply!

How would the Class 379 battery-electric trains handle various services?

London Waterloo To Salisbury And Exeter St. Davids

The most difficult service to run, would be the London Waterloo and Exeter St. Davids service via Salisbury.

Note that when SWR bid for the franchise, they promised to knock ten minutes off the time to Exeter and they will need 100 mph trains for that!

With climate change in the news, only a hardline climate-change denier would buy 100 mph diesel trains.

In Are Hitachi Designing the Ultimate Battery Train?, I suggested how Waterloo and Exeter could be run with a battery-electric train, with a range of around sixty miles on battery power.

  • Use existing electrification, as far as Basingstoke – 48 miles
  • Use battery power to Salisbury – 83 miles
  • Trains can take several minutes at Salisbury as they often split and join and change train crew, so the train could be fast-charged, at the same time.
  • Use battery power to the Tisbury/Gillingham/Yeovil/Crewkerne area, where trains would be charged – 130 miles
  • Use battery power to Exeter- 172 miles

Note.

  1. The miles are the distance from London.
  2. The charging at Salisbury could be based on Vivarail’s Fast-Charging or traditional third-rail technology.
  3. The charging around Yeovil could be based on perhaps twenty miles of third-rail electrification, that would only be switched on, when a train is present.
  4. Charging would also be needed at Exeter for the return journey.

I estimate that there could be time savings of up to fifteen minutes on the route.

London Waterloo To Salisbury And Bristol Temple Meads

This service in run in conjunction with the Exeter St. Davids service, with the two trains joining and splitting at Salisbury.

As Salisbury and Bristol Temple Meads is 53 miles, it looks like this service is possible, providing the following conditions are met.

  • The Class 379 train has a sixty mile range on battery power.
  • The train can charge at Bristol Temple Meads, perhaps by using the 25 KVAC overhead electrification.
  • The Class 379 trains can join and split with the with amount of alacrity.

Note that there may be other places, where a tri-mode capability might be useful.

Exeter And Axminster

This shorter trip is thirty miles and if the battery range is sufficient, it could probably be run by a Class 379 train, charged at Exeter.

If necessary, a method of charging could be provided at Axminster.

Romsey And Salisbury Via Southampton Central

This route is partially electrified and it looks like a battery-electric train with a sixty mile range could run the service without any extra infrastructure.

If Salisbury, gets a charging system, then this service might be used to ensure a reliable or extended service.

Portsmouth Harbour And Basingstoke And Portsmouth Harbour and Southampton Central

These two services could be run by Class 379 trains running using the electrification.

London Or Wareham and Corfe Castle

This Summer Saturday-only service is an ideal one for a battery-electric train.

New Services

There are also other branches that could be reopened, like those to Ringwood and Hythe, that could be worked by battery-electric trains.

Conclusion

It will be very interesting to see where the Class 379 trains end up.

But my money’s on them replacing South Western Railways, diesel trains, after conversion to battery-electric trains.

  • Only limited infrastructure works will need to be done.
  • South Western Railway will have more capacity.
  • Passengers will get a faster service in a modern train.
  • Waterloo will become a diesel-free station.

But most importantly, South Western Railway will have an all-electric fleet.

 

 

 

February 19, 2020 Posted by | Transport | , , , , , , , | Leave a comment

Ready To Charge

The title of this post is the same as that of this article in Issue 898 of Rail Magazine.

This is the sub-title of the article.

Vivarail could be about to revolutionise rail traction with its latest innovation

The article details their plans to bring zero-carbon trains to the UK.

These are a few important more general points.

  • The diesel gensets in the trains can be eco-fenced to avoid unning on diesel in built-up areas.
  • The Transport for Wales trains could be the last Vivarail diesel trains.
  • A 100 kWh battery pack is the same size as a diesel generator. I would assume they are almost interchangeable.
  • Various routes are proposed.
  • In future battery trains will be Vivarail’s focus.
  • At the end of 2020, a battery demonstration train will be dispatched to the United States.
  • Two-car trains will have a forty-mile range with three-cars managing sixty.
  • Trains could be delivered in nine to twelve months.

The company also sees Brexit as an opportunity and New Zealand as a possible market.

Modifying Other Trains

The article also states that Vivarail are looking at off-lease electric multiple units for conversion to battery operation.

Vivarail do not say, which trains are involved.

Vivarail’s Unique Selling Point

This is the last two paragraphs of the article.

“Our unique selling point is our Fast Charge system. It’s a really compelling offer.” Alice Gillman of Vivarail says.

Vivarail has come a long way in the past five years and with this innobvative system it is poised to bring about a revolution in rail traction in the 2020s.

Conclusion

Could the train, that Vivarail refused to name be the Class 379 trains?

  • There are thirty trainsets of four-cars.
  • They are 100 mph trains.
  • They are under ten years old.
  • They meet all the Persons of Reduced Mobility regulations.
  • They currently work Stansted Airport and Cambridge services for Greater Anglia.
  • They are owned by Macquarie European Rail.

I rode in one yesterday and they are comfortable with everything passengers could want.

The train shown was used for the BEMU Trial conducted by Bombardier, Network Rail and Greater Anglia.

The only things missing, for these trains to run a large number of suitable routes under battery power are.

  • A suitable fast charging system.
  • Third rail equipment that would allow the train to run on lines with third-rail electrification.
  • Third rail equipment would also connect to Vivarail’s Fast Charge system

As I have looked in detail at Vivarail’s engineering and talked to their engineers, I feel that with the right advice and assistance, they should be able to play a large part in the conversion of the Class 379 fleet to battery operation.

These trains would be ideal for the Uckfield Branch and the Marshlink Line.

If not the Class 379 trains, perhaps some Class 377 trains, that are already leased to Southern, could be converted.

I could see a nice little earner developing for Vivarail, where train operating companies and their respective leasing companies employ them to create battery sub-fleets to improve and extend their networks.

February 16, 2020 Posted by | Transport | , , , , , , , , , , , , , | Leave a comment

Shapps Wants ‘Earlier Extinction Of Diesel Trains’

The title of this post, is the same as that of this article on the East London and West Essex Guardian.

This is the first two paragraphs of the article.

The phasing out of diesel trains from Britain’s railways could be intensified as part of the Government’s bid to cut carbon emissions.

Transport Secretary Grant Shapps told MPs he is “hugely concerned” that the current policy means diesel trains will continue to operate until 2040.

In some ways the positioning of the article in a newspaper serving East London and West Essex is a bit strange.

  • The only diesel trains in the area are freight trains, after the electrification of the Gospel Oak and Barking Line.
  • Grant Schapps constituency is Welwyn and Hatfield, which is twenty or so miles North of London.

It looks to me to be a syndicated story picked up by the paper.

But as it reports what he said to the Transport Select Committee, there is a strong chance that it is not fake news.

How Feasible Would It Be To Bring Forward The 2040 Diesel Extinction Date?

Government policy of an extinction date of 2040 was first mentioned by Jo Johnson, when he was Rail Minister in February 2018.

This article on Politics Home is entitled Rail Minister Announces Diesel Trains To Be Phased Out By 2040, gives more details about what Jo said.

Since then several developments have happened in the intervening nearly two years.

Scores Of Class 800 Trains Are In Service

Class 800 trains and their similar siblings can honestly be said to have arrived.

Currently, there appear to be over two hundred of these trains either delivered or on order.

Many have replaced diesel trains on Great Western Railway and LNER and stations like Kings Cross, Paddington and Reading are becoming over ninety percent diesel-free.

It should be noted that over half of these trains have diesel engines, so they can run on lines without electrification.

But the diesel engines are designed to be removed, to convert the trains into pure electric trains, when more electrification is installed.

Midland Main Line Upgrade

This line will be the next to be treated to the Hitachi effect, with thirsty-three of the second generation of Hitachi’s 125 mph trains.

  • The Hitachi trains will use electrification South of Melton Mowbray and diesel power to the North.
  • The trains will have a redesigned nose and I am sure, this is to make the trains more aerodynamically efficient.
  • The introduction of the trains will mean, that, all passenger trains on the Midland Main Line will be electric South of Melton Mowbray.
  • St. Pancras will become a diesel-free station.

Whether High Speed Two is built as planned or in a reduced form, I can see electrification creeping up the Midland Main Line to Derby, Nottingham and Sheffield and eventually on to Leeds.

Other Main Line Routes

The Midland Main Line will have joined a group of routes, that are  run partly by diesel and partly by electricity.

  • London and Aberdeen
  • London and Bradford
  • London and Cheltenham
  • London and Harrogate
  • London and Hull
  • London and Inverness
  • London and Lincoln
  • London and Middlesbrough
  • London and Penzance via Exeter and Plymouth.
  • London and Sunderland
  • London and Swansea
  • London and Worcester and Hereford

Once the Midland Main Line is upgraded, these main routes will only be these routes that use pure diesel for passenger routes.

  • TransPennine Routes
  • Chiltern Route
  • London and Exeter via Basingstoke
  • London and Holyhead

Plans already exist from West Coast Rail to use bi-mode on the Holyhead route and the Basingstoke route could also be a bi-mode route.

TransPennine and Chiltern will need bespoke solutions.

Some Electrification Has Happened

Electrification has continued at a slow pace and these schemes have been completed or progressed.

  • Chase Line
  • Between Birmingham and Bromsgrove
  • North West England
  • Between Edinbugh, Glasgow, Alloa, Dunblane and Stirling.
  • Gospel Oak to Barking Line
  • Between St. Pancras and Corby.
  • Crossrail

In addition London and Cardiff will soon be electrified and a lot of electrification designed by the Treasury in the past fifty years has been updated to a modern standard.

Battery Trains Have Been Developed And Orders Have Been Received Or Promised

Stadler bi-mode Class 755 trains have been delivered to Greater Anglia and these will be delivered as electric-diesel-battery trains to South Wales.

Stadler also have orders for battery-electric trains for Germany, which are a version of the Flirt called an Akku.

In the Wikipedia entry for the Stadler Flirt, this is a paragraph.

In July 2019, Schleswig-Holstein rail authority NAH.SH awarded Stadler a €600m order for 55 battery-powered Flirt Akku multiple unit trains along with maintenance for 30 years. The trains will start entering service in 2022 and replace DMUs on non-electrified routes.

55 trains at €600 million is not a small order.

Alstom, Bombardier, CAF, Hitacxhi and Siemens all seem to be involved in the development of battery-electric trains.

I think, if a train operator wanted to buy a fleet of battery trains for delivery in 2023, they wouldn’t have too much difficulty finding a manmufacturer.

Quite A Few Recently-Built Electric Trains Are Being Replaced And Could Be Converted To Battery-Electric Trains

In 2015 Bombardier converted a Class 379 train, into a battery-electric demonstrator.

The project showed a lot more than battery-electric trains were possible.

  • Range could be up to fifty miles.
  • The trains could be reliable.
  • Passengers liked the concept.

Judging by the elapsed time, that Bombardier spent on the demonstrator, I would be very surprised to be told that adding batteries to a reasonably modern electric train, is the most difficult of projects.

The Class 379 trains are being replaced by by brand-new Class 745 trains and at the time of writing, no-one wants the currents fleet of thirty trains, that were only built in 2010-2011.

In addition to the Class 379 trains, the following electric trains are being replaced and could be suitable for conversion to battery-electric trains.

There also may be other trains frm Heathrow Express and Heathrow Connect.

All of these trains are too good for the scrapyard and the leasing companies that own them, will want to find profitable uses for them.

Porterbrook are already looking at converting some Class 350 trains to Battery-electric operation.

Vivarail And Others Are Developing Fast Charging Systems For Trains

Battery trains are not much use, unless they can be reliably charged in a short time.

Vivarail and others are developing various systems to charge trains.

Hydrogen-Powered Trains Have Entered Service In Germany

Hydrogen-powered Alstom Coradia Lint trains are now operating in Germany.

Alstom are developing a Class 321 train powered by hydrogen for the UK.

Stadler’s Bi-Mode Class 755 Train

The Class 755 train is the other successful bi-mode train in service on UK railways.

I would be very surprised if Grant Schapps hasn’t had good reports about these trains.

They may be diesel-electric trains, but Stadler have made no secret of the fact that these trains can be battery electric.

Like the Class 800 train, the Class 755 train must now be an off-the-shelf solution to use on UK railways to avoid the need for full electrification.

Class 93 Locomotives

Stadler’s new Class 93 locomotive is a tri-mode locomotive, that is capable of running on electric, diesel or battery power.

This locomotive could be the best option for hauling freight, with a lighter carbon footprint.

As an example of the usability of this locomotive, London Gateway has around fifty freights trains per day, that use the port.

  • That is an average of two tph in and two tph out all day.
  • All trains thread their way through London using either the North London or Gospel Oak to Barking Lines.
  • Most trains run run substantially on electrified tracks.
  • All services seem to go to freight terminals.

With perhaps a few of miles of electrification, at some freight terminals could most, if not all services to and from London Gateway be handled by Class 93 locomotives or similar? Diesel and/or battery power would only be used to move the train into, out of and around the freight terminals.

And then there’s Felixstowe!

How much electrification would be needed on the Felixstowe Branch to enable a Class 93 locomotive to take trains into and out of Felixstowe Port?

I have a feeling that we’ll be seeing a lot of these tri-mode freight locomotives.

Heavy Freight Locomotives

One of the major uses of diesel heavy freight locomotives,, like Class 59 and Class 70 locomotives is to move cargoes like coal, biomass, stone and aggregate. Coal traffic is declining, but the others are increasing.

Other countries also use these heavy freight locomotives and like the UK, would like to see a zero-carbon replacement.

I also believe that the current diesel locomotives will become targets of politicians and environmentalists, which will increase the need for a replacement.

There could be a sizeable world-wide market, if say a company could develop a powerful low-carbon locomotive.

A Class 93 locomotive has the following power outputs.

  • 1,300 kW on hybrid power
  • 4,055 kW on electric

It also has a very useful operating speed on 110 mph on electric power.

Compare these figures with the power output of a Class 70 locomotive at 2,750 kW on diesel.

I wonder if Stadler have ideas for a locomotive design, that can give 4,000 kW on electric and 3,000 kW on diesel/battery hybrid power.

A few thoughts.

  • It might be a two-section locomotive.
  • Features and components could be borrowed from UKLight locomotives.
  • It would have a similar axle loading to the current UKLight locomotives.
  • There are 54 UKLight locomotives in service or on order for the UK.
  • Stadler will have details of all routes run by Class 59, Class 66 and Class 70 locomotives, in the UK.
  • Stadler will have the experience of certifying locomotives for the UK.

Stadler also have a reputation for innovation and being a bit different.

Conclusion

All pf the developments I have listed mean that a large selection of efficient zero carbon passenger trains are easier to procure,than they were when Jo Johnson set 2040 as the diesel extinction date.

The one area, where zero carbon operation is difficult is the heavy freight sector.

For freight to be zero-carbon, we probably need a lot more electrification and more electric locomotives.

October 19, 2019 Posted by | Transport, Uncategorized | , , , , , , , , , | 5 Comments

Battery Electrostars And The Uckfield Branch

In Rounding Up The Class 170 Trains, I said this, which is based on a quote from an article in the October 2019 Edition of Modern Railways.

Are Battery Electrostars On The Way?

The article finishes with this paragraph about the Class 171 trains, that will come from Govia Thameslink Railway (GTR) and be converted back to Class 170 trains.

GTR currently uses the ‘171s’ on the non-electrified Marshlink and Uckfield lines, and the release of these sets to EMR is contingent on their replacement with converted Electrostar EMUs with bi-mode battery capability, removing these diesel islands of operation from the otherwise all-electric GTR fleet.

So are these battery Electrostars finally on their way?

The article got several comments, which said that some five-car Electrostars were to be converted and they would probably be Class 376 trains, that would be used.

The comments also said that Network Rail were working on using short lengths of third-rail to charge the train batteries.

That sounds like Vivarail’s system to me, that I wrote about in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

Southern’s Current Diesel Fleet

I will start by looking at Southern’s current diesel fleet that works London Bridge and Uckfield stations and the Marshlink Line.

Currently, Southern has a diesel fleet of Class 171 trains.

  • 12 x two-car trains
  • 8 x four-car trains.

According to Modern Railways, the following trains will transfer to EMR Regional in September 2021.

  • 10 x two car
  • 6 x three-car, which will be created by moving a few cars in the four-car trains.

It looks as if after the transfer Southern will be left with eight driver-cars and ten intermediate cars.

This would give them four four-car trains and two spare intermediate cars. I’m sure that someone will have a need for the intermediate cars to lengthen a two-car Class 170 train because of capacity issues.

The Marshlink Line Service

The service on the Marshlink Line is an hourly service between Ashford International and Eastbourne stations.

  • It is run by Class 171 diesel trains.
  • Trains were four-cars most times I’ve used it.
  • Journey times are around one hour and twenty-minutes.
  • A round trip takes three hours.
  • It would appear that three four-car trains are needed to run the service.

So if there is a spare train, four trains would be ideal, After all the transfers, this is the remaining number of Class 171 trains, that would be left with Southern.

If they wanyted to get rid of the diesel trains, then they could replace the trains on the Marshlink Line with four four-car battery bi-mode Electrostars!

Network Rail’s Plan For The Uckfield Branch

This document on the Network Rail web site from 2016, is entitled Delivering A Better Railway
For A Better Britain – Route Specifications 2016 – South East.

In the document, this is said about the the route between Hurst Green and Uckfield.

The key issue presently is overcrowding on the shorter length services that operate on the route during and close to the peak hours. As the route is operated by Class 171 diesel units, there is only a small fleet available to the TOC to deploy on the route. As a result some peak and shoulder peak services are not able to operate at the maximum length the route is capable of (8-car).

Electrification schemes in the North West will displace rolling stock to strengthen existing peak services to 8-car and eventually of 10-car operation during CP5, so associated platform lengthening is currently being developed, this will also be compatible with 12-car 20m vehicle trains.

Electrification is still an aspiration for this route or use of battery-powered trains (currently under development) if they are deemed successful.

Signalling is controlled by Oxted Signal Box but during CP5 this will be transferred to Three Bridges ROC.

The key point is that the platforms have been lengthened for 240-metre long trains, which will also allow ten-car Class 171 trains, which have 23 metre vehicles.

The Uckfield Branch Service

The service on the Uckfield Branch is an hourly service between London Bridge and Uckfield stations.

  • It is currently run by Class 171 diesel trains.
  • The platforms on the route can accept ten-car trains with 23 m vehicles or twelve-car trains with 20 metre vehicles.
  • A round trip takes three hours.
  • It would appear that three ten- or twelve-car trains are needed to run the service.

So if we add in a spare and perhaps an extra train for the rush hour, it would appear that around half-a-dozen ten- or twelve-car battery bi-mode trains will be needed for the service.

  • As a ten-car train would be two five-car trains, twelve five-car trains would be needed.
  • As a twelve-car train would be three four-car trains, eighteen four-car trains would be needed.

Interestingly, Southern have three trains that could be candidates for conversion to battery bi-modes in their fleet.

  • One hundred and fifty-two four-car Class 377 trains.
  • Thirty-four five car Class 377 trains.
  • Twenty-nine four-car Class 387 trains.

All trains were built for longer commuter journeys,

Which Electrostars Will Be Converted To Battery Operation For The Uckfield Service?

Obviously, the trains must be four- or five-cars and suitable for conversion to battery bi-mode trains, but I feel they must have other features.

  • Toilets
  • First Class seats.
  • Plenty of tables.
  • Wi-fi and plug sockets.
  • Comfortable interiors.
  • End gangways, to ensure staff and passengers can move around the train if required.

I’ll now look at the various fleets of Electrostars.

Class 357 Trains

The Class 357 trains can probably be discounted, as I suspect c2c need them and they are not third rail.

Class 375 Trains

The Class 375 trains can probably be discounted, as I suspect Southeastern need them.

But if the new Southeastern franchise should decide on a complete fleet replacement, as the trains are dual-voltage, they might be very useful if fitted with a battery capability.

Class 376 Trains

The Class 376 trains can probably be discounted, as I suspect Southeastern need them.

The trains are also third-rail only and lack toilets, so would probably need a rebuilt interior.

Class 377 Trains

The Class 377 trains are a possibility as Soiuthern has a large fleet of both four- and five-car trains.

But they would be losing the Class 171 trains, so would probably need to bring in some new trains to have a large enough fleet.

Class 378 Trains

The Class 378 trains can probably be discounted, as London Overground need them.

Class 379 Trains

The Class 379 trains are surely a possibility, as Greater Anglia will be releasing them before the end of 2020.

Consider.

  • There have no new home to go to.
  • I am suspicious that that NXEA overpaid for these trains and Macquarie are sitting on a very good deal, that will cost Grester Anglia a lot to cancel!
  • They appeared to me to be a shoe-in for Corby services, so perhaps they lost out to the Class 360 trains on cost.
  • They are only 100 mph trains, whereas others are 110 mph trains.
  • They would need to be fitted with third-rail shoes.
  • The trains are coming up to nine years old and probably need a refresh.
  • They have an interior aimed at airport passengers.

If I was Macquarie, I’d convert these into go-anywhere battery bi-modes for use in small fleets by operators.

But, Porterbrook’s battery-bi-mode conversion of a Class 350 train may be available at a lower price.

Class 387 Trains

The Class 387 trains are surely a serious possibility, for the following reasons.

  • Govia already has fifty-six of these trains on lease and in service.
  • c2c has six trains, that could come off lease in 2021.
  • The trains are dual voltage
  • The trains are 110 mph trains.
  • They can run as twelve-car walk-through trains.
  • Many of the trains are leased from Porterbrook.

I’ve felt for some time, that these trains would make excellent battery bi-modes.

But they are a good fit for Southern, as surely one could be scrounged from their Great Northern fleet to create a prototype for test.

I would feel that having the required number of trains for the Uckfield Branch can be achieved by September 2021, when the Class 171 trains will be sent to the Midlands.

There is also a backstop, in that there are nineteen Class 365 trains in store, which were replaced by Class 387 trains on Great Northern services. If there is a shortage of Class 387 trains during the conversion, surely some of these Class 365 trains could stand in, just as they did successfully in Scotland recently.

My Choice

I would convert Class 387 trains.

  • There are quite a few Class 387 trains, that could be converted.
  • Southern already have fifty-six Class 387 trains.
  • There are enough to convert eighteen for Uckfield and four for the Marshlink
  • It could be possible to deliver the full fleet before the Class 171 trains leave.
  • If during conversion of the trains, they are short of stock, Southern can hire in some Class 365 trains.

It looks to be a low-risk project.

It will also have collateral benefits.

  • The hourly London Bridge and Uckfield service will be raised to maximum capacity without any new infrastructure, except the trains and a number of battery chargers.
  • Diesel will be eliminated in London Bridge station making the station electric trains only.
  • Diesel will be eliminated between London Bridge and Uckfield stations.
  • Efficient regenerative braking to battery would be available on the complete route.
  • A ten-car diesel service between East Croydon and London Bridge will be replaced by a twelve-car electric service. stations.

In addition, if the diesel trains on the Marshlink Line were to be replaced by battery bi-modes, Southern would be a diesel-free franchise.

What About New Trains?

It’s all about the money and whether the new trains could be delivered in time.

I would suspect that Bombardier, CAF, Stadler and others are making competitive proposals to Southern, but would they be more affordable and timely, than a conversion of Class 387 trains?

But could they be as competitive if Bombadier and Porterbrook co-operated to convert some of Porterbrook’s Class 387 trains, that are already leased to Great Northern?

You don’t usually move house if you need a new boiler, you replace the boiler!

What About Hydrogen Trains?

The Alstom Breeze based on a Class 321 train is scheduled to first come into service in 2022. This is too late, as the Class 171 trains are scheduled to leave in September 2021.

Hydrogen trains would need a hydrogen filling station.

Kinetic Energy Of Class 387 Trains

I will calculate the kinetic energy of a four-car Class 387 train.

I will assume the following.

  • Empty train weight – 174.81 tonnes – Read from the side of the train.
  • Seats – 223
  • Standees – 60 – Estimated from the seats/standing ratio of a Class 720 train.
  • Total passengers – 283
  • Each passenger weighs 90 Kg, with baggage, bikes and buggies.
  • This gives a passenger weight of 25.47 tonnes and a train weight of 200.28 tonnes

Using Omni’s Kinetic Energy calculator, gives the following kinetic energies.

  • 40 mph – 8.89 kWh
  • 50 mph – 13.9 kWh
  • 60 mph – 20.0 kWh
  • 70 mph – 27.2 kWh
  • 80 mph – 35.6 kWh
  • 90 mph – 45.0 kWh
  • 100 mph – 55.6 kWh
  • 110 mph – 67.3 kWh

These figures are for a full train, but even so many will think they are low, when you think that 60 kWh batteries are used in hybrid buses.

A Trip To Uckfield

I took a trip to Uckfield today and these are my observations.

  • The maximum operating speed of the train was no more than 70 mph.
  • For much of the journey the train trundled along at around 40-50 mph.
  • The route is reasonably flat with only gentle gradients.
  • I hardly noticed the diesel engine under the floor of my car.
  • Obviously in the Peak, the engines will have to work harder.

It was a very good demonstration of five Turbostars working in unison.

I can understand why East Midlands Railway are using Class 170 trains, as their standard train for EMR Regional.

Modelling the Route

I have built a mathematical model of the route between Hurst Green and Uckfield using Excel.

Input parameters are.

  • Cruise Energy Consumption in kWh per vehicle mile. I assumed 3 kWh per vehicle mile
  • Cruise Kinetic Energy in kWh. I assumed a 70 mph cruise and used 20 kWh
  • Regeneration Energy Loss as a ratio. I assumed 0.15.

These parameters showed that a battery of between 290 kWh and 350 kWh would be needed, that was full at Hurst Green and was recharged at Uckfield.

Note that Vivarail are talking about putting 424 kWh under a three-car Class 230 train.

This page on the Vivarail web site is entitled Battery Train Update.

This is a paragraph.

Battery trains are not new but battery technology is – and Vivarail is leading the way in new and innovative ways to bring them into service. 230002 has a total of 4 battery rafts each with a capacity of 106 kWh and requires an 8 minute charge at each end of the journey. With a 10 minute charge this range is extended to 50 miles and battery technology is developing all the time so these distances will increase.

So it looks like Vivarail manage to put 212 kWh under each car of their two-car train.

I don’t think putting 350 kWh of batteries under a four-car Class 387 train would be impossible.

I have also created an Excel model for the second route between Ashford and Ore stations.

This shows that a battery of about 300 kWh on the train should cover the route.

It might appear strange that the longer Marshlink route needs a smaller battery, but this is because it leaves both ends of the route with a full battery.

These two links give access to the two Excel models that I have used. Feel free to  access and criticise them.

AshfordOre

HurstGreenUckfield

It does appear, that on both these routes, if a train starts with full batteries, the energy in the battery is reduced in these ways as it travels along the route.

  • There is an energy use to power the train along the line which is proportional to the vehicle-miles.
  • Energy is needed to accelerate the train to line speed after each stop.
  • Energy is needed to operate stop-related functions like opening and closing the doors.

But there will also be energy recovered from regenerative braking from line speed, although this won’t cover the subsequent acceleration.

I suspect with better understanding and better data, Bombardier can create a simple formula for battery size needed based on the following.

  • The length of the route.
  • The number of stations.
  • The line speed
  • The gradient and speed profile of the route
  • The kinetic energy of the train at various loadings and speeds
  • The amount of energy needed for each vehicle mile
  • The efficiency of the regenerative braking

It is not the most difficult of calculations and I was doing lots of them in the 1960s and early 1970s.

Charging The Train At Uckfield

This picture shows the long platform at Uckfield station.

The platform has been built to accept a twelve-car electric train and if traditional third rail electrification were to be installed, this could be used to charge the batteries.

I would use a Vivarail-style system, which I described fully in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

As trains take a few minutes at Uckfield to turnback, I’m sure enough time can be arranged in the timetable to charge the batteries with enough power to get back to the electrification at Hurst Green.

The train would switch the charging system on and off by automatically connecting and disconnecting.

 

 

 

September 30, 2019 Posted by | Transport | , , , , , , , , , , | 15 Comments

Vere Promises East Midlands Bi-Modes In 2022

The title of this post is the saqme as that of this article on Rail Magazine.

This is the first paragraph.

East Midlands Railway will have its entire bi-mode fleet in traffic by December 2022, according to Baroness Vere, the Government’s transport spokesman in the House of Lords.

This statement means that whoever manufactures the trains has just over three years from today to design, build and test the trains.

This paragraph from the article talks about how Bombardier and Hitachi would design the trains.

It’s known that Bombardier and Hitachi are interested in the contract, but both will be supplying new designs, with the former offering a bi-mode Aventra while the latter will offer an AT300 (the Intercity Express Programme platform) but with shorter vehicles.

What do we know about these two trains?

Bombardier Bi-Mode Aventra

In the July 2018 Edition of Modern Railways, there is an article entitled Bi-Mode Aventra Details Revealed.

As is typical with Bombardier interviews, they give their objectives, rather than how they aim to achieve them.

In Bombardier Bi-Mode Aventra To Feature Battery Power, I said this.

The title of this post is the same as this article in Rail Magazine.

A few points from the article.

  • Development has already started.
  • Battery power could be used for Last-Mile applications.
  • The bi-mode would have a maximum speed of 125 mph under both electric and diesel power.
  • The trains will be built at Derby.
  • Bombardier’s spokesman said that the ambience will be better, than other bi-modes.
  • Export of trains is a possibility.

Bombardier’s spokesman also said, that they have offered the train to three new franchises. East Midlands, West Coast Partnership and CrossCountry.

Very little more can be gleaned from the later Modern Railways article.

Consider.

  • Aventras are designed to a modular concept.
  • Bombardier have finally got the software for the train working to a high standard.
  • The trains are designed for ease of manufacture, at a high rate.
  • Development of the bi-mode train must have started before June 2018.
  • Christian Wolmar disclosed the objective of a 125 mph Aventra in February 2017.
  • I have seem references to Aventras, being tested at 110 mph.

On the balance of probabilities, I think it is very possible that Bombardier can deliver a full fleet of 125 mph bi-mode trains with batteries before the end of 2022.

Hitachi AT-300

Consider.

  • Class 802 trains are a version of the AT-300 train, which in turn are a member of Hitachi’s A-Train family.
  • Class 802 trains are successfully in service on the Great Western Railway.
  • Class 385, 395, 800 and 801 are all members of the A-train family and are closely related to the Class 802 train.
  • The A-Train is a modular family.and different numbers of cars and car length, shouldn’t be a problem.
  • Hull Trains ordered their fleet of five Class 802 trains in November 2016 and they will enter service around December 2019 or early in 2020.
  • First Group ordered five AT-300 trains in March 2019 and they will enter service in Autumn 2021.

If the order has been placed in the last few months, there is every chance that Hitachi could deliver a fleet of new bi-mode trains for service in December 2022.

Stadler Flirt

These aren’t mentioned in the Rail Magazine article, but they were mentioned as a possibility for the order in an article by Roger Ford, which was entitled East Midlands IC125 Dilemma, in the June 2019 Edition of Modern Railways.

This is an extract from Roger’s article.

In theory, Stadler should be in pole position. Itis also supplying Abellio’s Greater Anglia franchise, where Flirt bi-modes are running on test.

As they haven’t had any serious problems yet, and they are Swiss, everyone thinks they are amazingly efficient and wonderful. Whjich may turn out to be the case.

In the end, Roger rates their chances as slim.

But Stadler certainly has the technical capability to produce a 125 mph bi-mode train.

Electric Trains To Corby

When the electrified St. Pancras and Corby service opens in December 2020, a round trip will take three hours.

This means that as few as three trains would be needed to provide the service.

The specification would be.

  • Electric traction
  • Twelve cars and 240 metres long.
  • 125 mph capability.
  • Three trains and a spare would probably be needed by December 2020, with a further three trains by December 2021.

Abellio would also probably like the trains to be very similar for drivers and staff.

Currently, it appears that the electric services to Corby, will be run initially by cascaded Class 360 trains.

  • But with a bit of juggling of production, Bombardier, Hitachi and Stadler might be able to manufacture, the four trains needed to start the service in December 2020.
  • Abellio also have Class 360 and Class 379 trains working on Greater Anglia, that are likely to be replaced before December 2020.

So they have a sensible back-stop.

How Many Trains Will Abellio Need?

The current service is two trains per hour to both Nottingham and Sheffield.

These are fastest times.

  • London and Nottingham is one hour forty minutes
  • London and Sheffield is two hours

Even if there is a bit of a speed increase, it looks like at least eight trains will be needed for both services.

As to train length, I doubt five cars will be enough on all trains.

  • Some services are currently run by six and eight-car HSTs.
  • Have Abellio promised more seats?
  • Abellio will be extending some Sheffield services to Rotherham, Barnsley and Leeds.
  • It has already been stated that the Corby trains will be 240 metres long
  • So will we see a uniform fleet of longer trains?

There are some short platforms, so I suspect Abellio will buy a mixture of full-length 240 metre-long trains and half-length 120 metre-long trains, as several train companies have done.

I feel we could see something like eight full length trains and perhaps twelve half-length trains.

I have calculated that seven full-length trains are needed for Corby.

Adding this up gives the following.

  • Eight full-length bi-mode trains of ten-cars.
  • Seven full-length electric trains of ten-cars.
  • Twelve half-length bi-mode trains of five-cars

This gives a total of 27 trains of a total of 210 cars, of which 140 are bi-mode and 70 are electric.

All of this is based on running the current service with new trains.

abellio Greater Anglia have not not just done this in East Anglia, but have purchsed extra trains to add new services and increase frequencies.

So I would feel, that these trains are a minimum order, if Abellio are not doing any expansion.

Daily Telegraph Report – 19th July 2019

A report in the Daily Telegraph on the 19th July 2019, which is entitled Blow For Bombardier’s Derby Plant As £600m Train Contract Goes To Hitachi, says the order has gone to Hitachi.

  • Value is quoted at £600million.
  • A formal announcement is expected next week.

Has next week already passed without an announcement from Abellio?

I do find it strange, that there has been no reference to the Telegraph report in local sources around Derby.

This article on Railway Gazette is entitled Trains Ordered For 2021 Launch Of ‘High-Quality, Low Fare’ London – Edinburgh Service.

FirstGroup have ordered AT-300 trains.

  • All-electric.
  • Five trains of five-cars.
  • A total order value of £100 million.
  • Order placed in March 2019
  • Service starting in Autumn 2021

This works out at four million pounds per car.

Earlier, I calculated that Abellio needed to buy 140 bi-mode cars and seventy electric ones.

Assuming that Abellio run the Corby services with refurbished Class 360 trains, then 140 carriages will cost £560 million.

But this would mean the following.

  • Abellio would be running two separate fleets on the Midland Main Line.
  • The Corby services would run below the operating speed of the route.
  • Expansion would mean the purchase of more trains.

This is very different to their philosophy in Abellio Greater Anglia.

  • Class 745 and Class 755 trains are very similar to drivers and other staff.
  • Both trains can operate at 100 mph on the Great Eastern Main Line.
  • Abellio Greater Anglia have significantly increased the size of their train fleet.

I believe that Bombardier, Hitachi and Stadler can all met this schedule.

  • Deliver four 125 mph electric trains by a date early enough for a December 2020 start for Corby services.
  • Deliver another three 125 mph electric trains by December 2021 for two trains per hour to Corby.
  • Deliver the fleet of 125 mph bi-mode electric trains by December 2022 for Derby,Nottingham, Sheffield and beyond.

At four million pounds for a car for a Hitachi train, this works out at £840 million.

So could it be, that Hitachi have thrown in a good discount to make sure of the order.

It will be very interesting, when Abellio announce their order.

Interim Trains

Baroness Vere also discussed the other trains on the Midland Main Line.

This was the final two paragraph from the article.

As it stands, the 12 High Speed Trains cannot operate in passenger traffic beyond December 31 2019 this year, as they will not meet new accessibility regulations.

When announcing the Abellio contract win in April, Government confirmed that four Class 180s would transfer from Hull Trains to EMR. There was also the possibility that the LNER HSTs could also transfer to the MML, although these do not meet the disability requirements either.

So what is going to happen?

It appears that the four Class 180 trains and the twenty-seven Class 222 trains of various lengths will have to manage.

But I do think, that Baroness Vere’s statement.

East Midlands Railway will have its entire bi-mode fleet in traffic by December 2022.

Is very welcome, as the HSTs will retire on the 31st December 2019 and there will be less than three years of a reduced fleet.

These points should also be noted.

  • In December 2020, when the electrification goes live and new electric trains start running between London and Corby, there will be a few more Class 222 trains available.
  • The Corby electric trains, will also add capacity between London and Kettering.
  • I don’t think it unlikely, that some other trains are rustled up to fill the gaps using perhaps Mark 4 coaches and Class 43 locomotives.

I hope for Abellio’s and their passengers sake, that what Baroness Vere said, comes true!

Could Abellio Go For A Safety-First Solution?

Consider.

  • Abellio Greater Anglia’s new Class 745, Class 755 and Class 720 trains are all running, if not years, but a few months late.
  • There has been nothing serious and Greater Anglia only has one fleet that is not PRM-compliant; the London and Norwich expresses.
  • Providing all goes reasonably well with the introduction of the new Class 745 trains, Greater Anglia’s fleet will be fully PRM-compliant, by the end of the year.

But if they had opted for off-the-shelf Hitachi Class 801 trains for London and Norwich, there might have been less worry. On the other hand, Hitachi way of making trains, by shipping the bodies from Japan probably doesn’t lead itself to high productio rates.

But for Midland Main Line services, Abellio East Midlands Railway aren’t looking at a large fleet of trains.

I estimate they could need.

  • Eight full-length bi-mode trains of ten-cars.
  • Seven full-length electric trains of ten-cars.
  • Twelve half-length bi-mode trains of five-cars

Now that Hitachi’s big orders are coming to an end, Abellio can probably be sure, they will get the main line trains on time and with the minimum of fuss.

Going the safety-first route of buying a fleet of Hitachi trains could deliver the trains that are needed urgently.

  • Four 125 mph electric trains by a date early enough for a December 2020 start for Corby services.
  • Another three 125 mph electric trains by December 2021 for two trains per hour to Corby.
  • A fleet of 125 mph bi-mode electric trains by December 2022 for Derby,Nottingham, Sheffield and beyond.

It might be a bit tight for the Corby electrics, but other trains that could work the route in the interim are available.

Abellio could do a lot worse than give Hitahi the order, if they could deliver early!

Conclusion

If any of the three train manufacturers can supply new trains for the St. Pancras and Corby service to the tight timetable, Abellio would surely be very pleased, as they would only have one train type to introduce on the route.

But I do think, that there is a possibility, that a good discount has won it for Hitachi!

 

 

 

July 26, 2019 Posted by | Transport | , , , , , , , , , , | 16 Comments

Irlam Station To Go Step-Free

This document on the Government web site is entitled Access for All: 73 Stations Set To Benefit From Additional Funding.

Irlam station is on the list.

These pictures show the station and the current subway.

The station was a total surprise, with a large pub-cafe and a lot of visitors and/or travellers sitting in the sun.

I had an excellent coffee and a very welcoming gluten-free blueberry muffin!

This Google Map shows the station.

It is one of those stations where commuters have to cross the railway either on the way to work or coming home.

So a step-free method of crossing the railway is absolutely necessary.

The Current And Future Rail Service

As the station lies conveniently between Liverpool and Warrington to the West and Manchester and Manchester Airport to the East, it must be a station with tremendous potential for increasing the number of passengers.

At the moment the service is two trains per hour (tph) between Liverpool Lime Street and Manchester Oxford Road stations.

  • Oxford Road is probably not the best terminus, as it is not on the Metrolink network.
  • When I returned to Manchester, many passengers alighted at Deansgate for the Metrolink.
  • On the other hand, Liverpool Lime Street is a much better-connected station and it is backed up by Liverpool South Parkway station, which has a connection to Merseyrail’s Northern Line.
  • The current service doesn’t serve Manchester Piccadilly or Airport stations.

A guy in the cafe also told me that two tph are not enough and the trains are often too short.

Merseyrail work to the same principle as the London Overground and other cities of four tph at all times and the frequency certainly draws in passengers.

Whilst I was drinking my coffee, other trains past the station.

  • One tph – Liverpool Lime Street and Manchester Airport
  • One tph – Liverpool Lime Street and Norwich

Modern trains like Northern’s new Class 195 trains, should be able to execute stops at stations faster than the elderly diesel trains currently working the route.

So perhaps, after Irlam station becomes step-free, the Manchester Airport service should call as well.

As Liverpool Lime Street station has been remodelled, I can see a time in the not too distant future, when that station can support four tph, that all stop at Irlam station.

The Manchester end of the route could be a problem, as services terminating at Oxford Road have to cross the busy lines of the Castlefield Corridor.

So perhaps all services through Irlam, should go through Deansgate, Manchester Oxford Road and Manchester Piccadilly stations to terminate either at the Airport or perhaps Stockport or Hazel Grove stations.

But would this overload the Castlefield Corridor?

Battery/Electric Trains

If you look at the route between Liverpool Lime Street and Manchester Oxford Road stations, the following can be seen.

  • Only about thirty miles between Deansgate and Liverpool South Parkway stations is not electrified.
  • The section without electrification doesn’t appear to be particularly challenging, as it is along the River Mersey.

It is my view, that the route between Liverpool and Manchester via Irlam, would be an ideal route for a battery/electric train.

A train between Liverpool Lime Street and Manchester Airport stations would do the following.

  • Run from Liverpool Lime Street station to Liverpool South Parkway station using the installed 25 KVAC overhead electrification.
  • Drop the pantograph during the stop at Liverpool South Parkway station.
  • Run from Liverpool South Parkway station to Deansgate station using battery power.
  • Raise the pantograph during the stop at Deansgate station.
  • Run from Deansgate station to Manchester Airport station, using the installed 25 KVAC overhead electrification.

The exact distance between Deansgate and Liverpool South Parkway stations is 28.2 miles or 45.3 kilometres.

In 2015, I was told by the engineer riding shotgun on the battery/electric Class 379 train, that that experimental train was capable of doing fifty kilometres on battery power.

There are at least four possible trains, that could handle this route efficiently.

  • Porterbrook’s proposed batteryFLEX train based on a Class 350 train.
  • A battery/electric train based on the seemingly unwanted Class 379 train.
  • A battery/electric version of Stadler’s Class 755 train.
  • I believe that Bombardier’s Aventra has been designed so that a battery/electric version can be created.

There are probably others and I haven’t talked about hydrogen-powered trains.

Battery power between Liverpool and Manchester via Irlam, appears to be very feasible.

Tram-Trains

As my train ran between Manchster and Irlam it ran alongside the Metrolink between Cornbrook and Pomona tram stops.

Manchester is very serious about tram-trains, which I wrote about in Could A Class 399 Tram-Train With Batteries Go Between Manchester Victoria And Rochdale/Bury Bolton Street/Rawtenstall Stations?.

Tram-trains are often best employed to go right across a city, so could the Bury tram-trains go to Irlam after joining the route in the Cornbrook area?

  • Only about thirty miles between Deansgate and Liverpool South Parkway stations is not electrified.
  • The route between Liverpool and Manchester via Irlam doesn’t look to be a very challenging line to electrify.
  • The total distance bettween Liverpool Lime Street and Manchester Victoria station is only about forty miles, which is a short distance for a tram-train compared to some in Karlsruhe.
  • Merseyrail’s Northern Line terminates at Hunts Cross station, which is going to be made step-free.
  • There is an existing step-free interchange between the Liverpool and Manchester route via Irlam and Merseyrail’s Northern Line at Liverpool South Parkway station.
  • Class 399 tram-trains will have a battery capability in South Wales.
  • Class 399 tram-trains have an operating speed of 62 mph, which might be possible to increase.
  • Stadler make Class 399 tram-trains and are building the new Class 777 trains for Merseyrail.

I think that Stadler’s engineers will find a totally feasible and affordable way to link Manchester’s Metrolink with Liverpool Lime Street station and Merseyrail’s Northern and Wirral Lines.

I can envisage the following train service running between Liverpool and Manchester via Irlam.

  • An hourly service between Liverpool Lime Street and Nottingham, as has been proposed for the new East Midlands Franchise.
  • A four tph service between Liverpool Lime Street and Manchester Airport via Manchester Piccadilly.
  • A tram-train every ten minutes, linking Liverpool Central and Manchester’s St Peter’s Square.
  • Tram-trains would extend to the North and East of Manchester as required.
  • All services would stop much more comprehensively, than the current services.
  • Several new stations would be built.
  • In the future, the tram-trains could have an interchange with High Speed Two at Warrington.

Obviously, this is just my speculation, based on what I’ve seen of tram-train networks in Germany.

The possibilities for the use of tram trains are wide-ranging.

Installing Step-Free Access At Irlam Station

There would appear to be two ways of installing step-free access at Irlam station.

  • Add lifts to the existing subway.
  • Add a separate bridge with lifts.

These are my thoughts on each method.

Adding Lifts To The Existing Subway

Consider.

  • The engineering would not be difficult.
  • Installaton would probably take a number of weeks.
  • There is good contractor access on both sides of the railway.

There are similar successful step-free installations around the UK

The problem is all about, how you deal with passengers, whilst the subway is closed for the installation of the lifts.

Adding A Separate Bridge With Lifts

Consider.

  • There is a lot of space at both the Eastern and Western ends of the platform to install a new bridge.
  • Adding a separate bridge has the big advantage, that during the installation of the bridge, passengers can use the existing subway.
  • Once the bridge is installed, the subway can be refurbished to an appropriate standard.

Passengers will probably prefer the construction of a new bridge.

In Winner Announced In The Network Rail Footbridge Design Ideas Competition, I wrote how the competition was won by this bridge.

So could a factory-built bridge like this be installed at Irlam station?

There is certainly space at both ends of the platform to install such a bridge and the daily business of the station and its passengers would be able to continue unhindered, during the installation.

I’m also sure, that the cafe would be happy to provide the daily needs of the workforce.

Conclusion

From a station and project management point-of-view, adding a new factory-built bridge to Irlam station is the easiest and quickest way to make the station step-free.

It also appears, that Network Rail have made a wise choice in deciding to put Irlam station on their list of stations to be made step-free, as the station could be a major part in creating a new high-capacity route between Liverpool and Manchester.

This could also be one of the first stations to use an example of the new bridge.

  • Installation would be quick and easy.
  • There is no site access problems.
  • There station can remain fully open during the installation.
  • All stakeholders would probably be in favour.

But above all, it would be a superb demonstration site to bring those from stations, where Network Rail are proposing to erect similar bridges.

July 6, 2019 Posted by | Transport | , , , , , , , , , , , , | Leave a comment

East Midlands Railway’s New Look

The title of this post, is the same as a short article in Issue 882 of Rail Magazine.

What is interesting, is that it shows a visualisation of a Class 360 train in the new livery.

In Abellio East Midlands Railway’s Plans For London And Corby, I came to this conclusion.

I wouldn’t be surprised, if East Midlands Railway brought in Class 379 or Class 360 trains as a stop-gap and replaced them with electric versions of the bi-modes in 2022.

The best solution would be to obtain three twelve-car all-electric versions of the bi-modes by December 2020, to run the initial service.

Hitachi has a 125 mph electric Class 801 train and a 125 mph bi-mode Class 802 train.
Stadler has a 125 mph electric version of Greater Anglia’s Class 745 train and I suspect a compatible 125 mph bi-mode train.
Bombardier are working on a 125 mph bi-mode Aventra and have been quoted as saying Aventras can be stretched to 125 mph.

It will be interesting to see what trains East Midlands Railway chooses.

By showing, a Class 360 train in their new livery, are they attempting to do one or all of the following.

  • Get better terms for the nine interim trains they may need.
  • Get better terms and earlier delivery for enough new twelve-car electric trains to run a 125 mph service between London and Corby.
  • Trying to get better terms with the leasing companies to take back Class 379 and Class 360 trains, currently at Greater Anglia.

The Dutch can be tough negotiators.

July 3, 2019 Posted by | Transport | , , , , | Leave a comment

Is There Nothing A Class 319 Train Can’t Do?

If a train every goes into orbit round the world, it will be highly-likely that it will be a Class 319 train!

Electric Trains In North-West England

The fleet of eighty-six trains entered service in 1987 on Thameslink  and now twenty-seven are plying their trade on the electrified routes around the North-West of England.

  • You don’t hear many complaints about them being called London’s cast-offs.
  • Passengers fill them up in Blackpool, Liverpool, Manchester and Preston.
  • They still do 100 mph where possible.
  • They seem to be reliable.
  • They are not the most attractive of trains.

But handsome is as handsome does!

Drivers have told me, that although the suspension may be a bit soft for the bumpy route across Chat Moss, the trains do have superb brakes.

Bi-Mode Class 769 Trains

Nearly thirty of the trains are being converted into bi-mode Class 769 trains for working partially-electrifired routes and although these are running late, they should be in service this year.

Rail Operations Group

Two Class 769 trains have been ordered to be fast logistics trains by Rail Operations Group.

Wikipedia says the trains will be used to transport mail.

But if you read the history of the Rail Operations Group, they make the assets sweat and I’ve read the trains will still have seats, so they might do some other rail operations.

The Hydrogen-Powered Class 799 Train 

And now comes the Class 799 train!

This is a demonstrator to prove the concept of conversion to hydrogen power.

The fact that the train now has it’s own number must be of some significance.

Alstom are converting Class 321 trains into Class 321 Breeze trains.

  • The conversion will reduce passenger capacity, due to the large hydrogen tank
  • It will have a 1,000 km range.
  • It will have regenerative breaking.
  • It will have a new AC traction package
  • It will probably have the interior of a Class 321 Renatus train.

The conversion will obviously build on Alstom’s experience with the Alstom Coradia iLint train and Eversholt’s experience with the Renatus.

When it comes to the Class 799 train, the following will apply.

  • Porterbrook have all the experience of creating the bi-mode and dual-voltage Class 769 train.
  • Birmingham University’s Birmingham Centre For Railway Research And Education (BCRRE) are providing the expertise to design and convert the Class 319 train to hydrogen power.
  • I also wouldn’t be surprised to find out, that the BCRRE has applied some very extensive mathematical modelling to find out the performance of a hydrogen-powered Class 319 train or HydroFLEX train.
  • The conversion could be based closely on Class 769 experience and sub-systems,

Could the main purpose be to demonstrate the technology and ascertain the views of train operators and passengers on hydrogen power?

The most important question, is whether the Class 799 train, will have the same passenger capacity as the original Class 319 train?

If it does, then BCRRE must have found a way to store the hydrogen in the roof or under the floor.

It should be noted, that it was only in September 2018, that the contract to develop the Class 799 train was signed and yet less than a year later BCRRE and Porterbrook will be demonstrating the train at a trade show.

This short development time, must mean that there is not enough time to modify the structure of the train to fit a large hydrphen tank inside, as Alstom are proposing.

A smaller hydrogen tank could be placed in one of three places.

  • Underneath the train.
  • On the roof.
  • Inside the train, if it is small enough to fit through the train’s doors.

Note.

  1. I doubt that anybody would put the tank inside the train for perceived safety reasons from passengers.
  2. On the roof, would require substantial structural modifications. Is there enough time?

So how do you reduce the size of the hydrogen tank and still store enough hydrogen in it to give the train a useful range?

In Better Storage Might Give Hydrogen The Edge As Renewable Car Fuel, I indicated technology from Lancaster University, that could store four times as much hydrogen in a given size of tank.

This reduced tank size would make the following possible.

  • The hydrogen tank, the fuel cell and the batteries could be located underneath the four-cars of the Class 319 train.
  • The seating capacity of the Class 799 train could be the same as that of a Class 319 train.

Clever electronics would link everything together.

If BCRRE succeed in their development and produce a working hydrogen-powered Class 799 train, how would the technology be used?

Personally, I don’t think we’ll see too many hydrogen-powered Class 799 trains, running passengers on the UK network.

  • The trains are based on a thirty-year-old train.
  • The interiors are rather utilitarian and would need a lot of improvement, to satisfy what passengers expect.
  • Their market can probably be filled in the short-term by more Class 769 trains.

But I do believe that the technology could be applied to more modern trains.

A Hydrogen-Powered Electrostar

Porterbrook own at least twenty four-car Electrostar trains, which have been built in recent years.

Six Class 387 trains, currently used by c2c, may come off lease in the next few years.

Could these trains be converted into a train with the following specification?

  • Modern train interior, with lots of tables and everything passengers want.
  • No reduction in passenger capacity.
  • 110 mph operating speed using electrification.
  • Useful speed and range on hydrogen power.
  • ERTMS capability, which Porterbrook are fitting to the Class 387 trains to be used by Heathrow Express.

It should be born in mind, that a closely-related Class 379 train proved the concept of a UK battery train.

  • The train was converted by Bombardier.
  • It ran successfully for three months between Manningtree and Harwich.
  • The interior of the train was untouched.

But what was impressive was that the train was converted to battery operation and back to normal operation in a very short time.

This leads me to think, that adding new power sources to an Electrostar, is not a complicated rebuild of the train’s electrical system.

If the smaller hydrogen tank, fuel cell and batteries can be fitted under a Class 319 train, I suspect that fitting them under an Electrostar will be no more difficult.

I believe that once the technology is proven with the Class 799 train, then there is no reason, why later Electrostars couldn’t be converted to hydrogen power.

  • Class 387 trains from c2c, Great Northern and Great Western Railway.
  • Class 379 trains, that will be released from Greater Anglia by new Class 745 trains.
  • Class 377 trains from Southeastern could be released by the new franchise holder.

In addition, some Class 378 trains on the London Overground could be converted for service on the proposed West London Orbital Railway.

A Hydrogen-Powered Aventra

If the Electrostar can be converted, I don’t see why an Aventra couldn’t be fitted with a similar system.

Conclusion

A smaller hydrogen tank, holding hydrogen at a high-density would enable trains to be converted without major structural modifications or reducing the passenger capacity.

The development of a more efficient method of hydrogen storage, would open up the possibilities for the conversion of trains to electric-hydrogen hybrid trains.

 

 

 

 

 

 

 

 

June 13, 2019 Posted by | Transport | , , , , , , , , , , , , , , | 1 Comment

Abellio’s Plans For London And Melton Mowbray Via Corby And Oakham

This page on the Department for Transport web site is an interactive map of the Abellio’s promises for East Midlands Railway.

These are mentioned for services to Oakham and Melton Mowbray.

  • After electrification of the Corby route there will continue to be direct service each way between London and Oakham and Melton Mowbray once each weekday, via Corby.
  • This will be operated with brand new 125mph trains when these are introduced from April 2022.

This seems to be a very acceptable minimum position.

In Abellio’s Plans For London And Corby, I suggested that Class 379 trains could be used on the route and that the trains might be fitted with batteries.

  • Corby and Melton Mowbray are about twenty-fives apart.
  • Batteries and their fast-charging technology has come on at a fast pace since Abellio participated in the Class 379 BEMU Trial in 2015.

Are Abellio thinking about extending some Croby services using battery technology?

The technology is certainly capable, but is there a proven passenger need?

Turning Trains At Melton Mowbray stations

This Google Map shows Melton Mowbray station.

It looks to be a station on a large site with more than adequate car parking and I suspect building a bay platform with charging facilities would not be the most difficult of projects.

Conclusion

As current trains take about thirty minutes between Corby and Melton Mowbray, with a bay platform at the latter station, I think it would be possible to run hourly Class 379 trains with batteries to and from St. Pancras.

April 14, 2019 Posted by | Transport | , , , , , , | 3 Comments