The Anonymous Widower

Battery Electrostars And The Uckfield Branch

In Rounding Up The Class 170 Trains, I said this, which is based on a quote from an article in the October 2019 Edition of Modern Railways.

Are Battery Electrostars On The Way?

The article finishes with this paragraph about the Class 171 trains, that will come from Govia Thameslink Railway (GTR) and be converted back to Class 170 trains.

GTR currently uses the ‘171s’ on the non-electrified Marshlink and Uckfield lines, and the release of these sets to EMR is contingent on their replacement with converted Electrostar EMUs with bi-mode battery capability, removing these diesel islands of operation from the otherwise all-electric GTR fleet.

So are these battery Electrostars finally on their way?

The article got several comments, which said that some five-car Electrostars were to be converted and they would probably be Class 376 trains, that would be used.

The comments also said that Network Rail were working on using short lengths of third-rail to charge the train batteries.

That sounds like Vivarail’s system to me, that I wrote about in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

Southern’s Current Diesel Fleet

I will start by looking at Southern’s current diesel fleet that works London Bridge and Uckfield stations and the Marshlink Line.

Currently, Southern has a diesel fleet of Class 171 trains.

  • 12 x two-car trains
  • 8 x four-car trains.

According to Modern Railways, the following trains will transfer to EMR Regional in September 2021.

  • 10 x two car
  • 6 x three-car, which will be created by moving a few cars in the four-car trains.

It looks as if after the transfer Southern will be left with eight driver-cars and ten intermediate cars.

This would give them four four-car trains and two spare intermediate cars. I’m sure that someone will have a need for the intermediate cars to lengthen a two-car Class 170 train because of capacity issues.

The Marshlink Line Service

The service on the Marshlink Line is an hourly service between Ashford International and Eastbourne stations.

  • It is run by Class 171 diesel trains.
  • Trains were four-cars most times I’ve used it.
  • Journey times are around one hour and twenty-minutes.
  • A round trip takes three hours.
  • It would appear that three four-car trains are needed to run the service.

So if there is a spare train, four trains would be ideal, After all the transfers, this is the remaining number of Class 171 trains, that would be left with Southern.

If they wanyted to get rid of the diesel trains, then they could replace the trains on the Marshlink Line with four four-car battery bi-mode Electrostars!

Network Rail’s Plan For The Uckfield Branch

This document on the Network Rail web site from 2016, is entitled Delivering A Better Railway
For A Better Britain – Route Specifications 2016 – South East.

In the document, this is said about the the route between Hurst Green and Uckfield.

The key issue presently is overcrowding on the shorter length services that operate on the route during and close to the peak hours. As the route is operated by Class 171 diesel units, there is only a small fleet available to the TOC to deploy on the route. As a result some peak and shoulder peak services are not able to operate at the maximum length the route is capable of (8-car).

Electrification schemes in the North West will displace rolling stock to strengthen existing peak services to 8-car and eventually of 10-car operation during CP5, so associated platform lengthening is currently being developed, this will also be compatible with 12-car 20m vehicle trains.

Electrification is still an aspiration for this route or use of battery-powered trains (currently under development) if they are deemed successful.

Signalling is controlled by Oxted Signal Box but during CP5 this will be transferred to Three Bridges ROC.

The key point is that the platforms have been lengthened for 240-metre long trains, which will also allow ten-car Class 171 trains, which have 23 metre vehicles.

The Uckfield Branch Service

The service on the Uckfield Branch is an hourly service between London Bridge and Uckfield stations.

  • It is currently run by Class 171 diesel trains.
  • The platforms on the route can accept ten-car trains with 23 m vehicles or twelve-car trains with 20 metre vehicles.
  • A round trip takes three hours.
  • It would appear that three ten- or twelve-car trains are needed to run the service.

So if we add in a spare and perhaps an extra train for the rush hour, it would appear that around half-a-dozen ten- or twelve-car battery bi-mode trains will be needed for the service.

  • As a ten-car train would be two five-car trains, twelve five-car trains would be needed.
  • As a twelve-car train would be three four-car trains, eighteen four-car trains would be needed.

Interestingly, Southern have three trains that could be candidates for conversion to battery bi-modes in their fleet.

  • One hundred and fifty-two four-car Class 377 trains.
  • Thirty-four five car Class 377 trains.
  • Twenty-nine four-car Class 387 trains.

All trains were built for longer commuter journeys,

Which Electrostars Will Be Converted To Battery Operation For The Uckfield Service?

Obviously, the trains must be four- or five-cars and suitable for conversion to battery bi-mode trains, but I feel they must have other features.

  • Toilets
  • First Class seats.
  • Plenty of tables.
  • Wi-fi and plug sockets.
  • Comfortable interiors.
  • End gangways, to ensure staff and passengers can move around the train if required.

I’ll now look at the various fleets of Electrostars.

Class 357 Trains

The Class 357 trains can probably be discounted, as I suspect c2c need them and they are not third rail.

Class 375 Trains

The Class 375 trains can probably be discounted, as I suspect Southeastern need them.

But if the new Southeastern franchise should decide on a complete fleet replacement, as the trains are dual-voltage, they might be very useful if fitted with a battery capability.

Class 376 Trains

The Class 376 trains can probably be discounted, as I suspect Southeastern need them.

The trains are also third-rail only and lack toilets, so would probably need a rebuilt interior.

Class 377 Trains

The Class 377 trains are a possibility as Soiuthern has a large fleet of both four- and five-car trains.

But they would be losing the Class 171 trains, so would probably need to bring in some new trains to have a large enough fleet.

Class 378 Trains

The Class 378 trains can probably be discounted, as London Overground need them.

Class 379 Trains

The Class 379 trains are surely a possibility, as Greater Anglia will be releasing them before the end of 2020.

Consider.

  • There have no new home to go to.
  • I am suspicious that that NXEA overpaid for these trains and Macquarie are sitting on a very good deal, that will cost Grester Anglia a lot to cancel!
  • They appeared to me to be a shoe-in for Corby services, so perhaps they lost out to the Class 360 trains on cost.
  • They are only 100 mph trains, whereas others are 110 mph trains.
  • They would need to be fitted with third-rail shoes.
  • The trains are coming up to nine years old and probably need a refresh.
  • They have an interior aimed at airport passengers.

If I was Macquarie, I’d convert these into go-anywhere battery bi-modes for use in small fleets by operators.

But, Porterbrook’s battery-bi-mode conversion of a Class 350 train may be available at a lower price.

Class 387 Trains

The Class 387 trains are surely a serious possibility, for the following reasons.

  • Govia already has fifty-six of these trains on lease and in service.
  • c2c has six trains, that could come off lease in 2021.
  • The trains are dual voltage
  • The trains are 110 mph trains.
  • They can run as twelve-car walk-through trains.
  • Many of the trains are leased from Porterbrook.

I’ve felt for some time, that these trains would make excellent battery bi-modes.

But they are a good fit for Southern, as surely one could be scrounged from their Great Northern fleet to create a prototype for test.

I would feel that having the required number of trains for the Uckfield Branch can be achieved by September 2021, when the Class 171 trains will be sent to the Midlands.

There is also a backstop, in that there are nineteen Class 365 trains in store, which were replaced by Class 387 trains on Great Northern services. If there is a shortage of Class 387 trains during the conversion, surely some of these Class 365 trains could stand in, just as they did successfully in Scotland recently.

My Choice

I would convert Class 387 trains.

  • There are quite a few Class 387 trains, that could be converted.
  • Southern already have fifty-six Class 387 trains.
  • There are enough to convert eighteen for Uckfield and four for the Marshlink
  • It could be possible to deliver the full fleet before the Class 171 trains leave.
  • If during conversion of the trains, they are short of stock, Southern can hire in some Class 365 trains.

It looks to be a low-risk project.

It will also have collateral benefits.

  • The hourly London Bridge and Uckfield service will be raised to maximum capacity without any new infrastructure, except the trains and a number of battery chargers.
  • Diesel will be eliminated in London Bridge station making the station electric trains only.
  • Diesel will be eliminated between London Bridge and Uckfield stations.
  • Efficient regenerative braking to battery would be available on the complete route.
  • A ten-car diesel service between East Croydon and London Bridge will be replaced by a twelve-car electric service. stations.

In addition, if the diesel trains on the Marshlink Line were to be replaced by battery bi-modes, Southern would be a diesel-free franchise.

What About New Trains?

It’s all about the money and whether the new trains could be delivered in time.

I would suspect that Bombardier, CAF, Stadler and others are making competitive proposals to Southern, but would they be more affordable and timely, than a conversion of Class 387 trains?

But could they be as competitive if Bombadier and Porterbrook co-operated to convert some of Porterbrook’s Class 387 trains, that are already leased to Great Northern?

You don’t usually move house if you need a new boiler, you replace the boiler!

What About Hydrogen Trains?

The Alstom Breeze based on a Class 321 train is scheduled to first come into service in 2022. This is too late, as the Class 171 trains are scheduled to leave in September 2021.

Hydrogen trains would need a hydrogen filling station.

Kinetic Energy Of Class 387 Trains

I will calculate the kinetic energy of a four-car Class 387 train.

I will assume the following.

  • Empty train weight – 174.81 tonnes – Read from the side of the train.
  • Seats – 223
  • Standees – 60 – Estimated from the seats/standing ratio of a Class 720 train.
  • Total passengers – 283
  • Each passenger weighs 90 Kg, with baggage, bikes and buggies.
  • This gives a passenger weight of 25.47 tonnes and a train weight of 200.28 tonnes

Using Omni’s Kinetic Energy calculator, gives the following kinetic energies.

  • 40 mph – 8.89 kWh
  • 50 mph – 13.9 kWh
  • 60 mph – 20.0 kWh
  • 70 mph – 27.2 kWh
  • 80 mph – 35.6 kWh
  • 90 mph – 45.0 kWh
  • 100 mph – 55.6 kWh
  • 110 mph – 67.3 kWh

These figures are for a full train, but even so many will think they are low, when you think that 60 kWh batteries are used in hybrid buses.

A Trip To Uckfield

I took a trip to Uckfield today and these are my observations.

  • The maximum operating speed of the train was no more than 70 mph.
  • For much of the journey the train trundled along at around 40-50 mph.
  • The route is reasonably flat with only gentle gradients.
  • I hardly noticed the diesel engine under the floor of my car.
  • Obviously in the Peak, the engines will have to work harder.

It was a very good demonstration of five Turbostars working in unison.

I can understand why East Midlands Railway are using Class 170 trains, as their standard train for EMR Regional.

Modelling the Route

I have built a mathematical model of the route between Hurst Green and Uckfield using Excel.

Input parameters are.

  • Cruise Energy Consumption in kWh per vehicle mile. I assumed 3 kWh per vehicle mile
  • Cruise Kinetic Energy in kWh. I assumed a 70 mph cruise and used 20 kWh
  • Regeneration Energy Loss as a ratio. I assumed 0.15.

These parameters showed that a battery of between 290 kWh and 350 kWh would be needed, that was full at Hurst Green and was recharged at Uckfield.

Note that Vivarail are talking about putting 424 kWh under a three-car Class 230 train.

This page on the Vivarail web site is entitled Battery Train Update.

This is a paragraph.

Battery trains are not new but battery technology is – and Vivarail is leading the way in new and innovative ways to bring them into service. 230002 has a total of 4 battery rafts each with a capacity of 106 kWh and requires an 8 minute charge at each end of the journey. With a 10 minute charge this range is extended to 50 miles and battery technology is developing all the time so these distances will increase.

So it looks like Vivarail manage to put 212 kWh under each car of their two-car train.

I don’t think putting 350 kWh of batteries under a four-car Class 387 train would be impossible.

I have also created an Excel model for the second route between Ashford and Ore stations.

This shows that a battery of about 300 kWh on the train should cover the route.

It might appear strange that the longer Marshlink route needs a smaller battery, but this is because it leaves both ends of the route with a full battery.

These two links give access to the two Excel models that I have used. Feel free to  access and criticise them.

AshfordOre

HurstGreenUckfield

It does appear, that on both these routes, if a train starts with full batteries, the energy in the battery is reduced in these ways as it travels along the route.

  • There is an energy use to power the train along the line which is proportional to the vehicle-miles.
  • Energy is needed to accelerate the train to line speed after each stop.
  • Energy is needed to operate stop-related functions like opening and closing the doors.

But there will also be energy recovered from regenerative braking from line speed, although this won’t cover the subsequent acceleration.

I suspect with better understanding and better data, Bombardier can create a simple formula for battery size needed based on the following.

  • The length of the route.
  • The number of stations.
  • The line speed
  • The gradient and speed profile of the route
  • The kinetic energy of the train at various loadings and speeds
  • The amount of energy needed for each vehicle mile
  • The efficiency of the regenerative braking

It is not the most difficult of calculations and I was doing lots of them in the 1960s and early 1970s.

Charging The Train At Uckfield

This picture shows the long platform at Uckfield station.

The platform has been built to accept a twelve-car electric train and if traditional third rail electrification were to be installed, this could be used to charge the batteries.

I would use a Vivarail-style system, which I described fully in Vivarail Unveils Fast Charging System For Class 230 Battery Trains.

As trains take a few minutes at Uckfield to turnback, I’m sure enough time can be arranged in the timetable to charge the batteries with enough power to get back to the electrification at Hurst Green.

The train would switch the charging system on and off by automatically connecting and disconnecting.

 

 

 

September 30, 2019 Posted by | Transport | , , , , , , , , , | 12 Comments

Vere Promises East Midlands Bi-Modes In 2022

The title of this post is the saqme as that of this article on Rail Magazine.

This is the first paragraph.

East Midlands Railway will have its entire bi-mode fleet in traffic by December 2022, according to Baroness Vere, the Government’s transport spokesman in the House of Lords.

This statement means that whoever manufactures the trains has just over three years from today to design, build and test the trains.

This paragraph from the article talks about how Bombardier and Hitachi would design the trains.

It’s known that Bombardier and Hitachi are interested in the contract, but both will be supplying new designs, with the former offering a bi-mode Aventra while the latter will offer an AT300 (the Intercity Express Programme platform) but with shorter vehicles.

What do we know about these two trains?

Bombardier Bi-Mode Aventra

In the July 2018 Edition of Modern Railways, there is an article entitled Bi-Mode Aventra Details Revealed.

As is typical with Bombardier interviews, they give their objectives, rather than how they aim to achieve them.

In Bombardier Bi-Mode Aventra To Feature Battery Power, I said this.

The title of this post is the same as this article in Rail Magazine.

A few points from the article.

  • Development has already started.
  • Battery power could be used for Last-Mile applications.
  • The bi-mode would have a maximum speed of 125 mph under both electric and diesel power.
  • The trains will be built at Derby.
  • Bombardier’s spokesman said that the ambience will be better, than other bi-modes.
  • Export of trains is a possibility.

Bombardier’s spokesman also said, that they have offered the train to three new franchises. East Midlands, West Coast Partnership and CrossCountry.

Very little more can be gleaned from the later Modern Railways article.

Consider.

  • Aventras are designed to a modular concept.
  • Bombardier have finally got the software for the train working to a high standard.
  • The trains are designed for ease of manufacture, at a high rate.
  • Development of the bi-mode train must have started before June 2018.
  • Christian Wolmar disclosed the objective of a 125 mph Aventra in February 2017.
  • I have seem references to Aventras, being tested at 110 mph.

On the balance of probabilities, I think it is very possible that Bombardier can deliver a full fleet of 125 mph bi-mode trains with batteries before the end of 2022.

Hitachi AT-300

Consider.

  • Class 802 trains are a version of the AT-300 train, which in turn are a member of Hitachi’s A-Train family.
  • Class 802 trains are successfully in service on the Great Western Railway.
  • Class 385, 395, 800 and 801 are all members of the A-train family and are closely related to the Class 802 train.
  • The A-Train is a modular family.and different numbers of cars and car length, shouldn’t be a problem.
  • Hull Trains ordered their fleet of five Class 802 trains in November 2016 and they will enter service around December 2019 or early in 2020.
  • First Group ordered five AT-300 trains in March 2019 and they will enter service in Autumn 2021.

If the order has been placed in the last few months, there is every chance that Hitachi could deliver a fleet of new bi-mode trains for service in December 2022.

Stadler Flirt

These aren’t mentioned in the Rail Magazine article, but they were mentioned as a possibility for the order in an article by Roger Ford, which was entitled East Midlands IC125 Dilemma, in the June 2019 Edition of Modern Railways.

This is an extract from Roger’s article.

In theory, Stadler should be in pole position. Itis also supplying Abellio’s Greater Anglia franchise, where Flirt bi-modes are running on test.

As they haven’t had any serious problems yet, and they are Swiss, everyone thinks they are amazingly efficient and wonderful. Whjich may turn out to be the case.

In the end, Roger rates their chances as slim.

But Stadler certainly has the technical capability to produce a 125 mph bi-mode train.

Electric Trains To Corby

When the electrified St. Pancras and Corby service opens in December 2020, a round trip will take three hours.

This means that as few as three trains would be needed to provide the service.

The specification would be.

  • Electric traction
  • Twelve cars and 240 metres long.
  • 125 mph capability.
  • Three trains and a spare would probably be needed by December 2020, with a further three trains by December 2021.

Abellio would also probably like the trains to be very similar for drivers and staff.

Currently, it appears that the electric services to Corby, will be run initially by cascaded Class 360 trains.

  • But with a bit of juggling of production, Bombardier, Hitachi and Stadler might be able to manufacture, the four trains needed to start the service in December 2020.
  • Abellio also have Class 360 and Class 379 trains working on Greater Anglia, that are likely to be replaced before December 2020.

So they have a sensible back-stop.

How Many Trains Will Abellio Need?

The current service is two trains per hour to both Nottingham and Sheffield.

These are fastest times.

  • London and Nottingham is one hour forty minutes
  • London and Sheffield is two hours

Even if there is a bit of a speed increase, it looks like at least eight trains will be needed for both services.

As to train length, I doubt five cars will be enough on all trains.

  • Some services are currently run by six and eight-car HSTs.
  • Have Abellio promised more seats?
  • Abellio will be extending some Sheffield services to Rotherham, Barnsley and Leeds.
  • It has already been stated that the Corby trains will be 240 metres long
  • So will we see a uniform fleet of longer trains?

There are some short platforms, so I suspect Abellio will buy a mixture of full-length 240 metre-long trains and half-length 120 metre-long trains, as several train companies have done.

I feel we could see something like eight full length trains and perhaps twelve half-length trains.

I have calculated that seven full-length trains are needed for Corby.

Adding this up gives the following.

  • Eight full-length bi-mode trains of ten-cars.
  • Seven full-length electric trains of ten-cars.
  • Twelve half-length bi-mode trains of five-cars

This gives a total of 27 trains of a total of 210 cars, of which 140 are bi-mode and 70 are electric.

All of this is based on running the current service with new trains.

abellio Greater Anglia have not not just done this in East Anglia, but have purchsed extra trains to add new services and increase frequencies.

So I would feel, that these trains are a minimum order, if Abellio are not doing any expansion.

Daily Telegraph Report – 19th July 2019

A report in the Daily Telegraph on the 19th July 2019, which is entitled Blow For Bombardier’s Derby Plant As £600m Train Contract Goes To Hitachi, says the order has gone to Hitachi.

  • Value is quoted at £600million.
  • A formal announcement is expected next week.

Has next week already passed without an announcement from Abellio?

I do find it strange, that there has been no reference to the Telegraph report in local sources around Derby.

This article on Railway Gazette is entitled Trains Ordered For 2021 Launch Of ‘High-Quality, Low Fare’ London – Edinburgh Service.

FirstGroup have ordered AT-300 trains.

  • All-electric.
  • Five trains of five-cars.
  • A total order value of £100 million.
  • Order placed in March 2019
  • Service starting in Autumn 2021

This works out at four million pounds per car.

Earlier, I calculated that Abellio needed to buy 140 bi-mode cars and seventy electric ones.

Assuming that Abellio run the Corby services with refurbished Class 360 trains, then 140 carriages will cost £560 million.

But this would mean the following.

  • Abellio would be running two separate fleets on the Midland Main Line.
  • The Corby services would run below the operating speed of the route.
  • Expansion would mean the purchase of more trains.

This is very different to their philosophy in Abellio Greater Anglia.

  • Class 745 and Class 755 trains are very similar to drivers and other staff.
  • Both trains can operate at 100 mph on the Great Eastern Main Line.
  • Abellio Greater Anglia have significantly increased the size of their train fleet.

I believe that Bombardier, Hitachi and Stadler can all met this schedule.

  • Deliver four 125 mph electric trains by a date early enough for a December 2020 start for Corby services.
  • Deliver another three 125 mph electric trains by December 2021 for two trains per hour to Corby.
  • Deliver the fleet of 125 mph bi-mode electric trains by December 2022 for Derby,Nottingham, Sheffield and beyond.

At four million pounds for a car for a Hitachi train, this works out at £840 million.

So could it be, that Hitachi have thrown in a good discount to make sure of the order.

It will be very interesting, when Abellio announce their order.

Interim Trains

Baroness Vere also discussed the other trains on the Midland Main Line.

This was the final two paragraph from the article.

As it stands, the 12 High Speed Trains cannot operate in passenger traffic beyond December 31 2019 this year, as they will not meet new accessibility regulations.

When announcing the Abellio contract win in April, Government confirmed that four Class 180s would transfer from Hull Trains to EMR. There was also the possibility that the LNER HSTs could also transfer to the MML, although these do not meet the disability requirements either.

So what is going to happen?

It appears that the four Class 180 trains and the twenty-seven Class 222 trains of various lengths will have to manage.

But I do think, that Baroness Vere’s statement.

East Midlands Railway will have its entire bi-mode fleet in traffic by December 2022.

Is very welcome, as the HSTs will retire on the 31st December 2019 and there will be less than three years of a reduced fleet.

These points should also be noted.

  • In December 2020, when the electrification goes live and new electric trains start running between London and Corby, there will be a few more Class 222 trains available.
  • The Corby electric trains, will also add capacity between London and Kettering.
  • I don’t think it unlikely, that some other trains are rustled up to fill the gaps using perhaps Mark 4 coaches and Class 43 locomotives.

I hope for Abellio’s and their passengers sake, that what Baroness Vere said, comes true!

Could Abellio Go For A Safety-First Solution?

Consider.

  • Abellio Greater Anglia’s new Class 745, Class 755 and Class 720 trains are all running, if not years, but a few months late.
  • There has been nothing serious and Greater Anglia only has one fleet that is not PRM-compliant; the London and Norwich expresses.
  • Providing all goes reasonably well with the introduction of the new Class 745 trains, Greater Anglia’s fleet will be fully PRM-compliant, by the end of the year.

But if they had opted for off-the-shelf Hitachi Class 801 trains for London and Norwich, there might have been less worry. On the other hand, Hitachi way of making trains, by shipping the bodies from Japan probably doesn’t lead itself to high productio rates.

But for Midland Main Line services, Abellio East Midlands Railway aren’t looking at a large fleet of trains.

I estimate they could need.

  • Eight full-length bi-mode trains of ten-cars.
  • Seven full-length electric trains of ten-cars.
  • Twelve half-length bi-mode trains of five-cars

Now that Hitachi’s big orders are coming to an end, Abellio can probably be sure, they will get the main line trains on time and with the minimum of fuss.

Going the safety-first route of buying a fleet of Hitachi trains could deliver the trains that are needed urgently.

  • Four 125 mph electric trains by a date early enough for a December 2020 start for Corby services.
  • Another three 125 mph electric trains by December 2021 for two trains per hour to Corby.
  • A fleet of 125 mph bi-mode electric trains by December 2022 for Derby,Nottingham, Sheffield and beyond.

It might be a bit tight for the Corby electrics, but other trains that could work the route in the interim are available.

Abellio could do a lot worse than give Hitahi the order, if they could deliver early!

Conclusion

If any of the three train manufacturers can supply new trains for the St. Pancras and Corby service to the tight timetable, Abellio would surely be very pleased, as they would only have one train type to introduce on the route.

But I do think, that there is a possibility, that a good discount has won it for Hitachi!

 

 

 

July 26, 2019 Posted by | Transport | , , , , , , , , , , | 16 Comments

Irlam Station To Go Step-Free

This document on the Government web site is entitled Access for All: 73 Stations Set To Benefit From Additional Funding.

Irlam station is on the list.

These pictures show the station and the current subway.

The station was a total surprise, with a large pub-cafe and a lot of visitors and/or travellers sitting in the sun.

I had an excellent coffee and a very welcoming gluten-free blueberry muffin!

This Google Map shows the station.

It is one of those stations where commuters have to cross the railway either on the way to work or coming home.

So a step-free method of crossing the railway is absolutely necessary.

The Current And Future Rail Service

As the station lies conveniently between Liverpool and Warrington to the West and Manchester and Manchester Airport to the East, it must be a station with tremendous potential for increasing the number of passengers.

At the moment the service is two trains per hour (tph) between Liverpool Lime Street and Manchester Oxford Road stations.

  • Oxford Road is probably not the best terminus, as it is not on the Metrolink network.
  • When I returned to Manchester, many passengers alighted at Deansgate for the Metrolink.
  • On the other hand, Liverpool Lime Street is a much better-connected station and it is backed up by Liverpool South Parkway station, which has a connection to Merseyrail’s Northern Line.
  • The current service doesn’t serve Manchester Piccadilly or Airport stations.

A guy in the cafe also told me that two tph are not enough and the trains are often too short.

Merseyrail work to the same principle as the London Overground and other cities of four tph at all times and the frequency certainly draws in passengers.

Whilst I was drinking my coffee, other trains past the station.

  • One tph – Liverpool Lime Street and Manchester Airport
  • One tph – Liverpool Lime Street and Norwich

Modern trains like Northern’s new Class 195 trains, should be able to execute stops at stations faster than the elderly diesel trains currently working the route.

So perhaps, after Irlam station becomes step-free, the Manchester Airport service should call as well.

As Liverpool Lime Street station has been remodelled, I can see a time in the not too distant future, when that station can support four tph, that all stop at Irlam station.

The Manchester end of the route could be a problem, as services terminating at Oxford Road have to cross the busy lines of the Castlefield Corridor.

So perhaps all services through Irlam, should go through Deansgate, Manchester Oxford Road and Manchester Piccadilly stations to terminate either at the Airport or perhaps Stockport or Hazel Grove stations.

But would this overload the Castlefield Corridor?

Battery/Electric Trains

If you look at the route between Liverpool Lime Street and Manchester Oxford Road stations, the following can be seen.

  • Only about thirty miles between Deansgate and Liverpool South Parkway stations is not electrified.
  • The section without electrification doesn’t appear to be particularly challenging, as it is along the River Mersey.

It is my view, that the route between Liverpool and Manchester via Irlam, would be an ideal route for a battery/electric train.

A train between Liverpool Lime Street and Manchester Airport stations would do the following.

  • Run from Liverpool Lime Street station to Liverpool South Parkway station using the installed 25 KVAC overhead electrification.
  • Drop the pantograph during the stop at Liverpool South Parkway station.
  • Run from Liverpool South Parkway station to Deansgate station using battery power.
  • Raise the pantograph during the stop at Deansgate station.
  • Run from Deansgate station to Manchester Airport station, using the installed 25 KVAC overhead electrification.

The exact distance between Deansgate and Liverpool South Parkway stations is 28.2 miles or 45.3 kilometres.

In 2015, I was told by the engineer riding shotgun on the battery/electric Class 379 train, that that experimental train was capable of doing fifty kilometres on battery power.

There are at least four possible trains, that could handle this route efficiently.

  • Porterbrook’s proposed batteryFLEX train based on a Class 350 train.
  • A battery/electric train based on the seemingly unwanted Class 379 train.
  • A battery/electric version of Stadler’s Class 755 train.
  • I believe that Bombardier’s Aventra has been designed so that a battery/electric version can be created.

There are probably others and I haven’t talked about hydrogen-powered trains.

Battery power between Liverpool and Manchester via Irlam, appears to be very feasible.

Tram-Trains

As my train ran between Manchster and Irlam it ran alongside the Metrolink between Cornbrook and Pomona tram stops.

Manchester is very serious about tram-trains, which I wrote about in Could A Class 399 Tram-Train With Batteries Go Between Manchester Victoria And Rochdale/Bury Bolton Street/Rawtenstall Stations?.

Tram-trains are often best employed to go right across a city, so could the Bury tram-trains go to Irlam after joining the route in the Cornbrook area?

  • Only about thirty miles between Deansgate and Liverpool South Parkway stations is not electrified.
  • The route between Liverpool and Manchester via Irlam doesn’t look to be a very challenging line to electrify.
  • The total distance bettween Liverpool Lime Street and Manchester Victoria station is only about forty miles, which is a short distance for a tram-train compared to some in Karlsruhe.
  • Merseyrail’s Northern Line terminates at Hunts Cross station, which is going to be made step-free.
  • There is an existing step-free interchange between the Liverpool and Manchester route via Irlam and Merseyrail’s Northern Line at Liverpool South Parkway station.
  • Class 399 tram-trains will have a battery capability in South Wales.
  • Class 399 tram-trains have an operating speed of 62 mph, which might be possible to increase.
  • Stadler make Class 399 tram-trains and are building the new Class 777 trains for Merseyrail.

I think that Stadler’s engineers will find a totally feasible and affordable way to link Manchester’s Metrolink with Liverpool Lime Street station and Merseyrail’s Northern and Wirral Lines.

I can envisage the following train service running between Liverpool and Manchester via Irlam.

  • An hourly service between Liverpool Lime Street and Nottingham, as has been proposed for the new East Midlands Franchise.
  • A four tph service between Liverpool Lime Street and Manchester Airport via Manchester Piccadilly.
  • A tram-train every ten minutes, linking Liverpool Central and Manchester’s St Peter’s Square.
  • Tram-trains would extend to the North and East of Manchester as required.
  • All services would stop much more comprehensively, than the current services.
  • Several new stations would be built.
  • In the future, the tram-trains could have an interchange with High Speed Two at Warrington.

Obviously, this is just my speculation, based on what I’ve seen of tram-train networks in Germany.

The possibilities for the use of tram trains are wide-ranging.

Installing Step-Free Access At Irlam Station

There would appear to be two ways of installing step-free access at Irlam station.

  • Add lifts to the existing subway.
  • Add a separate bridge with lifts.

These are my thoughts on each method.

Adding Lifts To The Existing Subway

Consider.

  • The engineering would not be difficult.
  • Installaton would probably take a number of weeks.
  • There is good contractor access on both sides of the railway.

There are similar successful step-free installations around the UK

The problem is all about, how you deal with passengers, whilst the subway is closed for the installation of the lifts.

Adding A Separate Bridge With Lifts

Consider.

  • There is a lot of space at both the Eastern and Western ends of the platform to install a new bridge.
  • Adding a separate bridge has the big advantage, that during the installation of the bridge, passengers can use the existing subway.
  • Once the bridge is installed, the subway can be refurbished to an appropriate standard.

Passengers will probably prefer the construction of a new bridge.

In Winner Announced In The Network Rail Footbridge Design Ideas Competition, I wrote how the competition was won by this bridge.

So could a factory-built bridge like this be installed at Irlam station?

There is certainly space at both ends of the platform to install such a bridge and the daily business of the station and its passengers would be able to continue unhindered, during the installation.

I’m also sure, that the cafe would be happy to provide the daily needs of the workforce.

Conclusion

From a station and project management point-of-view, adding a new factory-built bridge to Irlam station is the easiest and quickest way to make the station step-free.

It also appears, that Network Rail have made a wise choice in deciding to put Irlam station on their list of stations to be made step-free, as the station could be a major part in creating a new high-capacity route between Liverpool and Manchester.

This could also be one of the first stations to use an example of the new bridge.

  • Installation would be quick and easy.
  • There is no site access problems.
  • There station can remain fully open during the installation.
  • All stakeholders would probably be in favour.

But above all, it would be a superb demonstration site to bring those from stations, where Network Rail are proposing to erect similar bridges.

July 6, 2019 Posted by | Transport | , , , , , , , , , , , , | Leave a comment

East Midlands Railway’s New Look

The title of this post, is the same as a short article in Issue 882 of Rail Magazine.

What is interesting, is that it shows a visualisation of a Class 360 train in the new livery.

In Abellio East Midlands Railway’s Plans For London And Corby, I came to this conclusion.

I wouldn’t be surprised, if East Midlands Railway brought in Class 379 or Class 360 trains as a stop-gap and replaced them with electric versions of the bi-modes in 2022.

The best solution would be to obtain three twelve-car all-electric versions of the bi-modes by December 2020, to run the initial service.

Hitachi has a 125 mph electric Class 801 train and a 125 mph bi-mode Class 802 train.
Stadler has a 125 mph electric version of Greater Anglia’s Class 745 train and I suspect a compatible 125 mph bi-mode train.
Bombardier are working on a 125 mph bi-mode Aventra and have been quoted as saying Aventras can be stretched to 125 mph.

It will be interesting to see what trains East Midlands Railway chooses.

By showing, a Class 360 train in their new livery, are they attempting to do one or all of the following.

  • Get better terms for the nine interim trains they may need.
  • Get better terms and earlier delivery for enough new twelve-car electric trains to run a 125 mph service between London and Corby.
  • Trying to get better terms with the leasing companies to take back Class 379 and Class 360 trains, currently at Greater Anglia.

The Dutch can be tough negotiators.

July 3, 2019 Posted by | Transport | , , , , | Leave a comment

Is There Nothing A Class 319 Train Can’t Do?

If a train every goes into orbit round the world, it will be highly-likely that it will be a Class 319 train!

Electric Trains In North-West England

The fleet of eighty-six trains entered service in 1987 on Thameslink  and now twenty-seven are plying their trade on the electrified routes around the North-West of England.

  • You don’t hear many complaints about them being called London’s cast-offs.
  • Passengers fill them up in Blackpool, Liverpool, Manchester and Preston.
  • They still do 100 mph where possible.
  • They seem to be reliable.
  • They are not the most attractive of trains.

But handsome is as handsome does!

Drivers have told me, that although the suspension may be a bit soft for the bumpy route across Chat Moss, the trains do have superb brakes.

Bi-Mode Class 769 Trains

Nearly thirty of the trains are being converted into bi-mode Class 769 trains for working partially-electrifired routes and although these are running late, they should be in service this year.

Rail Operations Group

Two Class 769 trains have been ordered to be fast logistics trains by Rail Operations Group.

Wikipedia says the trains will be used to transport mail.

But if you read the history of the Rail Operations Group, they make the assets sweat and I’ve read the trains will still have seats, so they might do some other rail operations.

The Hydrogen-Powered Class 799 Train 

And now comes the Class 799 train!

This is a demonstrator to prove the concept of conversion to hydrogen power.

The fact that the train now has it’s own number must be of some significance.

Alstom are converting Class 321 trains into Class 321 Breeze trains.

  • The conversion will reduce passenger capacity, due to the large hydrogen tank
  • It will have a 1,000 km range.
  • It will have regenerative breaking.
  • It will have a new AC traction package
  • It will probably have the interior of a Class 321 Renatus train.

The conversion will obviously build on Alstom’s experience with the Alstom Coradia iLint train and Eversholt’s experience with the Renatus.

When it comes to the Class 799 train, the following will apply.

  • Porterbrook have all the experience of creating the bi-mode and dual-voltage Class 769 train.
  • Birmingham University’s Birmingham Centre For Railway Research And Education (BCRRE) are providing the expertise to design and convert the Class 319 train to hydrogen power.
  • I also wouldn’t be surprised to find out, that the BCRRE has applied some very extensive mathematical modelling to find out the performance of a hydrogen-powered Class 319 train.
  • The conversion could be based closely on Class 769 experience and sub-systems,

Could the main purpose be to demonstrate the technology and ascertain the views of train operators and passengers on hydrogen power?

The most important question, is whether the Class 799 train, will have the same passenger capacity as the original Class 319 train?

If it does, then BCRRE must have found a way to store the hydrogen in the roof or under the floor.

It should be noted, that it was only in September 2018, that the contract to develop the Class 799 train was signed and yet less than a year later BCRRE and Porterbrook will be demonstrating the train at a trade show.

This short development time, must mean that there is not enough time to modify the structure of the train to fit a large hydrphen tank inside, as Alstom are proposing.

A smaller hydrogen tank could be placed in one of three places.

  • Underneath the train.
  • On the roof.
  • Inside the train, if it is small enough to fit through the train’s doors.

Note.

  1. I doubt that anybody would put the tank inside the train for perceived safety reasons from passengers.
  2. On the roof, would require substantial structural modifications. Is there enough time?

So how do you reduce the size of the hydrogen tank and still store enough hydrogen in it to give the train a useful range?

In Better Storage Might Give Hydrogen The Edge As Renewable Car Fuel, I indicated technology from Lancaster University, that could store four times as much hydrogen in a given size of tank.

This reduced tank size would make the following possible.

  • The hydrogen tank, the fuel cell and the batteries could be located underneath the four-cars of the Class 319 train.
  • The seating capacity of the Class 799 train could be the same as that of a Class 319 train.

Clever electronics would link everything together.

If BCRRE succeed in their development and produce a working hydrogen-powered Class 799 train, how would the technology be used?

Personally, I don’t think we’ll see too many hydrogen-powered Class 799 trains, running passengers on the UK network.

  • The trains are based on a thirty-year-old train.
  • The interiors are rather utilitarian and would need a lot of improvement, to satisfy what passengers expect.
  • Their market can probably be filled in the short-term by more Class 769 trains.

But I do believe that the technology could be applied to more modern trains.

A Hydrogen-Powered Electrostar

Porterbrook own at least twenty four-car Electrostar trains, which have been built in recent years.

Six Class 387 trains, currently used by c2c, may come off lease in the next few years.

Could these trains be converted into a train with the following specification?

  • Modern train interior, with lots of tables and everything passengers want.
  • No reduction in passenger capacity.
  • 110 mph operating speed using electrification.
  • Useful speed and range on hydrogen power.
  • ERTMS capability, which Porterbrook are fitting to the Class 387 trains to be used by Heathrow Express.

It should be born in mind, that a closely-related Class 379 train proved the concept of a UK battery train.

  • The train was converted by Bombardier.
  • It ran successfully for three months between Manningtree and Harwich.
  • The interior of the train was untouched.

But what was impressive was that the train was converted to battery operation and back to normal operation in a very short time.

This leads me to think, that adding new power sources to an Electrostar, is not a complicated rebuild of the train’s electrical system.

If the smaller hydrogen tank, fuel cell and batteries can be fitted under a Class 319 train, I suspect that fitting them under an Electrostar will be no more difficult.

I believe that once the technology is proven with the Class 799 train, then there is no reason, why later Electrostars couldn’t be converted to hydrogen power.

  • Class 387 trains from c2c, Great Northern and Great Western Railway.
  • Class 379 trains, that will be released from Greater Anglia by new Class 745 trains.
  • Class 377 trains from Southeastern could be released by the new franchise holder.

In addition, some Class 378 trains on the London Overground could be converted for service on the proposed West London Orbital Railway.

A Hydrogen-Powered Aventra

If the Electrostar can be converted, I don’t see why an Aventra couldn’t be fitted with a similar system.

Conclusion

A smaller hydrogen tank, holding hydrogen at a high-density would enable trains to be converted without major structural modifications or reducing the passenger capacity.

The development of a more efficient method of hydrogen storage, would open up the possibilities for the conversion of trains to electric-hydrogen hybrid trains.

 

 

 

 

 

 

 

 

June 13, 2019 Posted by | Transport | , , , , , , , , , , , , | 1 Comment

Abellio’s Plans For London And Melton Mowbray Via Corby And Oakham

This page on the Department for Transport web site is an interactive map of the Abellio’s promises for East Midlands Railway.

These are mentioned for services to Oakham and Melton Mowbray.

  • After electrification of the Corby route there will continue to be direct service each way between London and Oakham and Melton Mowbray once each weekday, via Corby.
  • This will be operated with brand new 125mph trains when these are introduced from April 2022.

This seems to be a very acceptable minimum position.

In Abellio’s Plans For London And Corby, I suggested that Class 379 trains could be used on the route and that the trains might be fitted with batteries.

  • Corby and Melton Mowbray are about twenty-fives apart.
  • Batteries and their fast-charging technology has come on at a fast pace since Abellio participated in the Class 379 BEMU Trial in 2015.

Are Abellio thinking about extending some Croby services using battery technology?

The technology is certainly capable, but is there a proven passenger need?

Turning Trains At Melton Mowbray stations

This Google Map shows Melton Mowbray station.

It looks to be a station on a large site with more than adequate car parking and I suspect building a bay platform with charging facilities would not be the most difficult of projects.

Conclusion

As current trains take about thirty minutes between Corby and Melton Mowbray, with a bay platform at the latter station, I think it would be possible to run hourly Class 379 trains with batteries to and from St. Pancras.

April 14, 2019 Posted by | Transport | , , , , , | 3 Comments

Abellio East Midlands Railway’s Plans For London And Corby

This page on the Department for Transport web site is an interactive map of the Abellio’s promises for East Midlands Railway.

These are mentioned for Midland Main Line services to Corby.

Dedicated Corby – St Pancras Express Service Will Be Introduced From December 2020 With 12-car Trains In The Peaks

In 2020, the route between London and Corby will have been improved.

  • It will be fully electrified.
  • There will be double-track between Kettering and Corby.
  • Corby station will have a second platform.
  • 125 mph running will be possible in sections of the route between London and Corby.
  • Twelve-car trains indicate, that the rolling stock would be modern electric multiple units.

Possible trains include.

There must also be the possibility, for a train manufacturer to deliver enough new trains to run the London and Corby service.

To run the current hourly service, three trains are needed, so if each train was three four-car electric multiple units, nine trains would be needed.

As these electric trains will need to mix it with the 125 mph trains on the fast lines between St. Pancras and Kettering, 110 mph trains would probably be preferable.

Class 387 trains were originally mooted for this route, but they all seem to have been snapped up by other operators, who may be reluctant to let them go.

On the other hand, as I wrote in When Crossrail Opens To Reading, Will Great Western Railway Have Too Many Class 387 Trains?, Great Western Railway may have a few trains going spare.

The three other possible trains are both used in Abellio-run franchises.

  • ,Abellio Greater Anglia are replacing their thirty Class 379 trains with new Stadler Class 745/1 trains in 2019.
  • Abellio Greater Anglia are replacing their twenty-one Class 360 trains with new Bombardier Class 720 trains in 2020.
  • West Midlands Trains have a large fleet of Class 350 trains.

Greater Anglia’s plans currently give the order of the new Stadler fleet introduction as.

  • Four-car Class 755/4 trains
  • Twelve-car Class 745/0 trains for London and Norwich services
  • Three-car Class 755/3 trains
  • Twelve-car Class 745/1 trains for London and Stansted services

All trains are to be introduced by the end of 2020.

The Bombardier Class 720 trains are also planned to be introduced by the same date, starting this Autumn.

Could this mean that it is likely that nine Class 379 or Class 360 trains could be available before the end of 2019?

If Class 379 or Class 360 trains are used to Corby, it would allow a very relaxed train introduction.

There could be at least a year, to turn the trains into perfect trains for a high-capacity London and Corby service.

I think using Class 387 and Class 350 trains wouldn’t be so simple.

As the Class 745/1 trains for London and Stansted could be the last to be delivered, which might delay the release of the Class 379 trains, could this explain the rumours for using the Class 360 trains, between London and Corby.

There is also an interesting possibility.

Suppose, Abellio decided to order 125 mph trains from Stadler identical to the Class 745/0 trains between London and Norwich on the route between London and Corby.

  • Stadler probably knows how to upgrade the trains to 125 mph, as there are electric Flirts in Norway with this performance.
  • Greater Anglia have invested heavily in driver simulators and training aids for their Stadler trains.
  • By the end of 2019, they will be running Class 745/0 trains between London and Norwich.

With different colours and a few route-specific details, the London and Norwich Class 745/0 trains, would surely be more than acceptable for London and Corby.

Stadler would surely be able to build the extra trains before the Stansted trains. This would mean that the unwanted Class 379 trains would have to soldier on to Stansted for a few more months.

125 mph Class 745 trains would be a magnificent upgrade to the London and Corby service.

Corby – London Service Doubled To Two Trains Per Hour All Day

This would mean the need would be eighteen four-car trains. or six twelve-car trains.

There are enough Class 379 and Class 360 trains, but obtaining the originally-planned Class 387 trains could be problematic.

Building the three extra new trains would not be a problem.

Kettering, Luton And Luton Airport Parkway Services Provided With 2 Trains Per Hour for Most Of The Day

Note.

  1. Luton station is on the latest list of stations to be made step-free by 2024.
  2. Luton Airport has been agitating for more fast trains to and from London and now gets a half-hourly express.
  3. Luton Airport Parkway station will have the Luton DART connection to the Airport in 2021.
  4. Class 379 trains are designed for airport services.

It appears to be a better service for passengers.

Enhanced Sunday Service Throughout The Route With Regular Direct Sunday Services Between London And Corby

No passenger complaints here.

Refurbished Modern Express Trains From December 2020

Features include.

  • Increased capacity
  • More reliable service
  • Improved comfort
  • Passenger information system
  • Free on-board Wi-Fi
  • At-seat power sockets
  • USB points
  • Air conditioning
  • Tables at all seats
  • Increased luggage space
  • On-board cycle storage

What more could passengers want?

Many of these features are already installed in the Class 379 trains and would be no problem.

  • When I rode the BEMU Trial train between Maningtree and Harwich, the information on the Class 379 train was word perfect.
  • The trains are reliable and comfortable.
  • Wi-fii, power sockets, air-conditioning and increased luggage space are already fitted.
  • The trains have lots of tables, but not at every seat.

These are a selection of pictures of the interior of a Class 379 train.

Updating the interior of the trains would not be a major problem.

Class 360 Trains Would Need A Substantial Refurbish

If Class 360 trains were to be used to Corby, they would need a substantial refurbish, but the general feeling is that this would be possible and there is a year to do it.

iNew-Build Class 745 Trains

With a small fleet of new-build Class 745 trains, the customer would get what they want! – Tables, 2+2 seating, wi-fi sockets etc.

The Greater Anglia London and Norwich specification would be a good starting point.

Will The Class 379 Trains Be Fitted With Batteries?

The BEMU Trial in 2015, showed that this was feasible. Abellio was involved in this trial and must have their own views on the technology.

  • Depots are safer places.
  • Electrification can be simpler.
  • Regenerative braking can be handled on the train without using the overhead wires for return currents.
  • Batteries increase train efficiencies.

This picture shows, the wires are going up at Corby.

So it doesn’t look like battery power will be used to Corby.

But batteries could still be fitted for efficiency and safety reasons or possibly to power the trains to Oakham and Melton Mowbray.

What About The Rumour Suggesting Class 360 Trains Will Be Used?

These are some pictures of a Class 360 train.

Consider.

  • The Class 360 trains have a 2+3 interior with few if any tables.
  • If Bombardier deliver the Class 720 trains, later than planned, availability of the Class 360 trains for Corby could be tight.
  • Could they be prated to 110 mph trains, if that was felt necessary?

I feel that there would be a lot more work to prepare the trains for Corby and a higher chance, they would be late!

I think except as a stop-gap, it is unliklely that Class 360 trains will be used between London and Corby.

Will The Trains Be Replaced In A Few Years?

Consider.

  • The London and Corby route is 79.5 miles long and takes 75 minutes with four stops, which is an average speed of 64 mph.
  • At present, services between London and Corby are run using 125 mph Class 222 trains.
  • The Class 222 trains have better acceleration than an InterCity 125 and much better acceleration than a Class 360 train.
  • The London to Corby route is a less-than-125 mph route.
  • Network Rail ia currently improving the electrification between London and Bedford, so that the route between London and Corby will be an electrified 125 mph route.
  • None of the trains being considered for the service between London and Corby is faster than 110 mph.

Does all this mean that Corby services might be slower after electrification?

  • Will the 125 mph upgrade to the track and electrification ensure the electric trains are faster, even if they are 100 mph trains.
  • Well-driven 100-110 mph trains might be as fast.

However, the Derby, Nottingham and Sheffield expresses might be slowed, just as they are by the 100 mph Thameslink trains.

In the article in Issue 877 of Rail Magazine, four manufacturers are suggested for the bi-mode trains that will be used between London and Derby, Nottingham and Sheffield from 2022.

  • Bombardier
  • Hitachi
  • Stadler
  • Talgo

Hitachi are the only manufacturer with 125 mph bi-mode trains on the UK Network.

They have a near-identical bi-mode Class 802 train and an all-electric Class 801 train.

  • Both are capable of 125 mph running.
  • Conversion between the two trains involves changing the number of engines.
  • Drivers are probably trained to drive both types of train.

Ideally, on the Midland Main Line, electric trains could run to Corby, with bi-mode trains running to Derby, Nottingham and Sheffield.

So when the 125 mph bi-mode trains are delivered in 2022, would it be sensible to run their 125 mph electric cousins to Corby?

  • South of Market Harborough, all East Midlands Railway trains would be 125 mph electric trains, running on 125 mph tracks.
  • One tph between London and Corby would need three twelve-car trains.
  • Two tph between London and Corby would need six twelve-car trains.

If that is the case, then whatever train is run to Corby from December 2020, is only a stop-gap for a couple of years, where only nine four-car trains would be needed.

Would it be more economic in the long term to place the order for the bi-mode trains, with a manufacturer, who can deliver three all-electric trains by December 2020?

I believe Stadler could do that!

Conclusion

I’m fairly certain, that services between London and Corby could be run by refurbished Class 379 trains.

As there is plenty of time before service introduction, this could be a very relaxed and painless introduction of new trains. Unlike some others recently.

There may even be time to upgrade the top speed of the trains, so they fit in better with East Midlands Railway’s 125 mph expresses.

I wouldn’t be surprised, if East Midlands Railway brought in Class 379 or Class 360 trains as a stop-gap and replaced them with electric versions of the bi-modes in 2022.

But the best solution would be to obtain three twelve-car all-electric versions of the bi-modes by December 2020, to run the initial service.

  • Hitachi has a 125 mph electric Class 801 train and a 125 mph bi-mode Class 802 train.
  • Stadler has a 125 mph electric version of Greater Anglia’s Class 745 train and I suspect a compatible 125 mph bi-mode train.
  • Bombardier are working on a 125 mph bi-mode Aventra and have been quoted as saying Aventras can be stretched to 125 mph.

It will be interesting to see what trains East Midlands Railway chooses.

But I think Stadler Class 745 trains are a distinct possibility.

  • Abellio will have experience of running these trains and training drivers and other staff.
  • 125 mph trains could be almost identical to those on London and Norwich services.
  • Stadler have built 125 mph electric Flirts for Norway.

By juggling production a bit, they could be delivered on time for a December 2020 start of services.

April 14, 2019 Posted by | Transport | , , , , , , , | 7 Comments

Could Electric Trains Run On Long Scenic And Rural Routes?

In the UK we have some spectacular scenic rail routes and several long rural lines.

Basingstoke And Exeter

The West of England Main Line is an important rail route.

The section without electrification between Basingstoke and Exeter St. Davids stations has the following characteristics.

  • It is just over one hundred and twenty miles long.
  • There are thirteen intermediate stations, where the expresses call.
  • The average distance between stations is around nine miles.
  • The longest stretch between stations is the sixteen miles between Basingstoke and Andover stations.
  • The average speed of trains on the line is around forty-four mph.

There is high quality 750 VDC third-rail electrification at the London end of the route.

Cumbrian Coast Line

The Cumbrian Coast Line  encircles the Lake District on the West.

The section without electrification between Carnforth and Carlisle stations has the following characteristics.

  • It is around a hundred and fourteen miles long.
  • There are twenty-nine intermediate stations.
  • The average distance between stations is around four miles.
  • The longest stretch between stations is the thirteen miles between Millom and Silecroft stations.
  • The average speed of trains on the line is around thirty-five mph.

There is also high standard 25 KVAC electrification at both ends of the line.

Far North Line

The Far North Line is one of the most iconic rail routes in the UK.

The line has the following characteristics.

  • It is one-hundred-and-seventy-four miles long.
  • There are twenty-three intermediate stations.
  • The average distance between stations is around seven miles.
  • The longest stretch between stations is the thirteen miles between Georgemas Junction and Wick stations.
  • The average speed of trains on the line is around forty mph.

The line is without electrification and there is none nearby.

Glasgow To Oban

The West Highland Line is one of the most iconic rail routes in the UK.

The line is without electrification from Craigendoran Junction, which is two miles South of Helensburgh Upper station  and the section to the North of the junction, has the following characteristics.

  • It is seventy-eight miles long.
  • There are ten intermediate stations.
  • The average distance between stations is around eight miles.
  • The longest stretch between stations is the twelve miles between Tyndrum Lower and Dalmally stations.
  • The average speed of trains on the line is around thirty-three mph.

From Glasgow Queen Street to Craigendoran Junction is electrified with 25 KVAC overhead wires.

Glasgow To Mallaig

This is a second branch of the West Highland Line, which runs between Crianlarich and Mallaig stations.

  • It is one hundred and five miles long.
  • There are eighteen intermediate stations.
  • The average distance between stations is around five miles.
  • The longest stretch between stations is the twelve miles between Bridge Of Orchy and Rannoch stations.
  • The average speed of trains on the line is around twenty-five mph.

Heart Of Wales Line

The Heart of Wales Line is one of the most iconic rail routes in the UK.

The line is without electrification and the section between Swansea and Shrewsbury stations, has the following characteristics.

  • It is just over one hundred and twenty miles long.
  • There are thirty-one intermediate stations.
  • The average distance between stations is around four miles.
  • The longest stretch between stations is the thirteen miles between Shrewsbury and Church Stretton stations.
  • The average speed of trains on the line is just under forty mph.

There is also no electrification at either end of the line.

Settle And Carlisle

The Settle and Carlisle Line is one of the most iconic rail routes in the UK.

The section without electrification between Skipton and Carlisle stations has the following characteristics.

  • It is just over eighty miles long.
  • There are thirteen intermediate stations.
  • The average distance between stations is around six miles.
  • The longest stretch between stations is the sixteen miles between Gargrave and Hellifield stations.
  • The average speed of trains on the line is around forty mph.

There is also high standard 25 KVAC electrification at both ends of the line.

Tyne Valley Line

The Tyne Valley Line is an important route between Carlisle and Newcastle stations.

The line is without electrification has the following characteristics.

  • It is just over sixty miles long.
  • There are ten intermediate stations.
  • The average distance between stations is around six miles.
  • The longest stretch between stations is the sixteen miles between Carlisle and Haltwhistle stations.
  • The average speed of trains on the line is around mph.

There is also high standard 25 KVAC electrification at both ends of the line.

A Pattern Emerges

The routes seem to fit a pattern, with very similar characteristics.

Important Local Transport Links

All of these routes are probably important local transport links, that get children to school, many people to large towns for shopping and entertainment and passengers of all ages to see their friends and relatives.

Many would have been closed but for strong local opposition several decades ago.

Because of the overall rise in passengers in recent years, they are now relatively safe for a couple of decades.

Iconic Routes And Tourist Attractions

Several of these routes are some of the most iconic rail routes in the UK, Europe or even the world and are tourist attractions in their own right.

Some of these routes are also, very important in getting tourists to out-of-the-way-places.

Lots Of Stations Every Few Miles

The average distance between stations on all lines seems to be under ten miles in all cases.

This surprised me, but then all these lines were probably built over a hundred years ago to connect people to the expanding railway network.

The longest stretch between two stations appears to be sixteen miles.

Diesel Hauled

All trains seem to be powered by diesel.

This is surely very inappropriate considering that some of the routes go through some of our most peaceful and unspoilt countryside.

Inadequate Trains

Most services are run by trains, that are just too small.

I know to put a four-car train on, probably doubles the cost, but regularly as I explore these lines, I find that these two-car trains are crammed-full.

I once inadvertently took a two-car Class 150 train, that was on its way to Glastonbury for the Festival. There was no space for anything else and as I didn’t want to wait an hour for the next train, I just about got on.

Passengers need to be encouraged to take trains to rural events, rather than discouraged.

An Electric Train Service For Scenic And Rural Routes

What would be the characteristics of the ideal train for these routes?

A Four-Car Electric Train

Without doubt, the trains need to be four-car electric trains with the British Rail standard length of around eighty metres.

Dual Voltage

To broaden the applications, the trains should obviously be capable of running on both 25 KVAC overhead and 750 VDC third-rail electrification.

100 mph Capability

The trains should have at least a 100 mph capability, so they can run on main lines and not hold up other traffic.

No Large Scale Electrification

Unless there is another reason, like a freight terminal, quarry, mine or port, that needs the electrification, using these trains must be possible without any large scale electrification.

Battery, Diesel Or Hydrogen Power

Obviously, some form of power will be needed to power the trains.

Diesel is an obvious no-no but possibly could only be used in a small way as emergency power to get the trains to the next station, if the main power source failed.

I have not seen any calculations about the weight, size and power of hydrogen powered trains, although there have been some professional videos.

But what worries me about a hydrogen-powered train is that it still needs some sizeable batteries.

So do calculations indicate that a hydrogen-powered train is both a realisable train and that it can be produced at an acceptable cost?

Who knows? Until, I see the maths published in a respected publication, I will reserve my judgement.

Do Bombardier know anything?

In the July 2018 Edition of Modern Railways, there is an article entitled Bi-Mode Aventra Details Revealed.

A lot of the article takes the form of reporting an interview with Des McKeon, who is Bombardier’s Commercial Director and Global Head of Regional and Intercity.

This is a paragraph.

However, Mr McKeon said his view was that diesel engines ‘will be required for many years’ as other power sources do not yet have the required power or efficiency to support inter-city operation at high-speeds.

As Bombardier have recently launched the Talent 3 train with batteries that I wrote about in Bombardier Introduces Talent 3 Battery-Operated Train, I would suspect that if anybody knows the merits of hydrogen and battery power, it is Mr. McKeon.

So it looks like we’re left with battery power.

What could be a problem is that looking at all the example routes is that there is a need to be able to do station-to-station legs upwards of thirteen-sixteen miles.

So I will say that the train must be able to do twenty miles on battery power.

How Much Battery Capacity Should Be Provided On Each Train?

In Issue 864 of Rail Magazine, there is an article entitled Scotland High Among Vivarail’s Targets for Class 230 D-Trains, where this is said.

Vivarail’s two-car battery units contains four 100 kWh lithium-ion battery rafts, each weighing 1.2 tonnes.

If 200 kWh can be placed under the floor of each car of a rebuilt London Underground D78 Stock, then I think it is reasonable that up to 200 kWh can be placed under the floor of each car of the proposed train.

As it would be required that the train didn’t regularly run out of electricity, then I wouldn’t be surprised to see upwards of 800 kWh of battery installed in the train.

n an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

So if we are aiming for a twenty mile range from a four-car train with an 800 kWh battery, this means that any energy consumption better than 10 kWh will achieve the required range.

Regular Charging At Each Station Stop

In the previous section, I showed that the proposed train with a full battery could handle a twenty mile leg between stations.

But surely, this means that at every stop, the electricity used on the previous leg must be replenished.

In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I calculated the kinetic energy of a four-car Class 350 train, with a full load of passengers, travelling at ninety mph, as 47.1 kWh.

So if the train is travelling at a line speed of ninety mph and it is fitted with regenerative braking with an efficiency of eighty percent, 9.4 kWh of energy will be needed for the train to regain line speed.

There will also be an energy consumption of between 3 kWh and 5 kWh per vehicle per mile.

For the proposed four-car train on a twenty mile trip, this will be between 240 and 400 kWh.

This will mean that between 240 and 400 kWh will need to be transferred to the train during a station stop, which will take one minute at most.

I covered en-route charging fully in Charging Battery/Electric Trains En-Route.

I came to this conclusion.

I believe it is possible to design a charging system using proven third-rail technology and batteries or supercapacitors to transfer at least 200 kWh into a train’s batteries at each stop.

This means that a substantial top up can be given to the train’s batteries at stations equipped with a fast charging system.

New Or Refurbished Trains?

New trains designed to meet the specification, could obviously be used.

But there are a several fleets of modern trains, which are due to be replaced. These trains will be looking for new homes and could be updated to the required battery/electric specification.

  • Greater Anglia – 30 x Class 379 trains.
  • Greater Anglia – 26 x Class 360 trains.
  • London North Western Railway – 77 x Class 350 trains.
  • TransPennine Express – 10 x Class 350 trains

In Porterbrook Makes Case For Battery/Electric Bi-Mode Conversion, I describe Porterbrook’s plans to convert a number of Class 350 trains to battery/electric trains.

These Class 350 Battery/FLEX trains should meet the specification needed to serve the scenic and rural routes.

Conclusion

I am led to the conclusion, that it will be possible to design a battery/electric train and charging system, that could introduce electric trains to scenic and rural routes all over the UK, with the exception of Northern Ireland.

But even on the island of Ireland, for use both North and South of the border, new trains could be designed and built, that would work on similar principles.

I should also say, that Porterbrook with their Class 350 Battery/FLEX train seem to have specfied a train that is needed. Pair it with the right charging system and there will be few no-go areas in mainland UK.

November 2, 2018 Posted by | Transport | , , , , , , , , , , | 2 Comments

The Silent Transport Revolution

Today, I rode in two battery-powered modes of transport.

Returning from Kings Cross, I was a passenger in one of London’s new black cabs; the LEVC TX.

Earlier in the day, I’d ridden in a battery-powered version of the Class 230 train.

Both vehicles are quieter than diesel-powered versions, as is to be expected.

But what surprised me about the Class 230 train today, is that you can have a normal conversation in the train without raising your voice. The D78 trains from which the Class 230 train has been developed, weren’t that quiet.

The Class 379 BEMU, that I rode in three years ago, was also quiet.

I came back from Scotland in a Standard Class Mark 4 Coach, which was also quiet, but it is a trailer without motors and probably plenty of sound-proofing.

Does the design of a battery-electric vehicle with regenerative braking reduce the noise and vibration emitted?

The Class 230 train has an electrical system based on DC batteries and AC traction motors. So there must be aone very clever heavy electronics to manage the power. So there is orobably little in the electrical system to make the clatter one typically hears on a train. The train obviously has a mechanical brake for emergencies and to bring the train to a funal halt, but that was not used in anger on our short trip.

October 10, 2018 Posted by | Transport | , , , , , | Leave a comment

Bombardier Introduces Talent 3 Battery-Operated Train

The title of this post is the same as that of this article on InsideEVs.

This picture of the train is from Bombardier’s web site.

This is said.

Bombardier recently presented the Talent 3, which according to the press release, is the first of its kind to enter passenger operation in Europe in over 60 years.

The first prototype has a range of 40 km (25 miles), but the second one scheduled for 2019 will go 100 km (62 miles) on a single charge.

There’s even a nifty little video.

All the features and benefits of the train are detailed.

  • Bridging gaps in electrification.
  • Modular batteries, so more can be added to increase range.
  • Regenerative braking to save energy.
  • Lower infrastructure costs.
  • Electric instead of diesel trains under city centres.
  • Low noise.
  • No CO2 emissions.
  • Low cost of ownership.

But this is all about a Talent 3 train, that is designed to a Continental loading gauge. Wikipedia says this about the design.

The Talent 3 is based on the earlier Talent and Talent 2 designs, with a wider carbody, larger doors, and a lower floor to increase capacity and improve passenger flow at station stops. Depending on the intended service pattern, the Talent 3 can be specified with either a 160 kilometres per hour (99 mph) or 200 kilometres per hour (120 mph) top speed. Talent 3 trainsets can vary in length based on customer requirements—ÖBB ordered six-car sets with a passenger capacity of 300, while Vlexx ordered three-car sets that carry up to 160 passengers.

The picture and the video look like a three-car train.

How Large Are The Batteries On A Talent 3?

What do we know about the train?

  • It appears to have three cars.
  • According to this page on the Bombardier web site, the train has four batteries.
  • I estimate that according to weights in Wikipedia, a three-car Talent weighs 86.5 tonnes
  • A three-car Talent 3 can carry 160 passengers.

My calculation is as follows.

  • 160 passengers at 90 Kg each with baggage, bikes and buggies weigh 14.4 tonnes.
  • I’ll assume each battery weighs a tonne.
  • This gives a total train weight of 104.9 tonnes.

At a speed of 160 kph, the Omni Kinetic Energy Calculator gives a kinetic energy of 28.8 kWh.

So four batteries of 25 kWh each would be sufficient to handle the regenerative braking energy.

What about the UK?

Bombardier’s equivalent product for the UK is the Aventra, which unlike the Talent 3 is a substantially all-new design, although it does use proven technology from previous trains.

It has also received six orders for a total of over 400 trains.

I have always thought, that after the successful BEMU trial with a Bombardier Class 379 train, that batteries will become an important part of rail technology and they will feature in the design of the Aventra.

You may think, that looking at the video, that we’ll have trouble with the UK’s small loading gauge putting the batteries on the roof of the train, but the actual size of batteries is not large and they can go underneath.

I sometimes wonder, If the reason for the delay of the Class 710 trains, is that when they are successfully running, Bombardier will finally come clean in the UK, about how batteries are used on the Aventra. You wouldn’t want the trains to be unreliable, so they are making sure that all systems, including the important batteries are 100 % reliable.

In Don’t Mention Electrification!, I state why I believe that the Barking Riverside Extension of the Gospel Oak to Barking Line could be built without electrification.

So I’m fairly certain that the Class 710 trains are designed to run this section of the route on battery power.

 

 

September 14, 2018 Posted by | Transport | , , , , , | 7 Comments