The Anonymous Widower

Opening Date Announced For Dartmoor Line

The title of this post, is the same as that of this article on Railnews.

This is the first couple of sentences.

Full train services will return to the Dartmoor Line in Devon on 20 November. The Department for Transport said the DfT and its partners had ‘accelerated’ the reopening of the railway, because passenger services will now be launched only nine months since funding was approved.

It also says that the initial service between Exeter and Okehampton will be two-hourly, until May 2022, when it will be hourly.

I have looked up the Great Western Railway timetable and there are two sensible morning trains between Paddington and Okehampton on the 24th of November.

  • 08:04 – Arrives at 11:18
  • 10:04 – Arrives at 13:17

Returning there are two sensible afternoon/evening trains.

  • 15:24 – Arrives at 18:24
  • 18:20 – Arrives at 21:36

It looks like it would be possible to go from London and Okehampton and return in the same day.

October 12, 2021 Posted by | Transport | , , , | Leave a comment

Solving The Electrification Conundrum

The title of this post, is the same as an article in the July 2021 Edition of Modern Railways.

This is the introductory sub-heading.

Regional and rural railways poses a huge problem for the railway to decarbonise.

Lorna McDonald of Hitachi Rail and Jay Mehta of Hitachi ABB Power Grids tell Andy Roden why they believe they have the answer.

These are my thoughts on what is said.

Battery-Electric Trains

The article starts by giving a review of battery-electric trains and their use on routes of moderate but important length.

  • Some short routes can be handled with just a charge on an electrified main line.
  • Some will need a recharge at the termini.
  • Other routes might need a recharge at some intermediate stations, with a possible increase in dwell times.

It was in February 2015, that I wrote Is The Battery Electric Multiple Unit (BEMU) A Big Innovation In Train Design?, after a ride in public service on Bombardier’s test battery-electric train based on a Class 379 train.

I also wrote this in the related post.

Returning from Harwich, I travelled with the train’s on-board test engineer, who was monitoring the train performance in battery mode on a laptop. He told me that acceleration in this mode was the same as a standard train, that the range was up to sixty miles and that only minimal instruction was needed to convert a driver familiar to the Class 379 to this battery variant.

It was an impressive demonstration, of how a full-size train could be run in normal service without connection to a power supply. I also suspect that the partners in the project must be very confident about the train and its technology to allow paying passengers to travel on their only test train.

A couple of years later, I met a lady on another train, who’d used the test train virtually every day during the trial and she and her fellow travellers felt that it was as good if not better than the normal service from a Class 360 train or a Class 321 train.

So why if the engineering, customer acceptance and reliability were proven six years ago, do we not have several battery electric trains in service?

  • There is a proven need for battery-electric trains on the Marshlink Line and the Uckfield Branch in Sussex.
  • The current Class 171 trains are needed elsewhere, so why are no plans in place for replacement trains?
  • The government is pushing electric cars and buses, but why is there such little political support for battery-electric trains?

It’s almost as if, an important civil servant in the decision process has the naive belief that battery-electric trains won’t work and if they do, they will be phenomenally expensive. So the answer is an inevitable no!

Only in the South Wales Metro, are battery-electric trains considered to be part of the solution to create a more efficient and affordable electric railway.

But as I have constantly pointed out since February 2015 in this blog, battery-electric trains should be one of the innovations we use to build a better railway.

Hydrogen Powered Trains

The article says this about hydrogen powered trains.

Hybrid hydrogen fuel cells can potentially solve the range problem, but at the cost of the fuel eating up internal capacity that would ideally be used for passengers. (and as Industry and Technology Editor Roger Ford points out, at present hydrogen is a rather dirty fuel). By contrast, there is no loss of seating or capacity in a Hitachi battery train.

I suspect the article is referring to the Alstom train, which is based on the technology of the Alstom Coradia iLint.

I have ridden this train.

  • It works reliably.
  • It runs on a 100 km route.
  • The route is partially electrified, but the train doesn’t have a pantograph.
  • It has a very noisy mechanical transmission.

Having spoken to passengers at length, no-one seemed bothered by the Hindenburg possibilities.

It is certainly doing some things right, as nearly fifty trains have been ordered for train operating companies in Germany.

Alstom’s train for the UK is the Class 600 train, which will be converted from a four-car Class 321 train.

Note.

  1. Half of both driver cars is taken up by a hydrogen tank.
  2. Trains will be three-cars.
  3. Trains will be able to carry as many passengers as a two-car Class 156 train.

It is an inefficient design that can be improved upon.

Porterbrook and Birmingham University appear to have done that with their Class 799 train.

  • It can use 25 KVAC overhead or 750 VDC third-rail electrification.
  • The hydrogen tanks, fuel cell and other hydrogen gubbins are under the floor.

This picture from Network Rail shows how the train will appear at COP26 in Glasgow in November.

Now that’s what I call a train! Let alone a hydrogen train!

Without doubt, Porterbrook and their academic friends in Birmingham will be laying down a strong marker for hydrogen at COP26!

I know my hydrogen, as my first job on leaving Liverpool University with my Control Engineering degree in 1968 was for ICI at Runcorn, where I worked in a plant that electrolysed brine into hydrogen, sodium hydroxide and chlorine.

My life went full circle last week, when I rode this hydrogen powered bus in London.

The hydrogen is currently supplied from the same chemical works in Runcorn, where I worked. But plans have been made at Runcorn, to produce the hydrogen from renewable energy, which would make the hydrogen as green hydrogen of the highest standard. So sorry Roger, but totally carbon-free hydrogen is available.

The bus is a Wightbus Hydroliner FCEV and this page on the Wrightbus web site gives the specification. The specification also gives a series of cutaway drawings, which show how they fit 86 passengers, all the hydrogen gubbins and a driver into a standard size double-deck bus.

I believe that Alstom’s current proposal is not a viable design, but I wouldn’t say that about the Porterbrook/Birmingham University design.

Any Alternative To Full Electrification Must Meet Operator And Customer Expectations

This is a paragraph from the article.

It’s essential that an alternative traction solution offers the same levels of performance and frequency, while providing an increase in capacity and being economically viable.

In performance, I would include reliability. As the on-board engineer indicated on the Bombardier  test train on the Harwich branch, overhead electrification is not totally reliable, when there are winds and/or criminals about.

Easy Wins

Hitachi’s five-car Class 800 trains and Class 802 trains each have three diesel engines and run the following short routes.

  • Kings Cross and Middlesbrough- 21 miles not electrified – Changeover in Northallerton station
  • Kings Cross and Lincoln – 16.6 miles not electrified – Changeover in Newark Northgate station
  • Paddington and Bedwyn – 13.3 miles not electrified – Changeover in Newbury station
  • Paddington and Oxford – 10.3 miles not electrified – Changeover in Didcot Parkway station

Some of these routes could surely be run with a train, where one diesel engine was replaced by a battery-pack.

As I’m someone, who was designing, building and testing plug-compatible transistorised electronics in the 1960s to replace  older valve-based equipment in a heavy engineering factory, I suspect that creating a plug-compatible battery-pack that does what a diesel engine does in terms of power and performance is not impossible.

What would be the reaction to passengers, once they had been told, they had run all the way to or from London without using any diesel?

Hopefully, they’d come again and tell their friends, which is what a train operator wants and needs.

Solving The Electrification Conundrum

This section is from the article.

Where electrification isn’t likely to be a viable proposition, this presents a real conundrum to train operators and rolling stock leasing companies.

This is why Hitachi Rail and Hitachi ABB Power Grids are joining together to present a combined battery train and charging solution to solve this conundrum. In 2020, Hitachi and ABB’s Power Grids business, came together in a joint venture, and an early outcome of this is confidence that bringing together their expertise in rail, power and grid management, they can work together to make electrification simpler cheaper and quicker.

I agree strongly with the second paragraph, as several times, I’ve been the mathematician and simulation expert in a large multi-disciplinary engineering project, that went on to be very successful.

The Heart Of The Proposition

This is a paragraph from the article.

The proposition is conceptually simple. Rather than have extended dwell times at stations for battery-powered trains, why not have a short stretch of 25 KVAC overhead catenary (the exact length will depend on the types of train and the route) which can charge trains at linespeed on the move via a conventional pantograph?

The article also mentions ABB’s related expertise.

  • Charging buses all over Europe.
  • Creating the power grid for the Great Western Electrification to Cardiff.

I like the concept, but then it’s very similar to what I wrote in The Concept Of Electrification Islands in April 2020.

But as they are electrical power engineers and I’m not, they’d know how to create the system.

Collaboration With Hyperdrive Innovation

The article has nothing negative to say about the the collaboration with Hyperdrive Innovation to produce the battery-packs.

Route Modelling

Hitachi appear to have developed a sophisticated route modelling system, so that routes and charging positions can be planned.

I would be very surprised if they hadn’t developed such a system.

Modular And Scalable

This is a paragraph from the article.

In the heart of the system is a containerised modular solution containing everything needed to power a stretch of overhead catenary to charge trains. A three-car battery train might need one of these, but the great advantage is that it is scalable to capacity and speed requirements.

This all sounds very sensible and can surely cope with a variety of lines and traffic levels.

It also has the great advantage , that if a line is eventually electrified, the equipment can be moved on to another line.

Financing Trains And Chargers

The article talks about the flexibility of the system from an operator’s point of view with respect to finance.

I’ve had some good mentors in the area of finance and I know innovative finance contributed to the success of Metier Management Systems, the project management company I started with three others in 1977.

After selling Metier, I formed an innovative finance company, which would certainly have liked the proposition put forward in the article.

No Compromise, Little Risk

I would agree with this heading of the penultimate section of the article.

In February 2015, when I rode that Class 379 train between Manningtree and Harwich, no compromise had been made by Bombardier and it charged in the electrified bay platform at Manningtree.

But why was that train not put through an extensive route-proving exercise in the UK after the successful trial at Manningtree?

  • Was it the financial state of Bombardier?
  • Was it a lack of belief on the part of politicians, who were too preoccupied with Brexit?
  • Was it that an unnamed civil servant didn’t like the concept and stopped the project?

Whatever the reason, we have wasted several years in getting electric trains accepted on UK railways.

If no compromise needs to be made to create a battery-electric train, that is equivalent to the best-in-class diesel or electric multiple units, then what about the risk?

The beauty of Hitachi’s battery-electric train project is that it can be done in phases designed to minimise risk.

Phase 1 – Initial Battery Testing 

Obviously, there will be a lot of bench testing in a laboratory.

But I also believe that if the Class 803 trains are fitted with a similar battery from Hyperdrive Innovation, then this small fleet of five trains can be used to test a lot of the functionality of the batteries initially in a test environment and later in a real service environment.

The picture shows a Class 803 train under test through Oakleigh Park station.

This phase would be very low risk, especially where passengers are concerned.

Phase 2 – Battery Traction Testing And Route Proving

I am a devious bastard, when it comes to software development. The next set of features would always be available for me to test earlier, than anybody else knew.

I doubt that the engineers at Hyperdrive Innovation will be any different.

So I wouldn’t be surprised to find out that the batteries in the Class 803 trains can also be used for traction, if you have the right authority.

We might even see Class 803 trains turning up in some unusual places to test the traction abilities of the batteries.

As East Coast Trains, Great Western Railway and Hull Trains are all First Group companies, I can’t see any problems.

I’m also sure that Hitachi could convert some Class 800 or Class 802 trains and add these to the test fleet, if East Coast Trains need their Class 803 trains to start service.

This phase would be very low risk, especially where passengers are concerned.

Possibly, the worse thing, that could happen would be a battery failure, which would need the train to be rescued.

Phase 3 – Service Testing On Short Routes

As I indicated earlier, there are some easy routes between London and places like Bedwyn, Lincoln, Middlesbrough and Oxford, that should be possible with a Class 800 or Class 802 train fitted with the appropriate number of batteries.

Once the trains have shown, the required level of performance and reliability, I can see converted Class 800, 801 and Class 802 trains entering services on these and other routes.

Another low risk phase, although passengers are involved, but they are probably subject to the same risks, as on an unmodified train.

Various combinations of diesel generators and batteries could be used to find out, what is the optimum combination for the typical diagrams that train operators use.

Hitachi didn’t commit to any dates, but I can see battery-electric trains running on the Great Western Railway earlier than anybody thinks.

Phase 4 – Service Testing On Medium Routes With A Terminal Charger System

It is my view that the ideal test route for battery-electric trains with a terminal charger system would be the Hull Trains service between London Kings Cross and Hull and Beverley.

The route is effectively in three sections.

  • London Kings Cross and Temple Hirst junction – 169.2 miles – Full Electrification
  • Temple Hirst junction and Hull station – 36.1 miles – No Electrification
  • Hull station and Beverley station – 8.3 miles – No Electrification

Two things would be needed to run zero-carbon electric trains on this route.

  • Sufficient battery capacity in Hull Trains’s Class 802 trains to reliably handle the 36.1 miles between Temple Hirst junction and Hull station.
  • A charging system in Hull station.

As Hull station also handles other Class 800 and Class 802 trains, there will probably be a need to put a charging system in more than one platform.

Note.

  1. Hull station has plenty of space.
  2. No other infrastructure work would be needed.
  3. There is a large bus interchange next door, so I suspect the power supply to Hull station is good.

Hull would be a very good first destination for a battery-electric InterCity train.

Others would include Bristol, Cheltenham, Chester, Scarborough, Sunderland and Swansea.

The risk would be very low, if the trains still had some diesel generator capacity.

Phase 5 – Service Testing On Long Routes With Multiple Charger Systems

Once the performance and reliability of the charger systems have been proven in single installations like perhaps Hull and Swansea stations, longer routes can be prepared for electric trains.

This press release from Hitachi is entitled Hitachi And Eversholt Rail To Develop GWR Intercity Battery Hybrid Train – Offering Fuel Savings Of More Than 20%.

The press release talks about Penzance and London, so would that be a suitable route for discontinuous electrification using multiple chargers?

These are the distances between major points on the route between Penzance and London Paddington.

  • Penzance and Truro – 35.8 miles
  • Truro and Bodmin Parkway – 26.8 miles
  • Bodmin Parkway and Plymouth – 26.9 miles
  • Plymouth and Newton Abbot – 31,9 miles
  • Newton Abbot and Exeter – 20.2 miles
  • Exeter and Taunton – 30.8 miles
  • Taunton and Westbury – 47.2 miles
  • Westbury and Newbury – 42.5 miles
  • Newbury and Paddington – 53 miles

Note.

  1. Only Newbury and Paddington is electrified.
  2. Trains generally stop at Plymouth, Newton Abbott, Exeter and Taunton.
  3. Services between Paddington and Exeter, Okehampton, Paignton, Penzance, Plymouth and Torquay wouldn’t use diesel.
  4. Okehampton would be served by a reverse at Exeter.
  5. As Paignton is just 8.1 miles from Newton Abbot, it probably wouldn’t need a charger.
  6. Bodmin is another possible destination, as Great Western Railway have helped to finance a new platform at Bodmin General station.

It would certainly be good marketing to run zero-carbon electric trains to Devon and Cornwall.

I would class this route as medium risk, but with a high reward for the operator.

In this brief analysis, it does look that Hitachi’s proposed system is of a lower risk.

A Few Questions

I do have a few questions.

Are The Class 803 Trains Fitted With Hyperdrive Innovation Batteries?

East Coast Trains‘s new Class 803 trains are undergoing testing between London Kings Cross and Edinburgh and they can be picked up on Real Time Trains.

Wikipedia says this about the traction system for the trains.

While sharing a bodyshell with the previous UK A-train variants, the Class 803 differs in that it has no diesel engines fitted. They will however be fitted with batteries to enable the train’s on-board services to be maintained, in case the primary electrical supplies have failed.

Will these emergency batteries be made by Hyperdrive Innovation?

My experience of similar systems in other industries, points me to the conclusion, that all Class 80x trains can be fitted with similar, if not identical batteries.

This would give the big advantage of allowing battery testing to be performed on Class 803 trains under test, up and down the East Coast Main Line.

Nothing finds faults in the design and manufacture of something used in transport, than to run it up and down in real conditions.

Failure of the catenary can be simulated to check out emergency modes.

Can A Class 801 Train Be Converted Into A Class 803 Train?

If I’d designed the trains, this conversion would be possible.

Currently, the electric Class 801 trains have a single diesel generator. This is said in the Wikipedia entry for the Class 800 train about the Class 801 train.

These provide emergency power for limited traction and auxiliaries if the power supply from the overhead line fails.

So it looks like the difference between the powertrain of a Class 801 train and a Class 803 train, is that the Class 801 train has a diesel generator and the Class 803 train has batteries. But the diesel generator and batteries, would appear to serve the same purpose.

Surely removing diesel from a Class 801 train would ease the maintenance of the train!

Will The System Work With Third-Rail Electrification?

There are three routes that if they were electrified would probably be electrified with 750 DC third-rail electrification, as they have this electrification at one or both ends.

  • Basingstoke and Exeter
  • Marshlink Line
  • Uckfield branch

Note.

  1. Basingstoke and Exeter would need a couple of charging systems.
  2. The Marshlink line would need a charging system at Rye station.
  3. The Uckfield branch would need a charging system at Uckfield station.

I am fairly certain as an Electrical Engineer, that the third-rails would only need to be switched on, when a train is connected and needs a charge.

I also feel that on some scenic and other routes, 750 VDC third-rail electrification may be more acceptable , than 25 KVAC  overhead electrification. For example, would the heritage lobby accept overhead wires through a World Heritage Site or on top of a Grade I Listed viaduct?

I do feel that the ability to use third-rail 750 VDC third-rail electrification strategically could be a useful tool in the system.

Will The System Work With Lightweight Catenary?

I like the design of this 25 KVAC overhead electrification, that uses lightweight gantries, which use laminated wood for the overhead structure.

There is also a video.

Electrification doesn’t have to be ugly and out-of-character with the surroundings.

Isuspect that both systems could work together.

 

Would Less Bridges Need To Be Rebuilt For Electrification?

This is always a contentious issue with electrification, as rebuilding bridges causes disruption to both rail and road.

I do wonder though by the use of careful design, that it might be possible to arrange that the sections of electrification and the contentious bridges were kept apart, with the bridges arranged to be in sections, where the trains ran on batteries.

I suspect that over the years as surveyors and engineers get more experienced, better techniques will evolve to satisfy all parties.

Get this right and it could reduce the cost of electrification on some lines, that will be difficult to electrify.

How Secure Are The Containerised Systems?

Consider.

  • I was delayed in East Anglia two years ago, because someone stole the overhead wires at two in the morning.
  • Apparently, overhead wire stealing is getting increasingly common in France and other parts of Europe.

I suspect the containerised systems will need to be more secure than those used for buses, which are not in isolated locations.

Will The Containerised Charging Systems Use Energy Storage?

Consider.

  • I’ve lived in rural locations and the power grids are not as good as in urban areas.
  • Increasingly, batteries of one sort or another are being installed in rural locations to beef up local power supplies.
  • A new generation of small-footprint eco-friendly energy storage systems are being developed.

In some locations, it might be prudent for a containerised charging system to share a battery with the local area.

Will The Containerised Charging Systems Accept Electricity From Local Sources Like Solar Farms?

I ask the question, as I know at least one place on the UK network, where a line without electrification runs through a succession of solar farms.

I also know of an area, where a locally-owned co-operative is planning a solar farm, which they propose would be used to power the local main line.

Will The System Work With Class 385 Trains?

Hitachi’s Class 385 trains are closely related to the Class 80x trains, as they are all members of Hitachi’s A-Train family.

Will the Charging Systems Charge Other Manufacturers Trains?

CAF and Stadler are both proposing to introduce battery-electric trains in the UK.

I also suspect that the new breed of electric parcel trains will include a battery electric variant.

As these trains will be able to use 25 KVAC overhead electrification, I would expect, that they would be able to charge their batteries on the Hitachi ABB  charging systems.

Will The System Work With Freight Trains?

I believe that freight services will split into two.

Heavy freight will probably use powerful hydrogen-electric locomotives.

In Freightliner Secures Government Funding For Dual-Fuel Project, which is based on a Freightliner press release, I detail Freightliner’s decarbonisation strategy, which indicates that in the future they will use hydrogen-powered locomotives.

But not all freight is long and extremely heavy and I believe that a battery-electric freight locomotive will emerge for lighter duties.

There is no reason it could not be designed to be compatible with Hitachi’s charging system.

In Is This The Shape Of Freight To Come?, I talked about the plans for 100 mph parcel services based on redundant electric multiple units. Eversholt Rail Group have said they want a Last-Mile capability for their version of these trains.

Perhaps they need a battery-electric capability, so they can deliver parcels and shop supplies to the remoter parts of these islands?

Where Could Hitachi’s System Be Deployed?

This is the final paragraph from the article.

Hitachi is not committing to any routes yet, but a glance at the railway map shows clear potential for the battery/OLE-technology to be deployed on relatively lightly used rural and regional routes where it will be hard to make a case for electrification. The Cambrian Coast and Central Wales Lines would appear to be worthy candidates, and in Scotland, the West Highland Line and Far North routes are also logical areas for the system to be deployed.

In England, while shorter branch lines could simply be operated by battery trains, longer routes need an alternative. Network Rail’s Traction Decarbonisation Network Strategy interim business case recommends hydrogen trains for branch lines in Norfolk, as well as Par to Newquay and Exeter to Barnstaple. However, it is also entirely feasible to use the system on routes likely to be electrified much later in the programme, such as the Great Western main line West of Exeter, Swansea to Fishguard and parts of the Cumbrian Coast Line.

Everyone is entitled to their own opinion and mine would be driven by high collateral benefits and practicality.

These are my thoughts.

Long Rural Lines

The Cambrian, Central Wales (Heart Of Wales), Far North and West Highland Lines may not be connected to each other, but they form a group of rail routes with a lot of shared characteristics.

  • All are rural routes of between 100 and 200 miles.
  • All are mainly single track.
  • They carry occasional freight trains.
  • They carry quite a few tourists, who are there to sample, view or explore the countryside.
  • All trains are diesel.
  • Scotrail have been experimenting with attaching Class 153 trains to the trains on the West Highland Line to act as lounge cars and cycle storage.

Perhaps we need a long-distance rural train with the following characteristics.

  • Four or possibly five cars
  • Battery-electric power
  • Space for a dozen cycles
  • A lounge car
  • Space for a snack trolley
  • Space to provide a parcels service to remote locations.

I should also say, that I’ve used trains on routes in countries like Germany, Poland and Slovenia, where a similar train requirement exists.

Norfolk Branch Lines

Consider.

  • North of the Cambridge and Ipswich, the passenger services on the branch lines and the important commuter routes between Cambridge and Norwich and Ipswich are run by Stadler Class 755 trains, which are designed to be converted to battery-electric trains.
  • Using Hitachi chargers at Beccles, Bury St. Edmunds, Lowestoft, Thetford and Yarmouth and the existing electrification, battery-electric Class 755 trains could provide a zero-carbon train service for Norfolk and Suffolk.
  • With chargers at Dereham and March, two important new branch lines could be added and the Ipswich and Peterborough service could go hourly and zero carbon.
  • Greater Anglia have plans to use the Class 755 trains to run a London and Lowestoft service.
  • Could they be planning a London and Norwich service via Cambridge?
  • Would battery-electric trains running services over Norfolk bring in more visitors by train?

Hitachi may sell a few chargers to Greater Anglia, but I feel they have enough battery-electric trains.

Par And Newquay

The Par and Newquay Line or the Atlantic Coast Line, has been put forward as a Beeching Reversal project, which I wrote about in Beeching Reversal – Transforming The Newquay Line.

In that related post, I said the line needed the following.

  • An improved track layout.
  • An hourly service.
  • An improved Par station.
  • A rebuilt Newquay station with a second platform, so that more through trains can be run.

I do wonder, if after the line were to be improved, that a new three-car battery-electric train shuttling between Par and Newquay stations could be the icing on the cake.

Exeter And Barnstaple

The Tarka Line between Exeter and Barnstaple is one of several local and main lines radiating from Exeter St. David’s station.

  • The Avocet Line to Exmouth
  • The Great Western Main Line to Taunton, Bristol and London
  • The Great Western Main Line to Newton Abbott, Plymouth and Penzance
  • The Riviera Line to Paignton
  • The West of England Line to Salisbury, Basingstoke and London.

Note.

  1. The Dartmoor Line to Okehampton is under development.
  2. Several new stations are planned on the routes.
  3. I have already stated that Exeter could host a charging station between London and Penzance, but it could also be an electrified hub for battery-electric trains running hither and thither.

Exeter could be a city with a battery-electric metro.

Exeter And Penzance

Earlier, I said that I’d trial multiple chargers between Paddington and Penzance to prove the concept worked.

I said this.

I would class this route as medium risk, but with a high reward for the operator.

But it is also an enabling route, as it would enable the following battery-electric services.

  • London and Bodmin
  • London and Okehampton
  • London and Paignton and Torquay

It would also enable the Exeter battery-electric metro.

For these reasons, this route should be electrified using Hitachi’s discontinuous electrification.

Swansea And Fishguard

I mentioned Swansea earlier, as a station, that could be fitted with a charging system, as this would allow battery-electric trains between Paddington and Swansea via Cardiff.

Just as with Exeter, there must be scope at Swansea to add a small number of charging systems to develop a battery-electric metro based on Swansea.

Cumbrian Coast Line

This is a line that needs improvement, mainly for the tourists and employment it could and probably will bring.

These are a few distances.

  • West Coast Main Line (Carnforth) and Barrow-in-Furness – 28.1 miles
  • Barrow-in-Furness and Sellafield – 25 miles
  • Sellafield and Workington – 18 miles
  • Workington and West Coast Main Line (Carlisle) – 33 miles

Note.

  1. The West Coast Main Line is fully-electrified.
  2. I suspect that Barrow-in-Furness, Sellafield and Workington have good enough electricity supplies to support charging systems  for the Cumbrian Coast Line.
  3. The more scenic parts of the line would be left without wires.

It certainly is a line, where a good case for running battery-electric trains can be made.

Crewe And Holyhead

In High-Speed Low-Carbon Transport Between Great Britain And Ireland, I looked at zero-carbon travel between the Great Britain and Ireland.

One of the fastest routes would be a Class 805 train between Euston and Holyhead and then a fast catamaran to either Dublin or a suitable rail-connected port in the North.

  • The Class 805 trains could be made battery-electric.
  • The trains could run between Euston and Crewe at speeds of up to 140 mph under digital signalling.
  • Charging systems would probably be needed at Chester, Llandudno Junction and Holyhead.
  • The North Wales Coast Line looks to my untrained eyes, that it could support at least some 100 mph running.

I believe that a time of under three hours could be regularly achieved between London Euston and Holyhead.

Battery-electric trains on this route, would deliver the following benefits.

  • A fast low-carbon route from Birmingham, London and Manchester to the island of Ireland. if coupled with the latest fast catamarans at Holyhead.
  • Substantial reductions in journey times to and from Anglesey and the North-West corner of Wales.
  • Chester could become a hub for battery-electric trains to and from Birmingham, Crewe, Liverpool, Manchester and Shrewsbury.
  • Battery-electric trains could be used on the Conwy Valley Line.
  • It might even be possible to connect the various railways, heritage railways and tourist attractions in the area with zero-carbon shuttle buses.
  • Opening up of the disused railway across Anglesey.

The economics of this corner of Wales could be transformed.

My Priority Routes

To finish this section, I will list my preferred routes for this method of discontinuous electrification.

  • Exeter and Penzance
  • Swansea and Fishguard
  • Crewe and Holyhead

Note.

  1. Some of the trains needed for these routes have been delivered or are on order.
  2. Local battery-electric services could be developed at Chester, Exeter and Swansea by building on the initial systems.
  3. The collateral benefits could be high for Anglesey, West Wales and Devon and Cornwall.

I suspect too, that very little construction work not concerned with the installation of the charging systems will be needed.

Conclusion

Hitachi have come up with a feasible way to electrify Great Britain’s railways.

I would love to see detailed costings for the following.

  • Adding a battery pack to a Class 800 train.
  • Installing five miles of electrification supported by a containerised charging system.

They could be on the right side for the Treasury.

But whatever the costs, it does appear that the Japanese have gone native, with their version of the Great British Compromise.

 

 

 

 

 

 

 

 

 

 

 

July 9, 2021 Posted by | Design, Energy, Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 12 Comments

Dartmoor Rail Service Reopens This Year In Reversal Of Beeching Cuts

The title of this post is the same as that of this article on The Times.

This is the introductory paragraph.

A largely redundant Victorian railway line will be reopened this year as part of plans to resurrect routes closed in the infamous Beeching cuts.

This line was always likely to be one of the first to reopen, as there is a terminal station at Okehampton, with a bus interchange and other facilities, that has been hosting a service from Exeter on summer Sundays for some years.

The BBC have a reporter there this morning and the station looks in better condition, than some I could name.

This paragraph from The Times describes works to be done.

Network Rail said engineers would start a range of works including improvements to drainage, fencing by the trackside, rebuilding embankments and upgrading Okehampton station. Some 11 miles of track will also be replaced. It is envisaged that test trains will run later this year before it fully reopens to passengers.

Some of the BBC footage, showed a great pile of new track by the station, so it looks like Network Rail are starting to relay the track.

It is hoped to run a one train per two hour service by the end of the year, which could go hourly next year.

In Okehampton Railway Return ‘Clear Reality’ After £40m Commitment In Budget, I said more about this reopening project and I speculated that both Okehampton and Barnstaple services will terminate at Exmouth Junction, as the Barnstaple services do now.

Barnstaple has roughly an hourly service from Exeter and to run two hourly services between Exeter and Coleford Junction, where the two routes divide, may need extra work to be done, so that trains can pass each other at convenient points.

This extra work probably explains, why the service won’t be hourly until next year.

I do wonder, if this reopening also enables other improvement and possibilities.

Meldon Quarry

Meldon Quarry used to be an important source of track ballast for British Rail and it is situated a few miles past Okehampton.

This Google Map shows Meldon Quarry and Okehampton.

Note.

  1. Meldon Quarry is in the South-West corner of the map marked by a red marker.
  2. To its West is Meldon Viaduct, which is part of the old railway line between Okehampton and Plymouth, which is now a walking and cycling route.
  3. The town of Okehampton is in the North-East of the map.
  4. Okehampton station is in the South-East of the town close to the A 30.

I wouldn’t be surprised to find, that Network Rail are upgrading the line to Okehampton, so that if they need to obtain quality track ballast from Meldon Quarry, it would not require upgrades to the track East of Okehampton.

Okehampton Camp

Note Okehampton Camp to the South of Okehampton.

Many Army bases like this one need heavy vehicles to be transported to and from the base.

Have Network Rail future-proofed the design of the route to Okehampton, so that heavy vehicles can be transported to the area?

A Railhead For North Devon And North Cornwall

There are two main roads between Exeter and Cornwall.

  • The A30 goes to the North of Dartmoor and via Launceston
  • The A38 goes to the South of Dartmoor and then via Plymouth

In the past, I’ve always driven to and from Cornwall via the Northern route and I describe one journey in Dancing with Hippopotami.

This Google Map shows the A30, as it passes Okehampton.

Note that although the station and the A30 are physically close, there would be a few minutes to drive between the two.

But I do feel there is scope to create an appropriate transport interchange between.

  • Trains to and from Exeter.
  • Buses and coaches to North Cornwall and North Devon.
  • Cars on the A30.

It could effectively become a parkway station.

An Alternative Route In Case Of Trouble Or Engineering Works At Dawlish

Bodmin Parkway and Okehampton stations are about 43 miles apart and I suspect a coach could do the journey in around fifty minutes.

Would this be a sensible alternative route in times of disruption?

  • It is dual-carriageway all the way.
  • Okehampton station can certainly handle a five-car Class 802 train and could probably be improved to handle a nine- or even ten-car train.
  • Trains from London could get to Okehampton with a reverse at Exeter St. Davids.

I don’t know the area well, but it must be a possibility.

Could Okehampton Have A London Service?

As I said in the previous section, it looks like Okehampton station can handle five-, nine- and possibly ten-car Class 802 trains and there are many pictures of Great Western Railway’s InterCity 125s or HSTs at Okehampton station in years gone by.

I think it would be feasible to run a small number of services between Okehampton and London.

  • The service would have to reverse at Exeter St. Davids station.
  • As one service every two hours runs between London Paddington and Exeter St. Davids stations, a service to Okehampton could be run as an extension to the current Exeter service.
  • It could also stop at Crediton station.

There must also be the possibility of running a pair of five car trains from Paddington, that split at Exeter St. Davids, with one service going to Okehampton and the second one to Paignton.

  • Exeter St. Davids and Paignton are 26.3 miles apart and a fast train takes 34 minutes
  • Exeter St. Davids and Okehampton are probably a slightly shorter distance.

I suspect that a sensible  timetable could be devised.

The specification of the Hitachi InterCity Tri-Mode Train is given in this Hitachi infographic.

Note.

  1. It is intended to run these trains to Exeter, Plymouth and Penzance.
  2. The range of the train on batteries is not given.

These trains could use a mixture of diesel and battery power to travel to and from Okehampton and Paignton.

But I also believe that as Hitachi develop this train and batteries have an increased capacity, that it will be possible for the trin to do a round trip from Exeter to  Okehampton or Paignton without using diesel, provided the train can leave Exeter with a full battery.

According to Hitachi’s infographic, the train will take 10-15 minutes to fully charge at a station like Exeter. But that would add up to fifteen minutes to the timetable.

I feel if the roughly thirty-five miles of track between Exeter St Davids station  and Cogload Junction, which is to the North of Taunton, were to be electrified, then this would mean.

  • Trains would be fully charged for their excursions round Devon.
  • Trains would be fully charged for onward travel to Plymouth and Penzance.
  • Trains going to London would leave Taunton with full batteries to help them on their way on the ninety mile stretch without electrification to Newbury.
  • Trains going between Exeter and Bristol could take advantage of the electrification.

Eventually, this section of electrification might even help to enable trains to run between London and Exeter without using diesel.

As the railway runs alongside the M5 Motorway, this might ease planning for the electrification.

The gap in the electrification between Cogload Junction and Newbury could be difficult to bridge without using diesel.

  • Cogload Junction and Newbury are 85 miles apart.
  • I’ve never seen so many bridges over a railway.
  • I actually counted twenty-one bridges on the twenty miles between Westbury and Pewsey stations.
  • I suspect some will object, if some of the bridges are replaced with modern ones.
  • There would be a lot of disruption and expense, if a large proportion of these bridges were to be replaced.
  • Currently, Great Western Railway run expresses to Exeter, Plymouth and Penzance via Taunton and Newbury.

I think, there needs to be some very radical thinking and low cunning to solve the problem.

  • Battery technology and the best efforts of engineers from Hitachi and Hyperdrive Innovation may stretch the battery range sufficiently.
  • It might be possible to extend the electrification at the Newbury end to perhaps Bedwyn, as there are only a few bridges. This would shorten the distance by up to thirteen miles.
  • It may also be possible to extend the electrification at the Taunton end.
  • I would expect some bridges could be dealt with using discontinuous electrification techniques.

But I believe that full electrification between Newbury and Cogload junction might be an extremely challenging project.

There must also be the possibility of using lightweight overhead line structures, where challenges are made about inappropriate overhead gantries.

There is also a video.

Note.

  1. Electrification doesn’t have to be ugly and out-of-character with the surroundings.
  2. The main overhead structure of this gantry is laminated wood.

These gantries would surely be very suitable for the following.

  • Electrifying secondary routes and especially scenic ones.
  • Electrifying single lines and sidings.
  • Electrifying a bay platform, so that battery electric trains could be charged.

Innovative design could be one of the keys to more electrification.

 

 

 

 

 

 

March 19, 2021 Posted by | Transport | , , , , , , , , , , , , , | 5 Comments

Okehampton Railway Return ‘Clear Reality’ After £40m Commitment In Budget

The title of this post, is the same as that of this article on the Okehampton Times.

This is the introductory paragraph.

The return of a regular passenger rail service to Okehampton is now a clear reality after £40m of funding to reinstate services was included in the Budget.

I am not surprised about this planned reopening, as much of the infrastructure is ready.

Okehampton already has a station, which is shown in this Google Map.

It looks as if there are tourist facilities at the station, where you can stay the night and hire bicycles.

The Dartmoor Railway connects the station to the Tarka Line at Coleford Junction.

  • The railway appears to be single track.
  • There is a single-platform station at Sampford Courtenay.
  • A Great Western Railway passenger service connects St. James Park and Okehampton stations on Summer Sundays.
  • This service also calls at Exeter Central, Exeter St. Davids and Ctediton stations.

In a section called Future Options for the Wikipedia entry for Okehampton station, finishes with this sentence.

Work started by Network Rail in 2020 on relaying and refurbishing the track between Coleford Junction and Okehampton with a plan to reopen the line to passengers during 2021.

It looks like a rail service could be made permanent and seven days per week, for an affordable budget.

The trains and those on the Tarka Line to Barnstaple are actually turned in a reversing siding at Exmouth Junction, which is shown in this Google Map.

Note.

  1. St. James Park station is to the West.
  2. Honiton station is to the East.
  3. The Avocet Line to Exmouth station goes South East at the bottom of the map.

I suspect that if more trains were reversed at Exmouth Junction, some work on track and signalling might be needed to be done.

This paragraph is taken from this article on the Moorlander, which is entitled Okehampton To Exeter Railway Line Secures More Than £40m Funding.

As The Moorlander has previously reported, the news means that Okehampton will become a ‘railhead’ for the hinterland and benefit three main markets; those wishing to visit the heritage station and Dartmoor, local people from Okehampton travelling to Exeter for work, leisure and education plus potential passengers wanting to connect with the train from West Devon, parts of Torridge and North Cornwall.

That seems all very sensible to me.

Could It Be Trialled As A Pop-Up Metro?

Could it be, that once the line is approved for opening, a service is run for a few months to test out, whether it would be financially viable?

It would be the classic test of the Pop-Up Metro concept, that has been proposed by Adrian Shooter of Vivarail, that I wrote about in Vivarail’s Plans For Zero-Emission Trains.

To be zero-emission, there would need to be one of Vivarail’s Fast Charge systems at Exmouth Junction, which could also charge trains for Barnstaple.

What would zero-emission battery trains serving Barnstaple and Okehampton so for passenger numbers?

Train operators discount the positive effects, these trains have on passengers.

Did Greater Anglia for instance, ever do any market research after the successful trial of the Class 379 BEMU train at Manningtree five years ago? I suspect not!

I estimate that to run the following pair of hourly services would take three trains for each.

  • St. James Park and Barnstaple via Exeter Central, Exeter St. Davids and Crediton.
  • St. James Park and Okehampton via Exeter Central, Exeter St. Davids and Crediton.

Two extra trains for a hot spare and one in maintenance would typically be added, to give a requirement of eight trains. As Great Western Railway already run the hourly service to Barnstaple, they would probably need another three trains for the Okehampton service.

I think there are two very sensible and affordable philosophies.

Refurbished Class 150 Trains

These pictures show a refurbishment of one of Great Western Railway‘s Class 150 trains.

 

Note.

  1. It is one of the finest train refurbishments, I have ever seen.
  2. As I rode one that had been to Barnstable, they can certainly handle the route.
  3. Great Western Railway have twenty of these trains.

What’s wrong with a fleet of these trains?

Vivarail Class 230 Trains

Battery-electric or diesel-electric versions of these Class 230 trains would be a possibility.

Note.

  1. I am not sure, if they could manage the climb to Barnstaple, but as they have have so many different power options, I suspect something is possible.
  2. If they are battery-electric, there could be a Fast Charge system at Exmouth Junction, where the trains turn back.
  3. Charging may also be needed at Barnstaple and Okehampton to nudge the trains down the hill.

Suppose the various improvements to track, signals and stations and providing charging cost half of the £40 million, that would leave £20 million to pay for the trains. In a cost comparison from October 2015, it is stated that lease costs of Class 230 trains are £7000 per car per month.

So if we call that £10000 to allow for inflation and the pandemic, that means that 8 x three-car trains will cost £2.88 million per year. There will obviously be maintenance and fuel and electricity costs to add. Let’s make the total £4 million per year.

So that would mean, that after spending £20 million on getting the infrastructure ready, the route could be run for five years as a trial.

Conclusion

Consider.

  • I feel that this line has been proposed for reopening, as it looks like there could be a good return on the investment.
  • The biggest problem would be finding three trains to run the service.
  • I suspect, it could also be implemented in a short period of time and perhaps open for Summer 2021.

This train service could be a prototype for many others in the UK.

 

 

March 6, 2021 Posted by | Transport | , , , , , , | 6 Comments

Bi-Modes Offered To Solve Waterloo-Exeter Constraints

The title of this post is the same as an article by Richard Clinnick in Issue 912 of Rail Magazine.

The article is in turn based on this Continuous Modular Strategic Planning document from Network Rail, which is entitled West of England Line Study 2020.

The document is probably best described, as a document, that will need a lot of digestion for a full reading, but it does provide the reasons for what is said by Richard Clinnick.

The Need For Bi-Mode Trains

This is the a slightly edited version of the start of the Rail Magazine article.

Bi-mode trains should be ordered as part of a scheme to improve the service offered on the West of England route between London Waterloo and Exeter St, Davids, according to Network Rail.

In their extensive study, NR explains that additional capacity could be achieved on the route not only through infrastructure improvements, but also through lengthening some services.

The Network Rail report says.

This cannot be achieved using the current rolling stock fleet currently in operation; which are coming to end of life. Therefore, in the medium term, the opportunity to introduce new,
potentially bi-mode, rolling stock capable of achieving faster journey times and providing more capacity should be considered.

The report also suggests that electric, battery and hydrogen are mentioned as possible power.

South Western Railway’s Short Term Solution

In the short term, South Western Railway (SWR) have reorganised the service to meet short term objectives, which are described fully in the Network Rail report, but can be summed up as follows.

  • There is a need for a capacity increase between London Waterloo and Basingstoke and Salisbury.
  • There is a need for a capacity increase between Axminster and Exeter St. Davids.

SWR’s solution has probably been strongly driven by the needs of COVID-19, which means that a greater amount of space must be provided for each occupied seat. In the last couple of weeks, I’ve made six journeys in SWR’s Class 159 trains and like most other travellers, I’ve had four seats to myself. The trains may be thirty years old, but like most British Rail trains of that era, they keep giving valuable service.

For most of the day, SWR seem to offer the following solution.

  • Nine-car formations of Class 159 trains work between London Waterloo and Salisbury stations at a frequency of two trains per hour (tph)
  • Six-car formations of Class 159 trains work between Salisbury and Exeter St. Davids stations, at a frequency of one train per two hours (tp2h)
  • Passengers use a one-way system at Salisbury to walk between the two trains.

Yesterday, I took SWR’s trains between Clapham Junction and Yeovil Junction stations to observe the working of the route and take a few pictures.

My Observations

These are my observations.

Salisbury Station

This Google Map shows Salisbury station and the nearby Salisbury Depot.

These are some pictures I took at the station.

Note that the train in the platform is a nine-car formation which is 207 metres long. I would estimate that the platforms are around 220-240 metres long.

Yeovil Junction Station

This Google Map shows Yeovil Junction station.

These are some pictures I took at the station.

Note that the two trains in the platforms are six-car formations which are 138 metres long. I would estimate that the platforms are around 140-50 metres long.

Replacement Of The Current Class 159 Trains With Bi-Mode Trains

Consider the following train lengths and capacities.

  • A nine-car formation of Class 159 trains – 207 metres – 588 seats
  • A six-car formation of Class 159 trains – 138 metres – 392 seats
  • A nine-car Class 802 train – 234 metres – 647 seats
  • A five-car Class 802 train – 130 metres – 326 seats
  • A pair of five-car Class 802 trains – 260 metres – 652 seats

The figures for Class 802 trains are taken from the trains that are in service for Great Western Railway (GWR).

The following timings should also be noted.

  • London Waterloo and Salisbury – One hour and thirty minutes
  • Turnback time at Salisbury – Up to thirty minutes
  • Salisbury and Exeter St. Davids – Two hours and six minutes
  • Turnback time at Exeter St. Davids – Trains appear to go to Exeter New Yard for refuelling.
  • Wait at Yeovil Junction – Fourteen minutes

Note.

  1. The wait at Yeovil Junction station is so that trains can fit in with the large lengths of single-track on the West of England Main Line.
  2. The need to refuel the diesel trains would appear to be a major constraint on running more services on the route.
  3. Both legs of the journey have convenient times of one-and-a-half and two hours respectively.

Overall, I think the timings are helpful.

Hitachi’s Regional Battery Train

Hitachi have recently released details of their new Battery Regional train, which are summarised in this Hitachi infographic.

They have also signed an agreement with Hyperdrive Innovation to develop battery packs for their Class 80x trains, as I wrote about in Hyperdrive Innovation And Hitachi Rail To Develop Battery Tech For Trains.

Looking at the length and capacity table, I displayed earlier, it would appear there are several ways to run the service between London Waterloo and Exeter St. Davids using Regional Battery Trains.

  • Run nine-car trains between London Waterloo and Exeter St. Davids
  • Run five-car trains between London Waterloo and Exeter St. Davids
  • Run nine-car trains between London Waterloo and Salisbury and five-car trains between Salisbury and Exeter St. Davids
  • Run a pair of five-car trains between London Waterloo and Salisbury and a single five-car train between Salisbury and Exeter St. Davids, with selective splitting and joining at Salisbury.

Alternatively, the route could be electrified. But that has a few obstacles and disadvantages.

  • Would the various jobsworths allow this substantial length of third-rail electrification?
  • Would there be serious objections to using overhead electrification?
  • Would the travellers on the route, be prepared for all the disruption?
  • There is also the excessive cost of electrification.

I also believe, that only limited small infrastructure improvements would be needed to replace the current diesel trains with battery electric bi-mode trains like the Regional Battery Trains.

Regional Battery Trains Between London Waterloo And Salisbury

Consider.

  • London Waterloo and Salisbury stations are 83.5 miles apart.
  • The fifty miles between London Waterloo and  Worting Junction is fully electrified.
  • Only the 33.5 miles between Salisbury and Worting Junction are not electrified.
  • In the infographic, Hitachi are claiming a 90 kilometre or 56 mile battery range and a static charging time of between 10-15 minutes.

It would certainly appear, that if a train from London passed Worting Junction with full batteries, it would reach Salisbury. Also a train leaving Salisbury with full batteries would certainly reach Worting Junction and the electrification.

There would be three ways of charging the Regional Battery Trains at Salisbury.

  1. Fit a number of charging stations on the platforms.
  2. Install 25 KVAC overhead electrification.
  3. Install 750 VDC third-rail electrification.

I prefer Option 3 in a station like Salisbury.

  • It would be easy to install and British Rail probably drew up detailed plans several times, when full third-rail electrification was under consideration.
  • The trains will be fitted with third-rail shoes to access the third-rail electrification on the way to London.
  • Because of the depot, there’s probably a good power supply.
  • For increased safety, modern electrical design, could mean that power was only switched on when a train is connected.

As trains currently wait for some time in Salisbury, it would be likely, that trains would leave the station with a full battery.

Regional Battery Trains Between London Salisbury And Exeter St Davids

Consider.

  • Salisbury and Exeter St. Davids stations are 88.5 miles apart.
  • There is no electrification.
  • Yeovil Junction station is approximately half way and is 49.5 miles from Exeter St. Davids and 39 miles from Salisbury.
  • Typically, trains wait at Yeovil Junction station for up to fourteen minutes, to get through the single-track sections.

I believe that a similar method of charging to that at Salisbury could be used at Yeovil Junction.

There would also need to be charging at Exeter St. Davids station.

This Google Map shows Exeter St. Davids station.

Services from London Waterloo and Salisbury currently turnback at Exeter St. Davids station in the following manner.

  • They arrive from the track running to the station from the South East.
  • They unload passengers in Platform 1 which is the long platform on the East side of the station.
  • It seems that they then continue through the station to New Yard, where they refuel and do other things, that Class 159 trains do after a long journey.
  • At the appropriate time, they return to Platform 1, where they load up with passengers and leave by the way they arrived.

If a charging system or electrification, were to be added to Platform 1, the trains would be able to fill up in the station.

  • Currently, it appears that the Class 159 trains take over an our to do this complicated manoeuvre.
  • Hitachi are quoting a charging time of 10-15 minutes for their Regional Battery Train.

Could valuable minutes be saved, that would enable a more passenger-friendly timetable?

Charging Regional Battery Trains At Yeovil Junction Station

Currently, the timetable is arranged like this.

  • The Salisbury to Exeter St. Davids train and the Exeter St. Davids to Salisbury trains pass at Yeovil Junction station.
  • Both trains wait in the station for nearly fifteen minutes, which is an adequate time to fully-charge the batteries.

The picture shows the two trains in the platform together.

Currently, the timetable would seem to be ideal for battery electric train operation between Salisbury and Exeter St. Davids stations.

A Possible Timetable Between London Waterloo And Exeter St. Davids 

It did occur to me, that South Western Railway might be running a timetable, that could possibly be designed for Regional Battery Trains.

  1. A nine-car formation between London Waterloo and Salisbury could be replaced with a nine-car or a pair of five-car Regional Battery Trains.
  2. A six-car Salisbury and Exeter St. Davids could be replaced by a five-car Regional Battery Train.
  3. Trains could pass at Gillingham station between Salisbury and Yeovil Junction, as it is a two-platform station about half-way.
  4. Trains could pass at Honiton station between Yeovil Junction and Exeter St. Davids, as it is a two-platform station about half-way.

I think if it was needed, that two tph would be possible not only between London Waterloo and Salisbury, but also between London Waterloo and Exeter St. Davids.

I also think that the following detailed service pattern would be possible.

  • A pair of five-car Regional Battery Trains would leave London Waterloo at a frequency of two tph.
  • The front train would be for passengers for all stations between London Waterloo and Exeter St. Davids.
  • The rear train would only be for passengers for all stations between London Waterloo and Salisbury.
  • On arrival at Salisbury, both trains would charge their batteries.
  • When the batteries were fully-charged, the two trains would split.
  • The front train would continue on its journey to Exeter St. Davids, leaving the rear train in the platform.
  • The Exeter St. Davids to London Waterloo service would arrive at Salisbury and join to the train in the platform.
  • The pair of trains would then run to London Waterloo.

This service pattern has the big advantage that passengers travelling between a station East of Salisbury and one to the West of Salisbury, will not have to change trains

  • All stations on the line also get a two tph service.
  • Services would be the same or better on the whole route, to the pre-COVID-19 timetable.
  • There would be extra capacity between London and Basingstoke.

 

 

 

 

 

August 28, 2020 Posted by | Transport | , , , , , , , | 1 Comment

Beeching Reversal – Goodrington and Churston Stations

This is one of the Beeching Reversal projects that the Government and Network Rail are proposing to reverse some of the Beeching cuts.

I wrote about a similar project, that had been proposed by the Association of Train Operating Companies in Between Exeter And Paignton. after I visited Devon, three years ago.

The basic idea is described in a section called Plans in the Wikipedia entry for the Riviera Line, where this is said.

In 2009 the Association of Train Operating Companies identified Brixham as one of fourteen towns for which the provision of a new railway service would have a positive benefit-cost ratio. This would be an extension of the Great Western Railway service beyond Paignton to Churston station on the Paignton and Dartmouth Steam Railway, which would then act as a railhead for Brixham. It would also serve other housing developments in the area since the opening of the steam railway, and may require the doubling of that line between Paignton and Goodrington Sands.

This Google Map shows between Paignton and Goodrington Sands stations.

Note.

  1. Paignton station is marked by a station sign towards the top of the map.
  2. Goodrington Sands station is towards the bottom of the map.

The two stations seem well placed to serve the serve the town of Paignton and its beaches.

This second Google Map shows the Goodrington Sands and Churston stations in relation to Brixham and Berry Head.

Note.

  1. Goodrington Sands station is at the top of the map.
  2. Two other stations on the Dartmouth Steam Railway are shown; Greenway Halt and Churston.
  3. Churston station is the most Northerly of the pair.

Churston station looks well-placed for Brixham.

These are my thoughts.

The Current Train Service

The train service between Paignton and Exeter St. Davids is run by Great Western Railway.

There are basically two services,

  1. A two train per hour (tph) service between Paignton and Exmouth via Torquay and Exeter St. Davids. I have used it and it is a useful local service for commuters, shoppers and visitors, although it could do with some modern trains.
  2. Occasional trains during the day to London Paddington.

There are also some CrossCountry trains going to and from Manchester Piccadilly.

The Dartmouth Steam Railway also runs trains between Paignton and via Goodrington Sands and Churston.

Hitachi’s Regional Battery Train

This train is described in this infographic from Hitachi.

I believe it will revolutionise rail travel in the South West of England, as shorter lengths of electrification, will enable this train based on current Class 800 and Class 802 trains to run all-electric services between London Paddington and Exeter St. Davids, Newquay, Paignton, Penzance and Plymouth.

Exeter St. Davids As A Hub For Battery Electric Trains

Exeter St. Davids station could become a major hub for battery electric trains.

These are distances to various stations.

  • Barnstaple – 39 miles
  • Exmouth – 11 miles
  • Paignton – 28 miles
  • Plymouth – 52 miles
  • Taunton – 32 miles
  • Yeovil Junction – 49 miles

All of these would be in range of a Hitachi Regional Battery Train or any battery electric train with sufficient range, that was fully-charged at Exeter St. Davids station.

The station has plenty of space and several long platforms, so I believe it would make an ideal hub for battery electric trains.

Could Battery Electric Trains Work The Riviera Line?

The Riviera Line was designed by Brunel for atmospheric power. Perhaps, he had observed the weather and felt the massive seas would make it difficult for for the steam locomotives of the day?

As an Electrical Engineer, I certainly couldn’t recommend electrifying through Dawlish with 25 KVAC overhead wires.

I took the picture from an InterCity 125 in 2011 and the seas seem to have got worse. Remember, that the line was washed away at Dawlish in February 2014.

But Hitachi’s Class 802 trains, seem to be handling the route on diesel power, without too much trouble.

I would expect that if one or more of the diesel engines are swapped for battery packs that the performance in heavy seas will not be worse.

But the biggest advantage of battery electric trains on the Riviera Line would surely be one of marketing.

And not just of the environmentally-friendly train service by Great Western Railway and CrossCountry, but by Hitachi in the marketing of their trains all over the world.

The only minor problem, I can see, could be the provision of charging at Paignton, as a 28 mile journey twice might be on the limit of the range of a battery electric train. Unless of course, bigger batteries were fitted!

A Splash-and-Dash At Newton Abbott

Newton Abbott station is roughly halfway between Plymouth and Exeter St. Davids and might be needed to give a Splash-and-Dash to trains between Devon’s two cities.

Some trains terminate at the station and others seem to take a leisurely stop at the station, so it could be a valuable calling point in a discontinuous electrification strategy.

Edginswell Station

Wikipedia has an entry for a new Edginswell station.

This is said.

Edginswell railway station is a proposed station in the Edginswell area of Torquay, Devon. The station would be located on the Riviera Line between Newton Abbot and Torre stations. Edginswell will be the location of employment and housing development and the new station will support this development. The station would also serve Torbay Hospital, The Willows retail park and the Torquay Gateway development area.

Plans for the station are being developed by Network Rail and Devon County Council.

This Google Map shows the area, where I think the station could be built.

Note.

  1. The large red dot indicates Edginswell.
  2. The main road across the map, was built on the North side of the Riviera Line.
  3. The Willows retail park lies to the North of the Hospital on the other side of the road and the railway.
  4. Torbay Hospital lies in the bend of the road and the railway.

This second Google Map shows an enlargement of the area to the North of the large red dot in the previous map.

Note.

  1. The A380 or South Devon Expressway leaving the map to the North-West. This road connects Torquay and the neighbouring towns and villages to the A38 and M5, which connect to the rest of the UK Motorway network.
  2. The Riviera Line passing across the North-East corner of the map.

Could this be the position to build a large Park-and-Ride station?

  • It is a sizeable site, with good rail and road connections.
  • I would estimate that the distance between Edginswell and Churston is under ten miles.
  • Frequent electric shuttle buses could take people to the hospital and the nearby retail parks.
  • Battery electric shuttle trains with a frequency of up to four tph could run between Exeter St. Davids and Paignton or another suitable terminal.
  • Shuttle trains could charge at Edginswell and probably manage two round trips in an hour.
  • This article on DevonLive is entitled Gridlocked Devon: Pollution – The Invisible Killer On Devon’s Roads, says a lot in the title.
  • Long distance trains run by Great Western Railway or CrossCountry could call.
  • Could some heritage trains terminate at Edginswell station?
  • Would a Park-and-Ride station allow some of the land taken up by car parking along the coast, to be released for other purposes, more in tune with today’s mood?

It would be very interesting to see what would happen, if Edginswell station was built as a Park-and-Ride station with a Turn-Up-and-Go service to Torquay and Paignton and their beaches.

Paignton Station

This Google Map shows Paignton station.

Note.

  1. The station has three National Rail platforms and one heritage platform for the Dartmouth Steam Railway.
  2. There is also a level crossing at the Northern end of the station, where Torbay Road crosses the railway.

Obviously, I don’t know the definitive answer, but would fitting a Fast Charge system to charge battery trains into the station be difficult because of the lack of space.

Goodrington Sands Station

This Google Map shows Goodrington Sands station.

Note.

  1. Goodrington Sands station has two platforms.
  2. There is a comprehensive track layout between Paignton and Goodrington Sands stations.
  3. South of Goodrington Sands station, the line becomes single-track
  4. Goodrington Sands station appears to be surrounded by car parks.
  5. The only bridge across the railway appears to be at the North end of the station.

I think that a well-designed Goodrington Sands station could feature the following.

  • Charging for battery trains.
  • There might be a bay platform to turn and charge trains.
  • A step-free bridge across the tracks.
  • Easy walking routes to the nearby attractions.
  • At least four tph to and from Edginswell, if that is built as a Park-and-Ride station.

Churston Station

This Google Map shows Churston station.

Note.

  1. Churston station is towards the South-West corner of the map.
  2. The station has two platforms.

Until I see the station, I am inclined to think, that the site would be a difficult one, in which to fit a Fast Charge system.

Conclusion

I can see the addition of Goodrington Sands and Churston turning the Riviera Line into a Coastal Metro between Exmouth and Churston.

I do think, the following would make it the ultimate rail line for the area.

  • A Park-and-Ride station at Edginswell.
  • Battery electric operation.
  • A Turn-Up-and-Go frequency of four tph, between Exeter St. Davids and Churston.
  • Two tph between Exmouth and Churston.
  • One tph between London Paddington and Churston.
  • One tph between Manchester Piccadilly and Churston.

It may be that some trains will turn back at Paignton or Goodrington Sands.

There are certainly a lot of possibilities.

August 19, 2020 Posted by | Energy Storage, Transport | , , , , , , , , , , | 1 Comment