The Anonymous Widower

Neptune Energy, Ørsted And Goal7 Explore Powering Integrated Energy Hubs With Offshore Wind

The title of this post, is the same as that of this press release from Neptune Energy.

These four paragraphs outline the agreement.

Neptune Energy today announced it has signed a Memorandum of Understanding with Ørsted and Goal7 to explore powering new integrated energy hubs in the UK North Sea with offshore wind-generated electricity.

Integrated energy hubs have the potential to combine multiple energy systems, including existing oil and gas production assets, carbon storage and hydrogen production facilities. They could extend the life of producing fields and support the economic case for electrification with renewable energy, to keep carbon emissions low.

The agreement will see the companies examine the potential to supply renewable electricity from Ørsted’s Hornsea offshore windfarm projects to power future Neptune-operated hubs in the UK North Sea.

Goal7 will provide project management support and technical input.

Note.

  1. Neptune Energy has three oil and gas fields in the UK North Sea; Cygnus (operational), Isabella (exploration) and Seagull (development)
  2. Gas from Cygnus comes ashore at the Bacton Gas Terminal.
  3. Ørsted owns the Hornsea wind farm, which when fully developed will have a capacity of around 6.5 GW.
  4. Cygnus and Hornsea could be not much further than 50 km apart.
  5. Seagull and Isabella are further to the North and East of Aberdeen.
  6. Ørsted has an interest in the Broadshore wind farm, which was numbered 8 in the ScotWind Leasing round.

These are my thoughts.

The Cygnus Gas Field And The Hornsea Wind Farm

This could be like one of those stories where boy meets the girl next door and they hit it off from the first day.

This page on the Neptune web site says this about the Cygnus gas field.

The biggest natural gas discovery in the southern North Sea in over 30 years is now the largest single producing gas field in the UK, typically exporting over 250 million standard cubic feet of gas daily. Cygnus contributes six per cent of UK gas demand, supplying energy to the equivalent of 1.5 million UK homes. It has a field life of over 20 years.

Two drilling centres target ten wells. Cygnus Alpha consists of three bridge-linked platforms: a wellhead drilling centre, a processing/utilities unit and living quarters/central control room. Cygnus Bravo, an unmanned satellite platform, is approximately seven kilometres northwest of Cygnus Alpha.

In 2022, we plan to drill two new production wells at Cygnus, with the first of these expected to come onstream in 4Q. The second well is due to be drilled in the fourth quarter and is expected onstream in the first quarter of 2023, with both wells helping to maintain production from the field and offset natural decline.

Gas is exported via a 55 km pipeline. Cygnus connects via the Esmond Transmission System (ETS) pipeline to the gas-treatment terminal at Bacton, Norfolk. Neptune Energy has a 25% minority interest in ETS.

Note.

  1. Cygnus with a twenty year life could be one of the ways that we bridge the gap until we have the two Cs (Hinckley Point and Sizewell) and a few tens of offshore wind gigawatts online.
  2. The two extra wells at Cygnus will help bridge the gap.
  3. The gas field has a pipeline to Bacton.

So what can the gas field and the wind farm, do for each other?

Hornsea Can Supply The Power Needs Of Cygnus

Typically, ten percent of the gas extracted from the wells connected to a gas platform, will be converted into electricity using one or more gas-turbine engines; which will then be used to power the platform.

So, if electricity from the Hornsea wind farm, is used to power the platform, there are two benefits.

  • More gas will be sent through the pipeline to Bacton.
  • Less carbon dioxide will be emitted in recovering the gas.

Effectively, electricity has been turned into gas.

Electricity Can Be Stored On The Sea-Bed

The Hornsea One wind farm has an area in the order of 150 square miles and it is only one wind farm of four, that make up the Hornsea wind farm.

I would argue that there is plenty of space between the turbines and the wells of the Cygnus gas field to install some form of zero-carbon underwater battery to store electricity.

But does this technology exist?

Not yet! But in UK Cleantech Consortium Awarded Funding For Energy Storage Technology Integrated With Floating Wind, I described a technique called Marine Pumped Hydro, which is being developed by the STORE Consortium.

  • Energy is stored as pressurised water in 3D-printed hollow concrete spheres fitted with a hydraulic turbine and pump.
  • The spheres sit on the sea-bed.
  • This page on the STORE Consortium web site, describes the technology in detail.
  • The technology is has all been used before, but not together.

I think it is excellent technology and the UK government has backed it with £150,000 of taxpayers’ money.

I also believe that Marine Pumped Hydro or something like it, could be the solution to the intermittency of wind farms.

Excess Electricity Can Be Converted Into Hydrogen

Any spare electricity from the wind farm can drive an electrolyser to convert it into hydrogen.

The electrolyser could be mounted on one of the Cygnus platforms, or it could even float.

The hydrogen produced would be blended with the gas and sent to Bacton.

Carbon Dioxide Can Be Stored In The Depleted Cygnus Gas Field

As the gas field empties of natural gas, the gas pipes to the Cygnus gas field can be reversed and used to bring carbon dioxide to the gas field to be stored.

The Cygnus gas field has gone full circle from providing gas to storing the same amount of carbon that the gas has produced in its use.

These are two paragraphs from the press release.

Neptune Energy’s Director of New Energy, Pierre Girard, said: “The development of integrated energy hubs is an important part of Neptune’s strategy to store more carbon than is emitted from our operations and the use of our sold products by 2030.

“Neptune has submitted three applications under the recent Carbon Dioxide Appraisal and Storage Licensing Round, and securing the licences would enable us to develop future proposals for integrated energy hubs in the UK North Sea.

I can envisage a large gas-fired power-station with carbon capture being built in Norfolk, which will do the following.

  • Take a supply of natural gas from the Cygnus gas field via the Bacton gas terminal.
  • Convert the hydrogen in the gas into electricity.
  • Convert the carbon in the gas into carbon dioxide.
  • Store the carbon dioxide in the Cygnus gas field via Bacton.
  • I also suspect, that if a Norfolk farmer, manufacturer or entrepreneur has a use for thousands of tonnes of carbon dioxide, they would be welcomed with open arms.

Would the ultra-greens of this world, accept this power station as zero-carbon?

The Isabella And Seagull Gas Fields And The Broadshore Wind Farm

Could a similar set of projects be applied to the Isabella and Seagull gas fields, using the Broadshore wind farm?

I don’t see why not and they could work with the Peterhead power stations.

December 30, 2022 Posted by | Energy, Hydrogen | , , , , , , , , , , , , , , , , , | 2 Comments

Edvard Grieg And Ivar Aasen Runs On Power From Shore

The title of this post, is the same as that of this press release from Aker BP.

This is the first paragraph

The Edvard Grieg and Ivar Aasen production platforms on the Utsira High area in the North Sea are now operated with electric power from shore. Two gas fired turbines have been shut down, and thus we achieve a significant reduction in emissions of greenhouse gases.

This is surely the way to power offshore assets.

December 13, 2022 Posted by | Energy | , , , | 1 Comment

BP, Equinor And Ithaca To Explore Electrification Options Of West Of Shetland Oil And Gas Fields

The title of this post is the same as that of this article on offshoreWIND.biz.

December 7, 2022 Posted by | Energy | , , , , , , , , | Leave a comment

Increased CCS Can Decarbonise GB Electricity Faster On Route To Net Zero

The title of this post, is the same as that of this news item on the SSE web site.

This is the first paragraph.

Building more power carbon capture and storage plants (Power CCS) could significantly accelerate the UK’s plans to decarbonise the GB electricity system on route to net zero, according to new analysis commissioned by SSE.

I am not surprised, as in my time, I have built several production, storage and distribution mathematical models for products and sometimes bringing things forward has beneficial effects.

These three paragraphs summarise the findings.

The UK Government’s proposed emissions reductions from electricity for 2035 could be accelerated to 2030 by combining its 50GW offshore wind ambition with a significant step up in deployment of Power CCS. This would require 7-9GW (equivalent to 10-12 plants) of Power CCS compared to the current commitment of at least one Power CCS plant mid-decade, according to experts at LCP Delta.

Replacing unabated gas with abated Power CCS generation will deliver significant reductions in greenhouse gas emissions. The analysis suggests that adding 7-9GW Power CCS to the UK’s 2030 offshore wind ambition will save an additional 18 million tonnes of CO2 by 2040, by preventing carbon emissions during periods when the sun isn’t shining, and the wind isn’t blowing.

Gas consumption for electricity generation would not significantly increase, given the 7-9GW Power CCS would displace older and less efficient unabated gas power stations already operating and reduce importing unabated gas generation from abroad via the interconnectors. Importantly, Power CCS can provide a safety net to capture emissions from any gas required to keep the lights on in the event of delays to the roll out of renewables or nuclear.

The report is by LCP Delta, who are consultants based in Edinburgh.

The report says this about the transition to hydrogen.

Power CCS also presents significant opportunities to kickstart, then transition to, a hydrogen economy, benefitting from the synergies between CCS and hydrogen, including proximity to large-scale renewable generation and gas storage facilities which can support the production of both electrolytic and CCS-enabled hydrogen.

And this about the reduction in carbon emissions.

The existing renewables ambition and the accelerated Power CCS ambition are expected to save a total of 72 million tonnes of CO2 by 2040 compared to commitments in the UK’s Net Zero Strategy from October 2021.

I don’t think there’s much wrong with this analysis.

But of course the greens will trash it, as it was paid for by SSE.

I have a few thoughts.

Carbon Capture And Use

I believe we will see a great increase in carbon capture and use.

  • Carbon dioxide is already an ingredient to make Quorn.
  • Carbon dioxide is needed for fizzy drinks.
  • Carbon dioxide can be fed to tomatoes, salad plants, herbs and flowers in giant greenhouses.
  • Carbon dioxide can be used to make animal and pet food.
  • Carbon dioxide can be used to make building products like plasterboard and blocks.
  • Carbon dioxide can be added to concrete.
  • Carbon dioxide can be used as a refrigerant and in air-conditioning. There are one or two old Victorian systems still working.

Other uses will be developed.

Carbon Capture Will Get More Efficient

Carbon capture from power stations and boilers, that use natural gas is a relatively new process and its capture will surely get better and more efficient in the next few years.

Gas From INTOG

I explain INTOG in What Is INTOG?.

One of INTOG’s aims, is to supply electricity to the oil and gas rigs and platforms in the sea around the UK.

Currently, these rigs and platforms, use some of the gas they produce, in gas turbines to create the electricity they need.

  • I have seen reports that ten percent of the gas that comes out of the ground is used in this way.
  • Using the gas as fuel creates more carbon dioxide.

Decarbonisation of our oil and gas rigs and platforms, will obviously be a good thing because of a reduction of the carbon dioxide emitted. but it will also mean that the gas that would have been used to power the platform can be brought ashore to power industry and domestic heating, or be exported to countries who need it.

Gas may not be carbon-neutral, but some gas is more carbon-neutral than others.

SSE’s Plans For New Thermal Power Stations

I have taken this from SSE’s news item.

SSE has deliberately chosen to remain invested in the transition of flexible thermal electricity generation due to the key role it plays in a renewables-led, net zero, electricity system and is committed to decarbonising the generation.

Together with Equinor, SSE Thermal is developing two power stations equipped with carbon capture technology. Keadby 3 Carbon Capture Power Station is based in the Humber, the UK’s most carbon-intensive industrial region, while Peterhead Carbon Capture Power Station is located in the North East of Scotland. Combined, the two stations could capture around three million tonnes of CO2 a year.

Studies have shown that Keadby and Peterhead Carbon Capture Power Stations could make a lifetime contribution of £1.2bn each to the UK economy, creating significant economic opportunity in their respective regions. Both will be vital in supporting the huge amount of renewables which will be coming on the system.

SSE Thermal and Equinor are also collaborating on Keadby Hydrogen Power Station, which could be one of the world’s first 100% hydrogen-fuelled power stations, and Aldbrough Hydrogen Storage, which could be one of the world’s largest hydrogen storage facilities.

Note.

  1. SSE appear to think that gas-fired power stations with carbon capture are an ideal backup to renewables.
  2. If gas is available and it can be used to generate electricity without emitting any carbon dioxide, then why not?
  3. Hydrogen is coming.

Things will get better.

Is A Virtuous Circle Developing?

Consider.

  • Spare wind electricity is turned into hydrogen using an electrolyser or perhaps some world-changing electro-chemical process.
  • The hydrogen is stored in Aldbrough Hydrogen Storage.
  • When the wind isn’t blowing, hydrogen is used to backup the wind in Keadby Hydrogen power station.
  • The other Keadby power stations can also kick in using natural gas. The carbon dioxide that they produce, would be captured for storage or use.
  • Other users, who need to decarbonise, can be supplied with hydrogen from Aldbrough.

Note.

  1. Gas turbines are throttleable, so if National Grid wants 600 MW to balance the grid, they can supply it.
  2. As time progresses, some of the gas-fired power stations at Keadby could be converted to hydrogen.
  3. Rough gas storage is not far away and could either store natural gas or hydrogen.
  4. Hydrogen might be imported by tanker from places like Africa and Australia, depending on price.

Humberside will be levelling up and leading the decarbonisation of the UK.

If you have an energy-hungry business, you should seriously look at moving to Humberside.

 

December 7, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , | 1 Comment

Hywind Tampen

In Equinor Sets Sights On Gigawatt-Scale Floating Offshore Wind Projects In Celtic Sea, I said this about Hywind Tampen.

Equinor is also currently constructing the 88 MW Hywind Tampen project in Norway, which will be the largest floating offshore wind farm in the world when completed in 2023.

This page on the Equinor web site gives more details of Hywind Tampen.

  • Hywind Tampen is a floating wind farm under construction that will provide electricity for the Snorre and Gullfaks oil and gas fields in the Norwegian North Sea.
  • It will be the world’s first renewable power for offshore oil and gas.
  • With a system capacity of 88 MW it will also be the world’s largest floating offshore wind farm.
  • The wind farm will consist of eleven 8 MW turbines.

When Hywind Tampen is operational, Equinor will operate nearly half (47 percent) of the world’s floating wind capacity.

This paragraph from the Equinor web page is significant.

The wind farm is estimated to meet about 35% of the annual electricity power demand of the five Snorre A and B, and Gullfaks A, B and C platforms. In periods of higher wind speed this percentage will be significantly higher.

I take this to mean that the gas turbines that currently supply the five platforms will be left in place and that their output will be replaced by wind power, when it is available.

The INTOG Program

I described this in What Is INTOG?, and it is the UK’s program, that includes electrification of rigs and platforms.

The first leases under INTOG would appear to be expected in March 2023.

Decarbonisation Of Offshore Operations Around The World

I’m sure that if Hywind Tampen and/or INTOG is successful, that the technology will be used where possible around the world.

November 12, 2022 Posted by | Energy | , , , , , | Leave a comment

Rishi Sunak To Reimpose Fracking Ban

The title of this post, is the same as that of this article on The Telegraph.

This is the first paragraph.

The new PM made the commitment during his first session of PMQs on Wednesday, reversing Liz Truss’s controversial decision to overturn it.

I think it is the right call.

Here’s why!

Cerulean Winds Massive Decarbonisation Project

Consider.

  • At present ten percent of our gas is used to power the oil and gas rigs in the seas around our coasts. The gas is fed into gas-turbines to generate electricity.
  • One simple way to increase gas production by this ten percent, would be to decarbonise the rigs by powering them from nearby wind farms with green electricity and green hydrogen as the Norwegians are proposing to do.
  • A British company; Cerulean Winds has proposed under the Crown Estate INTOG program to decarbonise a significant part of the oil and gas rigs, by building four 1.5 GW wind farms amongst the rigs.
  • The majority of the energy will be sold to the rig owners and any spare electricity and hydrogen will be brought ashore for industrial and domestic users.
  • This massive project will be a privately-funded £30 billion project.
  • And when the oil and gas is no longer needed, the UK will get another 6 GW of offshore wind.

We need more of this type of engineering boldness.

This page on the Cerulean Winds web site gives more details.

INTOG

This document on the Crown Estate web site outlines INTOG.

Other Projects

Decarbonisation has also attracted the attention of other developers.

I can see Rishi Sunak being offered several projects, that will increase our oil and gas security, by some of the world’s best engineers and most successful oil companies.

Rishi Sunak’s ban on fracking will only increase the rate of project development.

We live in extremely interesting times.

 

 

October 26, 2022 Posted by | Energy | , , , , , , , | 6 Comments

Cerulean Winds Is A Different Type Of Wind Energy Company

I introduced Cerulean Winds in a post called What Is INTOG?, but I have decided it is too important a concept to be buried in another post.

Cerulean sounds like it could be a sea monster, but it is actually a shade of blue.

This article on offshoreWind.biz is entitled Cerulean Reveals 6 GW Floating Offshore Wind Bid Under INTOG Leasing Round.

These are the two introductory paragraphs.

Green energy infrastructure developer Cerulean Winds has revealed it will bid for four seabed lease sites with a combined capacity of 6 GW of floating wind to decarbonise the UK’s oil and gas sector under Crown Estate Scotland’s Innovation and Targeted Oil and Gas (INTOG) leasing round.

This scale will remove more emissions quickly, keep costs lower for platform operators and provide the anchor for large-scale North-South offshore transmission, Cerulean Winds said.

Note.

  1. It is privately-funded project, that needs no government subsidy and will cost £30 billion.
  2. It looks like each site will be a hundred turbines.
  3. If all the sites are the same, they could be 1.5 GW each, with the use of 15 MW turbines.
  4. Each site will need £7.5 billion of investment. So it looks like Cerulean have access to a similar magic money tree as Kwasi Kwarteng.

This paragraph describes their four hundred floating bases.

The steel floating bases would constitute hundreds of thousands of tonnes of steel, which unlike cement fixtures, can be floated out from shore which is said to be ideal for the UK.

Building those bases, is a very large project.

On their web site, Cerulean Winds have a page entitled Targeted Oil And Gas Decarbonisation.

This the page’s mission statement.

Cerulean Winds, a green energy & infrastructure developer, is leading a pioneering bid to reduce carbon emissions from oil and gas production through floating offshore wind.

These three paragraphs describe the scheme.

Cerulean Winds pioneering bid proposes an integrated floating wind and hydrogen development across four offshore floating wind farms located West and East of the Shetland Islands and in the North and the South of the Central North Sea (CNS). The objective of the project is to generate electricity from floating wind farms located far offshore on otherwise unallocated and uneconomic seabed areas in order to power oil and gas platforms with green energy.

Cerulean Winds’ dedicated power transmission network will offer both green electrons and green molecules to oil & gas production facilities across the UK Continental Shelf (UKCS) with surplus energy used in the production of green hydrogen. This dual approach allows the project to support all ages of oil and gas platforms with constant, reliable power and minimal brownfield modifications.

The optimised scale at which Cerulean Winds’ proposed scheme operates makes it the world’s largest decarbonisation project. It offers green energy to operators for asset power generation, delivered through an affordable Power Purchase Agreement (PPA). Another big advantage is the scheme does not require any public subsidies, but funded entirely through private investment.

That is sensational.

Effectively, they’re building four 1.5 GW power stations in the seas around us to power a large proportion of the oil and gas rigs.

I do have some thoughts.

Who Pays For This Massive Project?

This project overview on the Cerulean web site is entitled The Cerulean Winds INTOG Scheme and it gives many more details of the project.

I will refer to this page as the project overview in the subsequent text.

This is the first sentence of the first paragraph.

Our basin-wide scheme represents more than £30 billion of private investment in a single strategic infrastructure project.

Consider.

  • The London Olympics in 2012 cost £9 billion.
  • The Elizabeth Line will probably cost around £20 billion.
  • The Channel Tunnel in 1994 cost £9 billion.

This project is a lot bigger than these.

Will your spare fifty pounds, still be in your mattress, when Cerulean Winds has put its £30 billion together?

I think so, as this is the last sentence on the page.

The scheme is ‘private wire’ and will not require Government subsidies… being funded entirely through private investment, with no cost to the tax payer.

There will of course, be tax rebates available, as they are for any business from the smallest to the largest.

Green Hydrogen Will Be Produced Offshore

The project overview says this about green hydrogen.

The scheme would use floating offshore wind to power oil and gas assets with surplus energy converted into green hydrogen. Cerulean Winds recognise each brownfield site has a different set of requirements and this would give operators the flexibility to electrify some Brownfield assets without the need to interrupt existing production or shutdown. It would also safeguard oil and gas jobs and create new green energy jobs within the floating wind and hydrogen sectors within the next five years.

The operator will have a choice of energy – electricity or hydrogen.

How Will The Project Earn An Income?

It appears that the project, will have a number of income streams.

The main stream, is described in this sentence from the project overview on the web site.

We have a deep understanding across the energy sector and will partner with the operator to agree the best way to achieve decarbonisation targets at the lowest possible cost. Our approach offers both green electrons and green molecules to the platforms through an affordable Power Purchase Agreement (PPA).

It looks like the oil and gas companies that own the rigs will be significant contributors to Cerulean’s cash flow.

Green electrons (electricity) and green molecules (hydrogen) will also be brought ashore and sold to various operators and the grid.

What Happens To The Gas That Is Currently Used To Power The Oil And Gas Rigs?

I do wonder, the gas, which will no longer be needed to power the rigs will give a boost to the supply to UK consumers.

They’ve thought of that one.

Under a heading of Reducing Gas Imports, this is said.

The project also aims to maximise recovery of energy from offshore platforms. With few exceptions, each platform have their own gas turbines for power generation, burning gas extracted from the reservoirs. Approximately 10% of the gas produced each year is used in offshore power generation. By replacing the need for gas power generation with a supply of clean, green energy, Cerulean Winds’ project frees important volumes of gas produced by platforms for consumption and reduces the UK’s import of gas from overseas.

This project, when it is fully implemented could increase UK gas production by up to ten per cent.

What’s In It For The Rig Operators?

They will have some benefits.

  • They will cut their carbon dioxide emissions.
  • They will sell about ten percent more of the gas they extract.
  • Decarbonisation will not necessarily mean large capital expenditure on the rig.
  • I also suspect, that some conveniently-placed rigs will be used to send excess hydrogen from Cerulean Winds’ electrolysers to the shore.

Some rig operators will make money from decarbonisation.

When Will The Project Be Complete?

This is the first paragraph on the project overview.

Our basin-wide scheme represents more than £30 billion of private investment in a single strategic infrastructure project. The locations will be West and East of the Shetland Islands and in the Central North Sea (CNS). They will become operational by 2028.

So we don’t have to wait for ever!

What Happens To Cerulean’s Project, When The Oil And Gas Runs Out Or We Stop Using Oil And Gas?

There would now be four 1.5 GW wind farms in the North Sea, that could be connected to the National Grid.

Conclusion

It looks like Cerulean Winds are a very different energy company.

October 2, 2022 Posted by | Energy, Hydrogen | , , , , , , | 3 Comments

What Is INTOG?

This page on the Crown Estate Scotland web site outlines INTOG.

This is the introduction at the top of the page.

Innovation and Targeted Oil & Gas (INTOG) is a leasing round for offshore wind projects that will directly reduce emissions from oil & gas production and boost further innovation.

Developers can apply for seabed rights to build two types of offshore wind project:

IN – Small scale, innovative projects, of less than 100MW

TOG – Projects connected directly to oil and gas infrastructure, to provide electricity and reduce the carbon emissions associated with production

INTOG is designed, in response to demand from government and industry, to help achieve the targets of the North Sea Transition Sector Deal, which is a sector deal between government and the offshore oil and gas industry.

I have a few thoughts and have also found some news stories.

Isolated Communities

This document from the Department of Business, Industry and Industrial Strategy lists all the Contracts for Difference Allocation Round 4 results for the supply of zero-carbon electricity that were announced yesterday.

The document introduces the concept of Remote Island Wind, which I wrote about in The Concept Of Remote Island Wind.

I don’t know of one, but there might be isolated communities, with perhaps a dodgy power supply, who might like to improve this, by means of a small offshore wind farm, meeting perhaps these criteria.

  • Less than 100 MW.
  • Agreement of the locals.
  • A community fund.
  • An important use for the electricity.

Locations and applications could be.

  • A small fishing port, where winds regularly bring the grid cable down in winter.
  • A village with a rail station to perhaps charge battery-electric trains.
  • A deep loch, where floating wind turbines are erected.
  • To provide hydrogen for transport.

We shall see what ideas are put forward.

Floating Power Stations

Floating wind farms are generally made up of individual turbines on floats.

  • Turbines can be up to the largest used onshore or on fixed foundations.
  • The Kincardine floating offshore wind farm in Scotland uses 9.5 MW turbines.
  • The floats are anchored to the sea bed.
  • There is a power cable connecting the turbines appropriately to each other, the shore or an offshore substation.

But we are talking innovation here, so we might see some first-of-a-kind ideas.

Single Floating Turbines

A large floating wind farm, is effectively a large number of floating wind turbines anchored in the same area of sea, and connected to the same floating or fixed substation.

I can’t see any reason, why a single floating wind turbine couldn’t be anchored by itself to provide local power.

It might even be connected to an onshore or subsea energy store, so that it provided a more constant output.

Surely, a single turbine perhaps ten miles offshore wouldn’t be a very large blot on the seascape?

I grew up in Felixstowe and got used to seeing HM Fort Roughs on the horizon from the beach. That is seven miles offshore and some people, I know have windsurfed around it from the beach.

TwinHub

I talked about TwinHub in Hexicon Wins UK’s First Ever CfD Auction For Floating Offshore Wind.

TwinHub mounts two turbines on one float and this is a visualisation of a TwinHub being towed into place.

Note.

  1. The design turns into the wind automatically, so that the maximum amount of electricity is generated.
  2. A Contract for Difference for a 32 MW TwinHub has been awarded, at a strike price of £87.30/MWh, that will be installed near Hayle in Cornwall.
  3. With a capacity factor of 50 %, that will produce just over 140,160 MWh per year or over £12 million per year.

This article on the BBC, which is entitled Funding Secured For Floating Wind Farm Off Cornwall, gives more details of the Hayle TwinHub.

The possibility of a floating wind farm off the coast of Cornwall has moved a step closer after securing government funding, project bosses have said.

Swedish company Hexicon plans to install its TwinHub system, with the hope it could begin operating in 2025.

It would be deployed about 10 miles (16km) off Hayle.

Project supporters said it could be a boost to the local economy and help establish Cornwall in the growing renewable energy sector.

Figures have not been released, but it is understood the government funding has effectively secured a fixed price for the power TwinHub would produce for 15 years, making it economically viable.

The article says that this 32 MW system could develop enough electricity for 45,000 homes.

This could be a very suitable size for many applications.

  • As at Hayle, one could be floated just off the coast to power a remote part of the country. As Cornwall has a few old mine shafts, it might even be backed up by a Gravitricity system on shore or another suitable non-lithium battery.
  • Could one float alongside an oil or gas platform and be tethered to it, to provide the power?

Scotland’s hydroelectric power stations, prove that not all power stations have to be large to be successful.

Vårgrønn and Flotation Energy’s Joint Bid

This article on offshoreWIND.biz is entitled Vårgrønn And Flotation Energy To Jointly Bid in INTOG Leasing Round, gives a few details about their joint bid.

But there is nothing substantial about ideas and locations.

I can see several joint ventures with a suitable system, bidding for various projects around the Scottish coast.

Cerulean

Cerulean sounds like it could be a sea monster, but it is a shade of blue.

This article on offshoreWind.biz is entitled Cerulean Reveals 6 GW Floating Offshore Wind Bid Under INTOG Leasing Round.

These are the two introductory paragraphs.

Green energy infrastructure developer Cerulean Winds has revealed it will bid for four seabed lease sites with a combined capacity of 6 GW of floating wind to decarbonise the UK’s oil and gas sector under Crown Estate Scotland’s Innovation and Targeted Oil and Gas (INTOG) leasing round.

This scale will remove more emissions quickly, keep costs lower for platform operators and provide the anchor for large-scale North-South offshore transmission, Cerulean Winds said.

Note.

  1. It is privately-funded project, that needs no government subsidy and will cost £30 billion.
  2. It looks like each site will be a hundred turbines.
  3. If they’re the same, they could be 1.5 GW each.
  4. Each site will need £7.5 billion of investment. So it looks like Cerulean have access to a similar magic money tree as Kwasi Kwarteng.

Effectively, they’re building four 1.5 GW power stations in the seas around us to power a large proportion of the oil and gas rigs.

For more on Cerulean Winds’ massive project see Cerulean Winds Is A Different Type Of Wind Energy Company.

Will There Be An Offshore Wind Supermarket?

I can see the big turbine, float and electrical gubbins manufacturers establishing a one-stop shop for developers, who want to install small wind farms, that meet the INTOG criteria.

So suppose, the archetypal Scottish laird in his castle on his own island wanted a 6 MW turbine to go green, he would just go to the B & Q Offshore web site and order what he needed. It would then be towed into place and connected to his local grid.

I can see modular systems being developed, that fit both local infrastructure and oil and gas platforms.

Conclusion

I can see scores of projects being submitted.

I even know the son of a Scottish laird, whose father owns a castle on an island, who could be taking interest in INTOG. They might also apply under Remote Island Wind in another leasing round.

But we will have to wait until the end of March 2023, to find out who have been successful.

September 29, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , , , | 5 Comments