The Anonymous Widower

Chaos As Train Passengers Locked In At Lake District Station

The title of this post, is the same as that of this article on Cumbria Crack.

These two paragraphs outline the story.

Passengers on a delayed train had to climb over spiked fences after they discovered they were locked in at Oxenholme station.

People on a delayed Avanti West Coast service from London arrived at the Lake District station to find that staff had gone home for the evening, locking up behind them.

I have arrived late at several stations in London after they have closed and there is always a signed route out, when the staff have locked up and gone home.

These pictures show Crofton Park station.

Note.

  1. The exits out of the station are always open.
  2. The exits have contactless readers.
  3. The exits also allow a step-free route from one platform to another.
  4. There is CCTV on the exits.

Exits like these can surely be provided at Oxenholme station.

August 19, 2022 Posted by | Transport/Travel | , , | 1 Comment

Battery-Electric Class 331 Trains On The Radar

In the June 2021 Edition of Modern Railways, there is an article which is entitled Northern Looks To The Future.

This is a paragraph.

Also on the radar is the creation of hybrid Class 331 EMUs fitted with batteries. A proposal has been developed by CAF and owner Eversholt Rail to augment three-car ‘331s’ with a fourth vehicle containing batteries, which would see batteries also fitted to the existing centre car. The Manchester to Windermere route has been touted as a possible location for deployment, with trains switching to battery power on the non-electrified branch from Oxenholme, although the line’s user group still favours electrification of the branch.

I have a few thoughts.

Electrification at Oxenholme

In Surprising Electrification At Oxenholme, I detailed the electrification at Oxenholme station in May 2018.

Consider.

  • Platform 3 used by the Windermere trains is fully electrified.
  • The crossover South of the station used by trains going between the Windermere Branch Line and the West Coast Main Line is fully electrified.
  • The electrification continues for perhaps a hundred metres along the Windermere branch.

I am fairly certain, that this electrification has been designed so that a bi-mode or battery-electric train can perform a reliable power changeover in Platform 3 at Oxenholme station.

What Will Be The Range Of A Four-Car Battery-Electric Class 331 Train?

This is very much a case of how long is a piece of string.

At least we know from the extract above that the train is designed to do a return trip between Oxenholme and Windermere stations, which is a distance of 20.4 miles and a six minute turnround.

We should also note that Hitachi are claiming a range of 56 miles for their Regional Battery Train, which is described in this Hitachi infographic.

As the Class 331 with batteries will compete with the Hitachi Reional Battery Train, I would suspect that the range on easy level ground would be at least fifty miles at a speed of over 80 mph, if not 100 mph.

A Selection Of Possible Routes

These are a selection of other Northern routes where the battery-electric Class 331 trains might be used.

Manchester Airport and Barrow-in-Furness

Consider.

  • This is a sibling route to the Manchester Airport and Windermere route and currently has eleven services to Windermere’s four.
  • This is a 103.7 mile route.
  • All but 28.1 miles is electrified.

Battery-electric Class 331 trains with a charge at Barrow-in-Furness should be able to handle this route.

Lancaster and Barrow-in-Furness

Consider.

  • This is a 34.8 mile route
  • All but 28.1 miles is electrified.
  • Lancaster is a fully electrified station.

Battery-electric Class 331 trains with a charge at Barrow-in-Furness should be able to handle this route.

Carlisle and Barrow-in-Furness

This is the 85.7 mile route of the Cumbrian Coast Line of which none is electrified.

Consider.

  • Carnforth is a fully-electrified station.
  • Barrow-in-Furness station could be electrified.
  • It is a fairly level route along the coast.
  • I suspect that electricity supplies are available at Barrow-in-Furness, Sellafield, Whitehaven and Workington to power electrification.
  • Carlisle is a fully-electrified station.
  • Barrow-in-Furness and Sellafield are only 35 miles apart.
  • CAF have produced trams for Birmingham and Seville, that work with discontinuous electrification.
  • There are parts of the route, where there would be those, who would object to the erection of electrification gantries.

I feel it would be possible to electrify the Cumbrian Coast Line using battery-electric Class 331 trains, with a range of at least fifty miles and some short sections of new electrification.

Surely, a battery-electric train along the Cumbrian Coast by the Lake District would be the ideal train for the area

Lancaster and Morecambe

Consider.

  • This is a 4 mile route.
  • None is electrified.
  • Heysham is another four miles past Morecambe.
  • Lancaster is a fully-electrified station.

This route might have been built for battery-electric trains.

This route might be possible with no extra infrastructure.

York and Blackpool North

Consider.

  • This is a 105.5 mile route.
  • In a few years about 62 miles will be without electrification.
  • It goes through the picturesque Calder Valley.

As with the Cumbrian Coast Line, I believe that this service could be run using battery-electric Class 331 trains, with a range of at least fifty miles and some short sections of new electrification.

Preston and Colne

Consider.

  • This is a 29 mile route.
  • None is electrified.
  • It is steeply uphill to Colne.

Battery-electric Class 331 trains with a charge at Colne should be able to handle this route.

Alternatively, they could use Newton’s friend to return down the hill.

This route might be possible with no extra infrastructure.

As with York and Blackpool North, this route would benefit with electrification between Preston and Blackburn.

Preston and Blackpool South

Consider.

  • This is a 20 mile route.
  • 7.7 miles is electrified.

Battery-electric Class 331 trains  should be able to handle this route.

This route might be possible with no extra infrastructure.

In an ideal world, Preston and Blackburn would be electrified and trains would run between Colne and Blackpool South, as they used to do.

Liverpool Lime Street and Manchester Airport

Consider.

  • This is a 45.5 mile route,
  • 26.5 miles is not electrified.
  • It is fully electrified at both ends.

Battery-electric Class 331 trains  should be able to handle this route.

This route might be possible with no extra infrastructure.

Liverpool Lime Street and Manchester Oxford Road

Consider.

  • This is a 34.2 mile route.
  • 26.5 miles is not electrified.
  • It is fully electrified at both ends.

Battery-electric Class 331 trains  should be able to handle this route.

This route might be possible with no extra infrastructure.

Southport and Alderley Edge

  • This is a 52 mile route,
  • 27 miles is not electrified.
  • It is fully electrified at the Southern end.
  • There is third rail electrification at Southport.

Battery-electric Class 331 trains with a charge at Southport should be able to handle this route.

Could some Class 331 be fitted with third-rail equipment to charge on Merseyrail’s third-rail electrification?

Manchester Piccadilly and Chester

Consider.

  • This is a 45 mile route.
  • 38 miles is not electrified.
  • It is fully electrified at Manchester end.
  • There is third rail electrification at Chester.

Battery-electric Class 331 trains with a charge at Chester should be able to handle this route.

Could some Class 331 be fitted with third-rail equipment to charge on Merseyrail’s third-rail electrification?

Manchester Piccadilly and Buxton

Consider.

  • This is a 25.5 mile route.
  • 17.8 miles is not electrified.
  • It is steeply uphill to Buxton.

Battery-electric Class 331 trains with a charge at Buxton should be able to handle this route.

Alternatively, they could use Newton’s friend to return down the hill.

This route might be possible with no extra infrastructure.

Manchester Piccadilly and Rose Hill Marple

Consider.

  • This is a 13.3 mile route.
  • 8.3 miles is not electrified.
  • It is fully electrified at Manchester end.

Battery-electric Class 331 trains should be able to handle this route.

This route might be possible with no extra infrastructure.

Manchester Piccadilly and New Mills Central

Consider.

  • This is a 13 mile route.
  • Only 2 miles is electrified.
  • It is fully electrified at Manchester end.

Battery-electric Class 331 trains should be able to handle this route.

This route might be possible with no extra infrastructure.

Manchester Piccadilly and Sheffield

Consider.

  • This is a 42 mile route.
  • Only 2 miles is electrified.
  • It is fully electrified at Manchester end.
  • It is a scenic route.

Battery-electric Class 331 trains with a fifty mile range and a charge at Sheffield should be able to handle this route.

Southport and Stalybridge

  • This is a 45 mile route.
  • 27 miles is not electrified.
  • It will be fully electrified at the Southern end, when electrification between Manchester Victoria and Stalybridge is completed.
  • There is third rail electrification at Southport.

Battery-electric Class 331 trains with a charge at Southport should be able to handle this route.

Could some Class 331 be fitted with third-rail equipment to charge on Merseyrail’s third-rail electrification?

Manchester Victoria And Kirkby

  • The Kirkby end of this route will change to the new Headbolt Lane station in a couple of years.
  • This is a 30 mile route.
  • 28 miles is not electrified.
  • It is fully electrified at the Southern end.
  • There is third rail electrification at Kirkby or Headbolt Lane.

Battery-electric Class 331 trains with a charge at Kirkby or Headbolt Lane should be able to handle this route.

Could some Class 331 be fitted with third-rail equipment to charge on Merseyrail’s third-rail electrification?

I would hope that the new Headbolt Lane station is being designed with battery-electric trains from Manchester in mind!

Rochdale And Clitheroe

Consider.

  • This is a 44.7 mile route.
  • There is 10.7 miles of electrification between Bolton and Manchester Victoria.
  • The Clitheroe end of the route has 23.7 miles of line without electrification.
  • The Rochdale end of the route has 10.4 miles of line without electrification.
  • It is steeply uphill to Clitheroe.

Battery-electric Class 331 trains should be able to handle the Rochdale end, but could struggle with the climb to Clitheroe.

But it appears that all services needing to climb the hills to Colne and Clitheroe now stop in Platform 2, which is different to Wikipedia, which says that services to Clitheroe stop in Platform 1.

  • With charging in platform 2 and a fifty-mile range battery-electric Class 331 trains could reach Clitheroe (9.8 miles), Colne (17 miles), and possibly Leeds (50 miles).
  • With charging in platform 4 and a fifty-mile range battery-electric Class 331 trains could reach Bolton (14 miles) and Preston (12 miles)
  • Would a fully-charged train leaving Blackburn be able to go via Todmorden and reach the electrification at Manchester Victoria, which is a distance of 39.4 miles?

Note.

If necessary a few well-planned extra miles of electrification would ensure reliable battery-electric services  in East Lancashire centred on Blackburn.

The closely-related Blackburn and Rochdale and Blackburn and Wigan Wallgate services would fit in well with an electrified Blackburn station, that could fully charge trains.

I certainly believe that electrifying Preston and Blackburn could give extra benefits.

  • Battery-electric trains between Blackpool and Liverpool in the West and Colne, Hebden Bridge, Bradford, Leeds and York in the East.
  • Direct electric services from Euston to Blackburn and Burnley.
  • Fast freight paths across the Pennines.

In addition, it would probably allow battery-electric trains to run to Leeds via a reinstated Skipton and Colne link.

Wigan And Leeds

Consider.

  • The route can terminate at either Wigan North Western or Wigan Wallgate station.
  • This is a 68.2 mile route using Wigan North Western.
  • Wigan North Western is a fully-electrified station.
  • The 16 miles between Wigan North Western and Salford Crescent stations is not electrified.
  • The 5 miles between Salford Crescent and Manchester Victoria stations is electrified.
  • The 37.2 miles between Manchester Victoria and Mirfield stations is not electrified.
  • The 12.2 miles between Mirfield and Leeds will be electrified in the next few years.
  • Leeds is a fully-electrified station.

Battery-electric Class 331 trains with a fifty mile range should be able to handle this route.

Chester And Leeds

Consider.

  • This is a 89.7 mile route.
  • There is third rail electrification at Chester.
  • The 18.1 miles between Chester and Warrington Bank Quay stations is not electrified.
  • The 21.8 miles between Warrington Bank Quay and Manchester Victoria stations is electrified.
  • The 40.3 miles between Manchester Victoria and Bradford Interchange stations is not electrified.
  • The 9.4 miles between Bradford Interchange and Leeds stations is not electrified.
  • Leeds is a fully-electrified station.
  • There seems to be generous turnround times at Chester and Leeds.

It looks to me that the trains are going to need a full battery charge at Bradford Interchange or perhaps Leeds and Bradford Interchange needs to be fully electrified.

I also feel that it would help if the electrification through Manchester Victoria were to be extended towards Rochdale.

But I don’t think it will be impossible for battery-electric Class 331 trains to work the route between Leeds and Chester with some new electrification and/or charging at Bradford Interchange.

Manchester Victoria And Leeds

Consider.

  • This is a shortened version of the Chester and Leeds route.
  • This is a 49.8 mile route.
  • Manchester Victoria is a fully-electrified station.
  • The 40.3 miles between Manchester Victoria and Bradford Interchange stations is not electrified.
  • The 9.4 miles between Bradford Interchange and Leeds stations is not electrified.
  • Leeds is a fully-electrified station.

My comments would be similar to the Chester and Leeds route.

Leeds And York Via Harrogate And Knaresborough

Consider.

  • This is a 38.8 mile route.
  • Leeds is a fully-electrified station.
  • The Harrogate Line is not electrified.
  • York is a fully-electrified station.

Battery-electric Class 331 trains with a fifty mile range should be able to handle this route.

There are two other services on the Harrogate Line.

  • Leeds and Harrogate – 18.3 miles
  • Leeds and Knaresborough – 22.1 miles

I have a feeling that a fleet of battery-electric trains could electrify all services on the Harrogate Line with no extra infrastructure.

Summing Up The Possible Routes

I have assumed that the proposed battery-electric Class 331 train has a range of around fifty miles, which is not unlike that for the Hitachi Regional Battery Train.

It would appear that many of Northern’s routes can be run by a train with this range including some that are around a hundred miles.

There are also routes like the Harrogate Line, which would accept a battery-electric Class 331 train tomorrow, if it were available.

Will A  Mix Of Four-Car Electric And Battery-Electric Trains Be Better Than A Mix Of Four-Car And Three-Car Electric Trains?

If the technology is right, I suspect that a four-car battery-electric Class 331 train will be able to substitute for one without batteries on a route that doesn’t need battery power.

This must surely have advantages when trains are in maintenance or otherwise unavailable, as nothing annoys passengers more than an overcrowded train.

Conclusion

The Modern Railways article also says this.

More widely, Northern has previously stated ambitions to acquire more trains, and work was underway last year to identify what this requirement might be.

From my simple analysis on some of their routes, I would look to acquire some four-car battery-electric Class 331 trains, once they have been oroven to work.

May 23, 2021 Posted by | Transport/Travel | , , , , , , , | 1 Comment

Passing Loop Hope For Windermere

The title of this post is the same as that of a small story in Issue 903 of Rail Magazine.

This is the opening sentence.

The local priority for the Windermere branch is for a passing loop to enable two trains an hour to operate.

These are the distances from Oxenholme Lake District station of the stations on the Windermere branch line.

  • Kendal – 2.05
  • Burneside – 4.02
  • Staveley – 6.52
  • Windermere – 10.15

Note.

  1. Distances are in miles.chains.
  2. The return distance of 20.30 miles should be within the capability of a battery-electric train, that left Oxenholme Lake District station with full batteries.

Halfway would surely be a convenient place for a passing loop, which would be a mile towards Windermere from Burneside.

This Google Map shows Burneside and Staveley stations and the countryside in between.

Note.

  1. Burneside station is in the South-East corner
  2. Staveley station is in the North-West corner.
  3. The North-East side of the route is mainly agricultural land.

It looks like a passing loop could be built in the region of Bowston.

  • It would be approximately halfway.
  • It would be on the North-East side of the existing track.
  • It would need to be long enough to take the longest train likely to use the route.
  • ,It would allow a doubling in frequency.

I don’t think it would be the most expensive of projects.

Operational Considerations

A half-hourly service could be run as follows.

  • It seems likely that the trains will be four-car Class 331 trains, as I wrote about in Northern’s Battery Plans.
  • Two trains would probably be timed to leave Oxenholme Lake District and Windermere stations at the same time.
  • Trains currently take twenty minutes to travel along the branch and do the round trip in an hour.
  • ,This twenty minute timing would give ten minutes to turn back the train at Oxenholme Lake District and Windermere.
  • Ten minutes at each terminal station, should be enough time to fully charge the batteries for the next trip.

It should be noted that trains going to and from Manchester Airport would be able to charge their batteries on the electrified route between Oxenholme Lake District and Manchester Airport stations.

I think it would be likely, that there would be two services

  • An hourly service between Windermere and Manchester Airport stations, which is the current service on the branch.
  • An hourly shuttle service between Windermere and Oxenholme Lake District, which would be run by a single train.

The two services would alternate to provide the half-hourly service.

One of the advantages of a half-hourly service run by two trains, is that it may open the possibility of one train rescuing the other train if it fails.

If a train arrives at Windermere station with flat batteries, I suspect that as Windermere and Oxenholme have similar altitudes, that the second train could drag it back to Oxenholme station. Possibly without passengers.

 

 

April 21, 2020 Posted by | Transport/Travel | , , | 4 Comments

Northern’s Battery Plans

The title of this post, is half of the title of an article in the March 2020 Edition of Modern Railways.

It appears that CAF will convert some three-car Class 331 trains into four-car battery-electric trains.

  • A three-car Class 331 train has a formation of DMSOL+PTS+DMSO.
  • A fourth car with batteries will be inserted into the train.
  • Batteries will also be added to the PTS car.
  • The battery-electric trains would be used between Manchester and Windermere.

It looks like a round trip would take three hours including turnarounds, thus meaning three trains would be needed to run the service.

The article says this.

The branch was due to be electrified, but this was cancelled in 2017, and as a result 3×3-car Class 195 trains were ordered. As well as the environmental benefits, introduction of the battery ‘331s’ on Windermere services would free-up ‘195s’ for cascade elsewhere on the Northern network.

Note that the total length or the route is 98 miles of which only the ten miles of the Windermere Branch Line are not electrified.

What Battery Capacity Would Be Needed?

I reckon it will be fine to use a figure of 3 kWh per vehicle-mile to give a rough estimate of the power needed for a return trip from Oxenholme to indermere.

  • Two x Ten Miles x Four Cars x 3 kWh would give 240 kWh.
  • There would also be losses due to the seven stops, although the trains have regenerative braking, to limit losses.

Remember though that CAF have been running battery trams for several years, so I suspect that they have the experience to size the batteries appropriately.

In Thoughts On The Actual Battery Size In Class 756 Trains And Class 398 Tram-Trains, I say that four-car Class 756 trains will have 600 kWh of batteries and a range of 40 miles. I wouldn’t be surprised to find that a four-car Class 331 train had similar battery size and range on batteries, as the two trains are competing in the same market, with similar weights and passenger capacities.

Charging The Batteries

The Modern Railways article says this about charging the train’s batteries.

Northern believes battery power would be sufficient for one return trip along the branch without recharging, but as most diagrams currently involve two trips, provision of a recharge facility is likely, with the possibility that this could be located at Windermere or that recharging could take place while the units are in the platform at Oxenholme.

The bay platform 3 at Oxenholme station is already electrified, as this picture shows.

I particularly like Vivarail’s Fast Charge system based on third-rail technology.

A battery bank is connected to the third-rail and switched on, when the train is in contact, so that battery-to-battery transfer can take place.

It’s just like jump-starting a car, but with more power.

This form of charging would be ideal in a terminal station like Windermere.

  • The driver would stop the train in Windermere station in the correct place, for passengers to exit and enter the train.
  • In this position, the contact shoe on the train makes contact with the third-rail, which is not energised..
  • The Fast Charge system detects a train is connected and connects the battery bank to the third-rail.
  • Energy flows between the Fast Charge system’s battery bank and the train’s batteries.
  • When the train’s batteries are full, the Fast Charge system switches itself off and disconnects the third-rail.
  • The third-rail is made electrically dead, when the train has left, so that there is no electrical risk, if someone should fall from the platform.

Note that the only time, the third-rail used to transfer energy is live, there is a four-car train parked on top of it.

When I was eighteen, I was designing and building electronic systems using similar principles to control heavy rolling mills, used to process non-ferrous metals.

Changing Between Overhead Electrification And Battery Power

All trains running between Manchester Airport and Windermere, stop in Platform 3 at Oxenholme station to pick up and put down passengers.

  • Trains going towards Windermere would lower the pantograph and switch to battery power.
  • Trains going towards Mabchester Airport would raise the pantograph and switch to overhead electrification power.

Both changes would take place, whilst the train is stopped in Platform 3 at Oxenholme station.

February 28, 2020 Posted by | Energy Storage, Transport/Travel | , , , , , , | 17 Comments