The Anonymous Widower

Electrification Between Newbury And East Somerset Junction

In the August 2023 Edition of Modern Railways, there is an article, which is entitled GWR Seeks Opportunities To Grow.

This is the sub-heading.

Managing Director Mark Hopwood tells Philip Sherratt there is plenty of potential to increase rail’s economic contribution.

This is two paragraphs.

The desire to provide electrification to support aggregates traffic from the Mendip quarries could also benefit GWR , says Mr. Hopwood. ‘Having an electric loco would massively help with pathing heavy freight trains through the Thames Valley. If you could electrify from Newbury to East Somerset Junction, a big chunk of the Berks and Hants route would be wired.

Then you can ask how much further you could get on battery power on an IET without running out of juice.’

I have some thoughts.

Where Is East Somerset Junction?

This OpenRailwayMap shows East Somerset junction.

Note.

  1. The East Somerset junction is marked with the blue arrow.
  2. East Somerset junction is 5.2 miles North of Bruton station and 5.4 miles South of Frome station on the Reading and Taunton Line.

As the map shows there is a branch to Merehead Rail Sidings, which is shown in yellow.

This Google Map shows Merehead Rail Sidings.

Note.

  1. It looks like there is a massive quarry to the North of the A361 road, which curves across the map.
  2. It is labelled Torr Works – Aggregate Industries.
  3. Torr Works has a Wikipedia entry.
  4. The rail sidings are South of the A361.
  5. Zooming in on the map, shows that the railway between East Somerset junction and Merehead is single-track and only a few miles long.

Distances from East Somerset junction are as follows.

  • Dorchester junction – 41.2 miles
  • Newbury – 53.4 miles
  • Taunton – 37.2 miles
  • Weymouth – 47.8 miles

Note that it is electrified with 750 VDC third-rail between Weymouth and Dorchester junction.

Range of Battery-Electric Trains

Consider.

  • A Bombardier engineer told me eight years ago, that the battery-electric Class 379 train had a range of sixty miles.
  • Stadler’s FLIRT Akku has a Guinness world record of 139 miles on one battery charge. See this page on the Stadler web site.
  • Even Stadler’s Class 777 trains for Merseyrail have a range of 84 miles on battery power. See New Merseyrail Train Runs 135 km On Battery.

It does appear that five-car battery-electric trains will have ranges in excess of a hundred miles.

I believe that because Hitachi’s battery makers have a good record, they will probably be very ambitious and will want that Guinness record, that Hitachi’s Class 802 trains will have a battery range not far short of the 139 miles of the Stadler FLIRT Akku.

I will be very surprised if Hitachi’s battery-electric version of a Class 802 train, doesn’t have range of at least 125 miles.

But say if they could do say 140 miles, the battery-electric Class 802 train could cover every long-distance route in the UK, which would attract orders for trains to run on the following routes.

  • Cardiff and Swansea
  • Crewe and Holyhead
  • Edinburgh and Aberdeen
  • Edinburgh and Inverness
  • Crewe and Holyhead
  • London Waterloo and Exeter St. Davids

A substantial reward to the battery makers, would probably not be out of order.

Aggregate Trains From The Mendips

Consider.

  • Mining and quarrying companies are under pressure from governments, shareholders and environmentalists to reduce their carbon footprints.
  • Many are replacing diesel-powered mining excavators and trucks, with electric or hydrogen versions.
  • In addition, those companies delivering building products to the construction industry are under pressure to provide low-carbon products.
  • Using rail with electric traction to deliver products to market would cut carbon emissions and might even help sales.

These Mendip quarries appear to be connected to the Reading and Taunton Line.

  • Torr Works – Connects 5.4 miles to the South of Frome.
  • Whatley Quarry – Connects close to Frome.

There may be others.

But these rail-connected quarries, connect at or North of East Somerset junction, to where Mark Hopwood is proposing electrification.

Zero-carbon rail traction could even be possible, by electrifying the short single-track branch lines. or by using hydrogen-electric hybrid locomotives.

GWR’s London And South-West Services

These services use the Reading and Taunton Line to join the Bristol and Exeter Line at Taunton, before going on to Exeter, Plymouth and other destinations in the South-West of England.

These are distances from East Somerset Junction.

  • Exeter – 67 miles
  • Paignton 95.2 miles
  • Penzance – 198.5 miles
  • Plymouth – 119.0 miles
  • Taunton – 37.2 miles

Note.

  1. Exeter, Paignton, Penzance and Plymouth stations would need short lengths of electrification to charge terminating trains or top-up passing trains.
  2. In Thoughts About Electrification Through Devon And Cornwall, I showed that the average stop time at Plymouth station was eight minutes, which could be enough for the rail equivalent of a Formula One splash and dash.
  3. A 125 mile battery range, not only enables London and Penzance, but also Cardiff and Swansea, and Edinburgh and Aberdeen, when the extra electrification is completed.

Could my estimate of a 125 mile battery range, be Hitachi’s objective for their battery-electric trains?

The Ultimate Battery-Electric Class 802 Train

Hitachi have been totally silent on how the fitting of batteries to Class 802 trains is going.

But Mark Hopwood is more forthcoming in the GWR Seeks Opportunities To Grow article. where this is said.

Meanwhile, GWR had announced plans with Eversholt Rail to trial the replacement of a diesel generator unit with batteries on a Class 802 IET. However, Mr. Hopwood says this would not be useful for GWR and so the trial is not proceeding; instead, a TransPennine Express Class 802 will be the subject of a battery trial.

It sounds to me that another solution is being developed to get trains to run on electric power between London and the South-West.

  • I think we can rule out full electrification on the grounds of cost, disruption, time and the Nimbys and objectors will have a field day.
  • Newbury and Penzance is a distance of 251.9 miles, which would surely need a lot of batteries.

Mark Hopwood’s idea to electrify the 53.4 miles between Newbury And East Somerset junction, is starting to look like a good compromise.

GWR’s Bristol/Gloucester And Weymouth Services

These stopping trains are run by diesel trains and take the following route between Bristol Temple Meads and Weymouth stations.

  • Keynsham
  • Oldfield Park
  • Bath Spa
  • Freshford
  • Avoncliff
  • Bradford-on-Avon
  • Trowbridge
  • Westbury
  • Frome
  • East Somerset junction
  • Bruton
  • Castle Cary
  • Yeovil Pen Mill
  • Thornford
  • Yetminster
  • Chetnole
  • Maiden Newton
  • Dorchester West
  • Dorchester junction
  • Upwey

Note.

  1. I would assume that there is enough electrification at Bristol Temple Meads and towards Gloucester to charge the trains.
  2. Trains would leave Bristol Temple Meads with a full battery.
  3. The eighteen stops mean that an electric train with regenerative braking will be more efficient.
  4. Bristol Temple Meads and Westbury is not electrified.
  5. Westbury and East Somerset junction will be electrified with 25 KVAC overhead electrification under Mark Hopwood’s proposal.
  6. Trains take sixteen minutes between Westbury and East Somerset junction.
  7. East Somerset junction and Dorchester junction is not electrified.
  8. Dorchester junction and Weymouth is electrified with 750 VDC third-rail electrification.
  9. Trains take ten minutes between Dorchester junction and Weymouth.

Distances of the various legs are as follows.

  • Bristol Temple Meads and Westbury – 28.3 miles – Not Electrified
  • Westbury and East Somerset junction – 11.4 miles – Electrified
  • East Somerset junction and Dorchester junction – 41.4 miles – Not Electrified
  • Dorchester junction and Weymouth – 6.6 miles – Electrified

The two sections without electrification, should be well within range of a dual-voltage battery-electric train, that has been designed for the route.

GWR’s Cardiff Central And Portsmouth Harbour Service

These stopping trains are run by diesel trains and take the following route between Bristol Temple Meads and Portsmouth Harbour stations.

  • Keynsham
  • Oldfield Park
  • Bath Spa
  • Freshford
  • Avoncliff
  • Bradford-on-Avon
  • Trowbridge
  • Westbury
  • Warminster
  • Salisbury
  • Romsey
  • Redbridge
  • Southampton Central
  • Fareham
  • Cosham
  • Fratton
  • Portsmouth & Southsea

Note.

  1. I would assume that there is enough electrification at Bristol Temple Meads and towards Cardiff Central to charge the trains.
  2. Trains would leave Bristol Temple Meads with a full battery.
  3. The seventeen stops mean that an electric train with regenerative braking will be more efficient.
  4. Bristol Temple Meads and Westbury is not electrified.
  5. Westbury station will be electrified with 25 KVAC overhead electrification under Mark Hopwood’s proposal.
  6. Trains would leave Westbury with a full battery.
  7. Westbury and Redbridge is not electrified.
  8. Redbridge and Portsmouth Harbour is electrified with 750 VDC third-rail electrification.

Distances of the various legs are as follows.

  • Bristol Temple Meads and Westbury – 28.3 miles – Not Electrified
  • Westbury and Redbridge – 46.4 miles – Not Electrified
  • Redbridge and Portsmouth Harbour – 28.5 miles – Electrified

The two sections without electrification, should be well within range of a dual-voltage battery-electric train, that has been designed for the route.

GWR’s Bristol Temple Meads And Salisbury Services

These stopping trains are run by diesel trains and take the following route between Bristol Temple Meads And Salisbury stations.

  • Keynsham
  • Oldfield Park
  • Bath Spa
  • Freshford
  • Avoncliff
  • Bradford-on-Avon
  • Trowbridge
  • Dilton Marsh
  • Warminster

Note.

  1. I would assume that there is enough electrification at Bristol Temple Meads to charge the trains.
  2. Trains would leave Bristol Temple Meads with a full battery.
  3. An electric train with regenerative braking will be more efficient.
  4. Bristol Temple Meads and Westbury is not electrified.
  5. Westbury station will be electrified with 25 KVAC overhead electrification under Mark Hopwood’s proposal.
  6. Trains would leave Westbury with a full battery.
  7. Westbury and Salisbury is not electrified.

Distances of the various legs are as follows.

  • Bristol Temple Meads and Westbury – 28.3 miles – Not Electrified
  • Westbury and Salisbury – 24.4 miles – Not Electrified

The two sections without electrification, should be well within range of a battery-electric train, that has been designed for the route.

GWR’s Swindon And Westbury Services

These stopping trains are run by diesel trains and take the following route between Swindon and Westbury stations.

  • Chippenham
  • Melksham
  • Trowbridge

Note.

  1. This is the Transwilts service.
  2. I would assume that there is enough electrification at Swindon to charge the trains.
  3. Trains would leave Swindon with a full battery.
  4. An electric train with regenerative braking will be more efficient.
  5. Chippenham and Westbury is not electrified.
  6. Westbury station will be electrified with 25 KVAC overhead electrification under Mark Hopwood’s proposal.
  7. Trains would leave Westbury with a full battery.

Distances of the various legs are as follows.

  • Swindon and Chippenham – 16.9 miles – Electrified
  • Chippenham and Westbury – 15.8 miles – Not Electrified

The section without electrification, should be well within range of a battery-electric train, that has been designed for the route.

What Can Be Done If The Electrification Is Not Long Enough?

Some of these routes battery-electric routes may need more electrification to work efficiently.

Despite some routes having both 25 KVAC  overhead and 750 VDC third-rail electrification, any extension of the electrification would be overhead, as new third-rail electrification is effectively banned.

Conclusion

It looks like Mark Hopgood proposal is an excellent idea to enable the decarbonisation of GWR services in Wiltshire and Somerset.

  • Express services would be run by battery-electric Class 802 trains.
  • Local services would be run by battery-electric trains with perhaps three cars.

Some of the local trains would need to be dual-voltage to use both forms of electrification.

 

July 27, 2023 Posted by | Transport/Travel | , , , , , , , , , , , , , , | 3 Comments

Thoughts About Electrification Through Devon And Cornwall

Distances

I’ll start by looking at a few distances.

  • Penzance and Taunton – 162.3 miles
  • Penzance and Exeter St. David’s – 131.5 miles
  • Penzance and Plymouth – 79.5 miles
  • Taunton and Exeter St. David’s – 30.7 miles
  • Plymouth and Exeter St. David’s – 52 miles
  • Taunton and Newbury – 89.6 miles
  • Plymouth and Taunton – 82.8 miles
  • Taunton and Paignton – 59 miles
  • Taunton and Patchway – 51.7 miles

Note.

  1. Patchway and Newbury are already electrified to Cardiff Central and London Paddington respectively.
  2. Bombardier’s engineer told me eight years ago, that the battery-electric Class 379 had a range of sixty miles.
  3. Stadler’s FLIRT Akku has a Guinness world record of 139 miles on one battery charge. See this page on the Stadler web site.
  4. Even Stadler’s Class 777 trains for Merseyrail have a range of 84 miles on battery power. See New Merseyrail Train Runs 135km On Battery.

The rail distances in Devon and Cornwall are getting closer to being within the capability of trains fitted with batteries.

Station Stop Times

These are typical times that trains stop in the more important stations between Taunton and Penzance.

  • Taunton – < 2 mins
  • Tiverton Parkway – < 2 mins
  • Exeter St. Davids – 2 mins
  • Newton Abbot – < 2 mins
  • Totnes – < 2 mins
  • Plymouth – 11 minutes
  • Devonport – < 2 mins
  • Saltash – < 2 mins
  • Menheniot – < 2 mins
  • Liskeard – < 3 mins
  • Bodmin Parkway – 2 mins
  • Lostwithiel – 2 mins
  • Par – 2 mins
  • St. Austell – 2 mins.
  • Truro – 2 mins
  • Redruth – 2 mins
  • Camborne – 2 mins

Note.

  1. The timings were for today.
  2. The Cardiff and Penzance services were being run by five-car Class 802 trains.
  3. Most station stops are around two minutes or less, but Plymouth on this train was eleven minutes.

I find it interesting that the Plymouth stop takes so much longer.

Train Stops At Plymouth

I looked at about twenty trains stopping at Plymouth, that included these services.

  • London Paddington and Penzance
  • Penzance and London Paddington
  • Cardiff Central and Penzance
  • Penzance and Cardiff Central

Note.

  1. I found an average time of eight minutes.
  2. Eleven minutes was a common stop.
  3. Eight minutes could be enough time for the rail equivalent of a Formula One splash and dash.
  4. CrossCountry services were going through the station in three minutes.

I am led to believe that the timetable used by the GWR trains would allow a quick battery charge at Plymouth station.

This OpenRailwayMap shows the platforms at Plymouth station.

Note.

  1. London is to the East and Penzance is to the West.
  2. Platform numbers increase from South to North.
  3. The two East-facing bay platforms are Platforms 1 and 2.
  4. The West-facing bay platform in the South-West corner is Platform 3.
  5. Platform 4 shares the island with the bay platforms 1, 2 and 3.
  6. Most trains going to Penzance use Platform 4.
  7. Platforms 5 and 6 share the centre island platform.
  8. Platforms 7 and 8 share the Northernmost island platform.
  9. Most trains going towards London use Platform 7.
  10. Wikipedia indicates that the track layout is comprehensive and allows a lot of operational flexibility.

Although the station was completed around forty years ago, it could have been designed for handling modern battery-electric trains.

  • There are three bay platforms numbered 1 to 3, to charge local services and send them on their way.
  • Trains can arrive and depart in the five through platforms, numbered 4 to 8, from either direction.
  • Two days ago, a nine-car London Paddington to Plymouth train terminated in Platform 7. After waiting an hour it returned to London. An hour would be enough time to fully-charge a train.
  • As many platforms as needed could be electrified.

I am fairly sure, that most battery-electric trains could be timetabled to leave Plymouth station with full batteries.

Turnround At Penzance

I have found these turnrounds.

  • 802113 arrived from Paddington at 1142 and left for London at 1215
  • 802022 arrived from Paddington at 1307 and left for London at 1415
  • 802103 arrived from Paddington at 1500 and left for London at 1615

This OpenRailwayMap shows the platforms at Penzance station.

Note.

  1. The three example trains used Platform 1.
  2. Platform 1 is the long platform on the landward side of the station.
  3. Platforms are numbered 1 to 4 from left to right.
  4. An appropriate number of platforms would be electrified to charge trains terminating at Penzance.

Trains would appear to have plenty enough time to recharge, so they would start their return journey with full batteries.

Engineering Ambition

Several times in my life, I’ve got fired up about engineering or software projects and I like to think, I’ve produced the best and fastest solution.

For this reason, I believe that Hyperdrive Innovation, who are now part of Turntide Technologies, and Hitachi will set themselves three objectives with the design of the the battery packs for the Class 802 train.

  • The battery-electric Class 802 will outperform the Stadler FLIRT Akku in terms of speed and distance.
  • The battery packs will be plug-compatible with the diesel engines, so there will only be minor software modification to the trains.
  • The train will be able to be handle all Great Western Railway’s routes without using diesel.
  • I wouldn’t be surprised that on many routes the train will cruise at over 110 mph on batteries.

I also suspect they want the Akku’s Guinness world record, which will mean the range will be in excess of 139 miles.

Battery Range Needed For Routes

These are routes that need to be covered by battery-electric Class 802 trains or similar.

  • Avanti West Coast – Crewe and Chester – 22.2 miles
  • Avanti West Coast – Crewe and Holyhead – 105.5 miles
  • Avanti West Coast – Crewe and Llandudno Junction – 65.5 miles
  • Avanti West Coast – Crewe and Wrexham – 34.4 miles
  • Avanti West Coast – Shrewsbury and Wolverhampton – 29.7 miles
  • Great Western Railway – Penzance and Plymouth – 79.5 miles
  • Great Western Railway – Plymouth and Taunton – 82.8 miles
  • Great Western Railway – Taunton and Patchway – 51.7 miles
  • Great Western Railway – Newbury and Taunton – 89.6 miles
  • Great Western Railway – Taunton and Paignton – 59.0 miles
  • Great Western Railway – Weston-super-Mare and Chippenham – 43.5 miles
  • Great Western Railway – Oxford and Great Malvern – 65.6 miles
  • Great Western Railway – Oxford and Hereford – 86.3 miles
  • Great Western Railway – Oxford and Worcester Foregate Street – 57.6 miles
  • Great Western Railway – Oxford and Worcester Shrub Hill – 57.2 miles
  • Great Western Railway – Cheltenham Spa and Swindon – 43.2 miles
  • Great Western Railway – Cardiff Central and Carmarthen – 77.4 miles
  • Great Western Railway – Cardiff Central and Pembroke Dock – 118.9 miles
  • Great Western Railway – Cardiff Central and Swansea – 45.7 miles
  • Hull Trains – Beverley and Temple Hirst Junction – 44.3 miles
  • Hull Trains – Hull and Temple Hirst Junction – 36.1 miles
  • LNER – Hull and Temple Hirst Junction – 36.1 miles
  • LNER – Middlesbrough and Longlands Junction – 22.2 miles
  • LNER – Sunderland and Longlands Junction – 48.5 miles
  • LNER – Lincoln Central and Newark Northgate – 16.6 miles
  • LNER – Leeds and Bradford – 13 miles
  • LNER – Leeds and Harrogate – 18 miles
  • LNER – Leeds and Huddersfield – 17 miles
  • LNER – Stirling and Inverness – 146 miles
  • LNER – Edinburgh Haymarket and Aberdeen – 130 miles
  • LNER – Peterborough and Doncaster via Great Northern and Great Eastern Joint Line – 93.7 miles
  • South Western Railway – Basingstoke and Exeter St. David’s – 124.5 miles
  • TransPennine – Hull and Micklefield – 42 miles
  • TransPennine – Longlands Junction and Saltburn – 34.7 miles
  • TransPennine – York and Scarborough – 42 miles
  • TransPennine – Doncaster and Cleethorpes – 52.1 miles
  • TransPennine – Stockport and Doncaster – 55.4 miles
  • TransPennine – Stockport and Cleethorpes – 107.5 miles

Note.

  1. Stirling and Inverness and Edinburgh Haymarket and Aberdeen could be shortened by up to thirty miles, by planned electrification in Scotland.
  2. I have assumed that the TransPennine Upgrade has been completed.
  3. It looks like a battery-electric Class 802 train could use the Great Northern and Great Eastern Joint Line diversion via Lincoln.
  4. I am slightly surprised, that the longest stretch of line without electrification and with a passenger service is Basingstoke and Exeter St. David’s.

Charging will be needed at some places to charge the battery-electric trains. Stations fitted with chargers could include Aberdeen, Carmarthen, Cleethorpes, Exeter St. David’s, Hereford, Holyhead, Hull, Inverness, Paignton, Penzance, Pembroke Dock, Plymouth, Swansea, Taunton, Weston-super-Mare, Worcester.

Most chargers would be a length of electrification in the platform, where the battery-electric trains terminated or passed through.

More On LNER’s Ten New Bi-Modes

I wrote about these trains in LNER Seeks 10 More Bi-Modes.

This was my conclusion.

There is a lot of scope to develop LNER’s services.

I think it is likely that the order will go to Hitachi.

But as I indicated, I do believe that there is scope for a manufacturer to design a zero-carbon train, that was able to serve Aberdeen and Inverness.

    • I suspect a fleet of ten trains would be sufficient.
    • Trains would use the 25 KVAC overhead electrification, where it exists and hydrogen or battery power North of the wires.

The trains would also be capable of being upgraded to higher speeds, should the East Coast Main Line be turned into a High Speed Line.

I also think, that whatever trains are bought, there will be a large upgrading of the existing Hitachi fleet, which will add batteries to a lot of trains.

In the July 2023 Edition of Modern Railways, there is an article, which is entitled LNER Embraces Pioneering Spirit, which takes the form of an interview with LNER’s Managing Director; David Horne.

In a section, which is entitled ‘225’ Replacement, this is said.

Meanwhile, Mr Horne is looking to what might replace the InterCity 225 fleet, now smartly repainted in a scheme which pays homage to the original ‘Swallow’ livery. While there were fears this fleet may be withdrawn as an economy measure, the ‘225s’ are now on lease until at least next summer.

But Mr Horne says obsolescence issues are a real challenge and LNER will struggle to maintain the fleet beyond 2025, and from the May 2023 timetable change the number of daily diagrams was reduced from five to four to conserve the fleet’s mileage. Much of the heavy maintenance work had previously been carried out at Wabtec’s Doncaster site, but this facility is no longer available, and while a recent reliability improvement programme is bearing fruit, the challenges remain. The crunch point comes with the transition to ETCS at the southern end of the ECML as part of the East Coast Digital Programme – Mr Horne says LNER does not want to fit cab signalling on the ‘225s’.

The solution to this  issue is to procure additional trains to run alongside the 65 Azumas, and LNER went out to tender in October 2020 for a fleet of 10 trains with self-power capability.

While a preferred bidder has been identified, the business case to proceed with the procurement is awaiting approval, but Mr Horne is still hopeful this project can be progressed.

The current plan envisages the new trains broadly replacing the ‘225s’ on Leeds and York diagrams, but a major benefit with the new fleet would be during engineering work – at present LNER has to withdraw services to places such as Harrogate and Hull to concentrate its bi-mode Azumas on services using non-electrified diversionary routes, and having more stock with self-power capability would ease the issue.

Currently, LNER has these Azumas and InterCity 225s in its fleet.

  • Five-car bi-mode Class 800 trains – 10
  • Nine-car bi-mode Class 800 trains – 13
  • Five-car electric Class 801 trains – 12
  • Nine-car electric Class 801 trains – 30
  • Nine-car electric ImterCity 225 trains – 8

Note.

  1. There are 23 bi-mode trains and 50 electric trains.
  2. There are 167 bi-mode carriages and 302 electric carriages.
  3. Currently 31.5 % of the trains are bi-mode.
  4. With ten new bi-mode trains and no InterCity 225 trains, 44 % of the fleet will be bi-mode.

Is this increase in the percentage of the fleet, that are bi-mode acceptable?

I wonder, if there is a more affordable and flexible way to increase the fleet size.

In the Wikipedia entry for the Class 800 train, there is a section, which is entitled Traction And Generator Units, where this is said.

The Class 800 and Class 802 bi-mode are equipped with three GU per five-car set and five GU per nine-car set; a five-car set has a GU situated under vehicles 2/3/4 and a nine-car set has a GU situated under vehicles 2/3/5/7/8. In comparison, the electric-orientated Class 801 features a single GU for a five to nine-car set, which provides emergency power for limited traction and auxiliaries if the power supply from the overhead line fails. By adding or removing GUs, a Class 800 can be converted into a Class 801 and vice versa.

Let’s look at LNER’s needs, which are actually two separate sub-needs.

  • There is a need for ten new trains to replace the InterCity 225 trains.
  • There is a need to increase the size of the bi-mode fleet to be able to use the Great Northern and Great Eastern Joint Line and other non-electrified routes to by-pass engineering works.

Note.

  1. I suspect that as Mr Horne explained, there are only five or possibly four InterCity 225s diagrammed on a particular day, then perhaps ten five-car bi-mode Class 800 trains, might be able to cover for the retirement of the InterCity 225s.
  2. These trains would work as pairs to Leeds and York to replace the InterCity 225 capacity.
  3. If required they could split and join at Leeds and York to serve other destinations.
  4. The diversion route of the Great Eastern Joint Line has an unelectrified distance of 93.7 miles and the route is electrified at both ends.
  5. Would a battery-electric Class 800 train handle this distance? I suspect if Stadler can do it, then Hitachi and Turntide Technology will be able to do it too!

LNER will have replaced the InterCity 225s and acquired ten new five-car blockade runners.

As an order for ten new five-car battery-electric trains, is not to be sneezed at, I suspect Hitachi will make sure that their new battery-electric variants have enough range.

So this would mean that the range of a five cat battery-electric Class 800 train, should be in excess of 93.7 miles.

It should be noted that the five-car Class 800 and Class 802 trains have specific advantages when it comes to converting them to battery-electric trains.

  • They are modern trains, that are still in production, every bit of information about the train is known down to the last nut, bolt and plastic clip.
  • Like most modern trains, hey have a sophisticated computer system controlling the train.
  • They have spaces for three, four or maybe even five diesel engines under the floor, which could be used for a battery-pack in every car designed to hold a diesel engine.
  • The train has an electric bus between nose and tail.
  • As is shown, when the trains change between diesel and electric, the pantograph can go up and down with all the alacrity of a whore’s drawers.
  • The trains can be converted between bi-mode and electric, by adding or removing diesel packs. I doubt this feature will be removed, as batteries replace diesels.

With my Electrical and Control Engineer’s hard hat on, I doubt there is anything to stop a Class 800 or Class 802 train being fitted with three or more batteries to create a 125 mph train, with a range approaching two hundred miles on battery power.

The initial name of these Hitachi trains was the Hitachi Super Express. Is this train the Hitachi Super Battery Express?

But it would appear, that for their initial needs, LNER, just need a range to handle the near hundred miles of the Great Northern and Great Eastern Joint Line.

Inverness and Aberdeen will come later.

Hull Trains

This page on the Lumo web site is entitled Greener Travel Between Edinburgh And London.

These are the first three paragraphs.

A new, 100% electric rail service is to start running between London and Edinburgh with fares for as little as £14.90 in a bid to encourage greener and more affordable travel between the capitals.

Called Lumo, it will provide low-carbon, affordable long-distance travel for over 1 million passengers per year. Over 74,500 passengers currently fly between Edinburgh and London each month3.

And with single tickets between the capitals starting from just £14.90, Lumo will be a comfortable, convenient alternative to flying that is affordable for all. Some 60% of all single fares will be available at a cost of £30 or less.

I’m sure Hull Trains, who are owned by First Group like Lumo would like to position themselves in the 100 % electric low-carbon box too!

Currently, Hull Trains’s five-car Class 802 trains, run 88.6 and 72.2 miles using diesel on round-trips to Beverley and Hull respectively from London.

If batteries were fitted to their trains to give a battery range of around a hundred miles, Hull Trains could call themselves 100 % electric.

No new infrastructure would be required, but a short length of overhead electrification in a convenient platform at Hull station would ensure the train left for London and Beverley with a full battery.

The pictures show Hull Trains’s Class 802 train in Platform 7 at Hull station.

Penzance And Taunton

This to me is the key section as if you can run a battery-electric train between these two stations it allows so many of the services to be run using zero-carbon traction.

These are distances from Taunton.

  • Exeter St. David’s – 30.7 miles
  • Newbury – 89.6 miles
  • Okehampton – 55.3 miles
  • Paignton – 59.0 miles
  • Patchway – 51.7 miles
  • Plymouth – 82.8 miles

Note.

  1. I’ve added Okehampton, as I feel that if Dawlish had another encounter with Poseidon, Okehampton with its proposed Parkway station on the A30 could be the terminus for coaches to and from Cornwall.
  2. All would be possible with a battery-electric train, with a hundred-mile range, leaving Taunton with a full battery.
  3. Charging could be needed at Okehampton and Paignton.

What is needed is some form of charging in the Taunton area.

This OpenRailwayMap shows Taunton station.

Note.

  1. The station has four through platforms.
  2. All Great Western Railway services to and from Devon and Cornwall stop in the station.
  3. I feel it would be possible to electrify the station, so that all stopping trains could charge the batteries.

But the problem would be, that as typically trains only stop for a couple of minutes at Taunton, there may not be enough time to take enough charge on board.

This OpenRailwayMap shows the track between Wellington and Collumpton, between Taunton and Exeter.

Note.

  1. The black line is the railway between Taunton and Exeter.
  2. The blue arrow in the North-East corner of the map indicates the position of the proposed Wellington station.
  3. Collumpton is in the South-West corner of the map and has also been put forward for a new Collumpton station.
  4. I talked about the reopening of these two stations in Reopening Of Wellington and Cullompton Stations.
  5. The M5 to the North of Collumpton runs closely alongside the railway.
  6. According to Real Time Trains, it takes just under ten minutes to go the thirteen miles between Wellington and Collumpton.

This Google Map shows a section of the M5 North of Collumpton.

And this Google Map shows Tiverton Parkway station.

Note how the railway runs alongside the M5 to the West.

I feel that if the two new stations of Wellington and Collumpton are built between Taunton and Exeter St. David’s, then why not partially electrify the route, so that all trains would leave or pass through Taunton and Collumpton stations with full batteries.

  • Going West the trains would reach Exeter St. David’s, Okehampton or Plymouth.
  • Going East trains would reach Newbury for Reading and Paddington, and Patchway for Cardiff.

I believe that a battery-electric solution is possible, that would enable the decarbonisation of the Great Western Main Line all the way to Penzance.

 

 

 

 

 

 

 

 

June 25, 2023 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , , , , , , | 8 Comments

Marsh Barton Station Will Open On Tuesday, 4th July 2023

This is said on this page on the Great Western Railway web site.

The station is due to open on Tuesday 4 July 2023.

This Google map shows Marsh Barton station under construction.

Note.

  1. The two five-car platforms.
  2. The pedestrian and cycle bridge over the tracks at the Northern end of the station.
  3. I would assume, that the bridges have been made high enough over the tracks for electrification.

The page on the Great Western Railway web site also has a couple of videos showing construction of the station.

Services

The page on the Great Western Railway web site also says this about services at the station.

Marsh Barton will be served by our local services between Paignton and Exmouth which run through the heart of Exeter.

We aim to provide hourly off-peak services to the station with additional trains stopping at peak times.

Currently, there is an hourly train that stops at all stations between Exmouth and Paignton, which will probably be the main service.

In addition five long distance services will pass through Marsh Barton station.

  • Two trains per day (tpd) – London Paddington and Paignton via Reading, Newbury, Hungerford, Pewsey, Westbury, Castle Cary, Taunton, Tiverton Parkway, Exeter St. Davids, Dawlish, Teignmouth, Newton Abbot, Torre and Torquay
  • Three tpd – London Paddington and Plymouth via Reading, Newbury, Hungerford, Pewsey, Westbury, Castle Cary, Taunton, Tiverton Parkway, Exeter St. Davids, Dawlish, Teignmouth, Newton Abbot, Totnes and Ivybridge
  • One train per two hours (tp2h) – London Paddington and Plymouth via Reading, Taunton, Tiverton Parkway, Exeter St Davids, Newton Abbot and Totnes.
  • One tp2h – London Paddington and Penzance via Reading, Taunton, Tiverton Parkway, Exeter St Davids, Newton Abbot, Totnes, Plymouth, Liskeard, Bodmin Parkway, Par, St Austell, Truro, Redruth, Camborne and St Erth.
  • One tp2h – Cardiff Central and Penzance via Newport, Severn Tunnel Junction, Patchway, Filton Abbey Wood, Bristol Temple Meads, Nailsea & Backwell, Yatton, Worle, Weston-super-Mare, Highbridge & Burnham, Bridgwater, Taunton, Tiverton Parkway, Exeter St Davids, Dawlish, Teignmouth, Newton Abbot, Totnes, Ivybridge, Plymouth, Devonport, Dockyard, Keyham, St Budeaux Ferry Road, Saltash, St Germans, Menheniot, Liskeard, Bodmin Parkway, Lostwithiel, Par, St Austell, Truro, Redruth, Camborne, Hayle and St. Erth

Note.

  1. The fifth train is definitely what you would call a stopping train.
  2. All the through expresses stop at Taunton, Tiverton Parkway, Exeter St Davids and Newton Abbot.
  3. The stopping service, the Paignton trains and some Plymouth trains stop at Dawlish and Teignmouth.
  4. All trains stopping at Plymouth, stop at Totnes.
  5. The Paignton and Plymouth services are run using Class 802 trains.
  6. The fifth stopping service is run by a GWR Castle.
  7. Marsh Barton station has been built for five-car Class 802 trains.

As the GWR Castles are being retired and will probably be replaced by more Class 802 trains, we are very likely to see more Hitachi trains working between Taunton and Penzance via Tiverton Parkway, Exeter St Davids, Dawlish, Teignmouth, Newton Abbot, Totnes, Plymouth, Liskeard, Bodmin Parkway, St Austell, Truro, Redruth, Camborne and Hayle.

 

June 23, 2023 Posted by | Transport/Travel | , , , , , , , | 4 Comments

Strategic Outline Business Case Submitted For Reopening Tavistock To Plymouth Rail Line

The title of this post, is the same as that of this news topic on the Devon County Council web site.

This is the sub-heading for the news item.

The Strategic Outline Business Case for the reopening of the Tavistock to Plymouth rail line has been submitted.

These three paragraphs outline the proposal.

Our submission to the Government’s Restoring Your Railway programme sets out the rationale for reopening the line between Bere Alston and Tavistock.

The scheme would reinstate approximately five miles of track and deliver a new single platform station at Tavistock, which would serve around 21,000 residents of Tavistock, Horrabridge, Lamerton, and Mary Tavy.

An hourly Tavistock-Plymouth service would stop at Bere Alston, Bere Ferrers and the west Plymouth stations, while maintaining the existing two-hourly service between Plymouth and Gunnislake.

I have a few thoughts.

The Connection At Bere Alston Station

This OpenRailwayMap shows the track layout at Bere Alston station.

Note.

  1. Bere Alston station is indicated by the blue arrow.
  2. The line between Bere Alston and Tavistock goes East from Bere Alston station and is shown as a black dotted line.
  3. The single-track Tamar Valley Line between Plymouth and Gunnislake stations, is shown in yellow.
  4. Tamar Line trains reverse in Bere Alston stations.
  5. Plymouth is to the South.
  6. Gunnislake is to the North.

It would appear to be a simple connection.

The Route Between Bere Alston Station And Tavistock

This OpenRailwayMap shows the route between Bere Alston Station And Tavistock.

Note.

  1. Bere Alston station is indicated by the blue arrow.
  2. The single-track Tamar Valley Line between Plymouth and Gunnislake stations, is shown in yellow.
  3. Tavistock is in the North-East corner of the map.
  4. The dotted line between Bere Alston and Tavistock shows the route of the proposed reopened railway.

The new railway follows the route of a railway that closed in 1968.

These two  paragraphs from the Wikipedia entry for Tavistock North station, describe the state of the railway between Tavistock North and Bere Alston stations.

The station building has been restored and converted into three self-catering cottages. The stationmaster’s house is being restored as a private dwelling, while the goods yard, now known as Kilworthy Park, houses the offices of West Devon Borough Council. The track bed for about one mile (1.6 km) south of Tavistock North station is open to the public as a footpath and nature reserve, and it is possible to walk across the viaducts that overlook the town.

The rest of the track bed south of Tavistock is almost intact to Bere Alston, where it joins the present-day Tamar Valley Line. There has been discussion regarding the re-opening of a rail link for a number of years. Engineering assessment has shown that the track bed, and structures such as bridges and tunnels, are in sound condition.

It doesn’t appear that restoring the track will be the most challenging of tasks.

But it does appear that extending the railway to the former Tavistock North station, would be a very challenging task indeed.

The Proposed Station At Tavistock

This OpenRailwayMap shows the track as it runs through Tavistock to the former Tavistock North station.

Note.

  1. The former railway is shown as a dotted line running diagonally SW-NE across the map.
  2. The former Tavistock North station is shown in the North-East corner of the map.
  3. This railway turns South as it leaves the town.
  4. The single-platform station will be built, where the railway crosses the A390.
  5. Another former railway passes through the town to the South-East, that passes through the former Tavistock South. station.

Between the former Tavistock North station and the A390 is now the Tavistock Viaduct Walk, which is about a mile long.

This Google Map shows where the track-bed of the old railway approaches the A390.

 

Note.

  1. The green scar of the former railway approaching from the South.
  2. The A390 running diagonally across the map.
  3. The plans only include a one-platform station, which I suspect is all that will fit.

Could this be a station without car-parking?

There’s not much space to put it!

Will It Be Possible To Extend From Tavistock To Okehampton?

The Line between Bere Alston and Tavistock North stations used to extend to Okehampton and train operators and  Local Authorities are keen to provide a new link, in case the railway gets washed away again at Dawlish.

It’s not so much for passengers, as coaches can be used between Okehampton and Bodmin Parkway stations along the A30.

But an alternative route for freight is needed.

I would hope that the new Tavistock station will be capable of being modified, so that trains can run between Plymouth and Okehampton stations.

What Class Of Train Will Be Used Between Plymouth And Tavistock?

As a Class 150 train is used from Plymouth to Gunnislake, I suspect a Class 150 train will be used.

But the station will probably be long enough for a five-car Class 802 train.

January 1, 2023 Posted by | Transport/Travel | , , , , , , , , , , | 1 Comment

No Trains Out Of Cornwall Until The Weekend After Lorry Hits Plymouth Bridge

The title of this post, is the same as that of this article on The Times.

A few points from the article.

  • It was a Tesco truck.
  • It took twenty-four hours to extract.
  • The accident happened on Ashford Hill in Plymouth.

I found the bridge on Google Maps.

Note.

  1. The railway and the bridge are at the top of the map.
  2. My eyesight isn’t good, but I can see the warning signs on the bridge.
  3. There is a TescoExpress in the bottom right corner of the map.

It can’t be a lot more than a hundred metres between the bridge and the TescoExpress.

To make matters worse for the train operators, the accident site is to the East of Plymouth station, which means trains can’t run to Plymouth.

Will GWR Use Okehampton?

Network Rail have already re-laid the track to Okehampton, prior to opening an hourly service between Exeter and Okehampton later this year.

Okehampton station is close to the A30 and I suspect that GWR would have little difficulty running a five-car Hitachi train to Okehampton from London with a reverse at Exeter. At Okehampton, they could use coaches to serve Cornwall by running to Bodmin Parkway.

If I was the CEO of GWR, I’d see if it could be arranged, as what good publicity they’d get for the new Okehampton service.

August 31, 2021 Posted by | Transport/Travel | , , , , , | 4 Comments

Charging The Batteries On An Intercity Tri-Mode Battery Train

There are several ways the batteries on an Intercity Tri-Mode Battery Train could be charged.

  • On an electrified main line like the Great Western or East Coast Main Lines, the electrification can be used in normal electrified running.
  • A short length of electrification at the terminal or through stations can be used.
  • The diesel engines could be used, at stations, where this is acceptable.

Alternatively, a custom design of charger can be used like Vivarail’s  Fast Charge system.

In Vivarail’s Plans For Zero-Emission Trains, I said this.

Vivarail Now Has Permission To Charge Any Train

Mr. Shooter said this about Vivarail’s Fast Charge system.

The system has now been given preliminary approval to be installed as the UK’s standard charging system for any make of train.

I may have got the word’s slightly wrong, but I believe the overall message is correct.

In the November 2020 Edition of Modern Railways, there is a transcript of what Mr. Shooter said.

‘Network Rail has granted interim approval for the fast charge system and wants it to be the UK’s standard battery charging system’ says Mr. Shooter. ‘We believe it could have worldwide implications.’

I hope Mr. Shooter knows some affordable lawyers, as in my experience, those working in IPR are not cheap.

I think it’s very likely, that Vivarail’s Fast Charge system could be installed at terminals to charge Hitachi’s Intercity Tri-Mode Battery Trains.

    • The Fast Charge systems can be powered by renewable energy.
    • The trains would need to be fitted with third rail shoes modified to accept the high currents involved.
    • They can also be installed at intermediate stations on unelectrified lines.

Vivarail is likely to install a Fast Charge system at a UK station in the next few months.

These are my thoughts about charging trains at various stations.

Penzance station

This Google Map shows Penzance station.

Penzance would be an ideal station to fully charge the trains, before they ran East.

  • The station has four long platforms.
  • There appears to be plenty of space just to the East of the station.
  • Penzance TMD is nearby.

This picture shows Platform 4, which is on the seaward side of the station. The train in the platform is one of GWR’s Castles.

It is partly outside the main station, so might be very suitable to charge a train.

If trials were being performed to Penzance, it appears that the station would be a superb choice to charge trains.

My only worry, is would the location have enough power to charge the trains?

Plymouth Station

This Google Map shows Plymouth station.

It is another spacious station with six platforms.

Chargers could be installed as needed for both expresses and local trains.

A Zero-Carbon Devon and Cornwall

If the battery trains perform as expected, I can see the Devon and Cornwall area becoming a low if not zero carbon railway by the end of this decade.

  • The Castles would be retired.
  • They would be replaced by battery electric trains.
  • Charging would be available on all platforms at Penzance, Plymouth and possible some other intermediate stations and those on some branch lines.

It certainly wouldn’t hurt tourism.

 

December 28, 2020 Posted by | Transport/Travel | , , , , , , , , | 3 Comments