The Anonymous Widower

CP Hydrogen Locomotive Pilot Powered By Ballard

The title of this post, is the same as that of this article on Railway Age.

This is the introductory paragraph.

Canadian Pacific (CP) will use fuel cell modules from Ballard Power Systems for its first hydrogen fuel cell (HFC)-powered linehaul freight locomotive.

I have said that someone will build a hydrogen powered freight locomotive for some time  and it looks like Canada is first to show their hand.

The engine shown in the picture in the Railway Age article is 4107, which is an EMD FP9, which looks to be a typical North American diesel-electric locomotive.

  • It has a power of 1300 kW.
  • It can haul freight or passenger trains.
  • Ninety were built in the 1950s.
  • They have a maximum speed of between 65-105 mph.

The diesel engine and alternator will be swapped for six 200 kW fuel cells from Ballard and a battery.

This video shows 4107 leading the Royal Canadian Pacific, which is a luxury excursion passenger train.

Will this train be hydrogen powered in the future? It would be an interesting way to bring in the tourists.

 

 

March 10, 2021 Posted by | Hydrogen, Transport | , , | 2 Comments

Are Hydrogen-Fuelled Vehicles A Waste Of Our Time And Energy?

The title of this post, is the same as that of this article on Engineering & Technology, which is the magazine of the Institution of Engineering and Technology. So it should be authoritative.

This is the concluding paragraph.

Cars account for 61 per cent of surface transport emissions, HGVs only 17 per cent, buses 3 per cent, and rail 2 per cent (CCC, December 2020) so for cost/benefit it cannot be worthwhile switching to hydrogen fuel cell buses and trains. Through any impartial lens of engineering science, hydrogen fuel cell cars do not appear to be a transport winner and the Government should revisit decisions it has made about related funding. But then there is political virtue signalling.

It is a must-read contribution to the debate, as to whether hydrogen or battery power, is best for surface transport.

I don’t believe there is a simple answer, because for some applications, battery electric power is not feasible because of reasons of power or range.

  • Would a battery-electric truck, be able to haul a forty-four tonne load between the Channel Tunnel and Scotland?
  • Would a battery-electric locomotive be able to haul a thousand tonne aggregate or stone train for anything but a few tens of miles?
  • Is it possible to design a a battery-electric double-deck bus, that can carry seventy passengers?

I believe there are applications, where battery-electric is not a feasible alternative to the current diesel traction.

It is worth noting, that truck-maker; Daimler is planning to have both battery and hydrogen heavy trucks in its product line.

Users will choose, what is the best zero-carbon transport for their needs.

The Black Cab Driver’s Answer

It is always said, that, if you want to know the answer to a difficult question, you ask the opinion of a black cab driver.

So as the new electric black taxis, are the most common electric vehicle, that the average Londoner uses, what do the guys up-front say about their expensive vehicles.

  • Regularly, cab drivers complain to me about the range and having to use the diesel engine to charge the battery or power the car.
  • Some suggest to me, that hydrogen might be a better way to make the vehicles zero-carbon.

I think they may have a point about hydrogen being a better method of powering a black taxi, when you look at the pattern of journeys and the battery size and charging limitations of the vehicle.

These limitations may reduce in the future, as the technology gets better, with higher density batteries and faster charging.

We could even see a design and sales war between battery and hydrogen black cabs.

It always pays to follow the money!

February 17, 2021 Posted by | Energy, Hydrogen, Transport | , , , , , , | 4 Comments

Fuel Cell Enabling Technologies, Inc. Announces First Major Customer, Signs Memorandum of Understanding Regarding Purchase of Fuel Cells for Locomotives

The title of this post, is the same as that of this article on Cision.

This is the introductory paragraph.

Fuel Cell Enabling Technologies, Inc. (FCET), a start-up energy technology company that has developed a novel, low-cost solid oxide fuel cell (SOFC) system, has announced a memorandum of understanding (MOU) with NextGenPropulsion, LLC (NGP) indicating NGP’s intent to purchase FCET fuel cells for NGP light-rail trains and freight locomotives. In addition to fuel cell orders, this would mean engineering collaboration between the two firms, each bringing its specific and considerable expertise to these projects.

I have been saying that hydrogen freight locomotives are certain to be ordered in a few years.

Hydrogen-powered freight locomotives, are in my opinion, the logical way of decarbonising rail freight.

January 5, 2021 Posted by | Hydrogen | , , , , , , | Leave a comment

Shooter Urges Caution On Hydrogen Hubris

The title of this post is the same as that of an article in the January 2021 Edition of Modern Railways.

This is the first paragraph.

Vivarail Chairman Adrian Shooter has urges caution about the widespread enthusiasm for hydrogen technology. In his keynote speech to the Golden Spanner Awards on 27 November, Mr. Shooter said the process to create ‘green hydrogen’ by electrolysis is ‘a wasteful use of electricity’ and was skeptical about using electricity to create hydrogen to then use a fuel cell to power a train, rather than charging batteries to power a train. ‘What you will discover is that a hydrogen train uses 3.5 times as much electricity because of inefficiencies in the electrolysis process and also in the fuel cells’ said Mr. Shooter. He also noted the energy density of hydrogen at 350 bar is only one-tenth of a similar quantity of diesel fuel, severely limiting the range of a hydrogen-powered train between refuelling.

Mr. Shooter then made the following points.

  • The complexity of delivering hydrogen to the railway depots.
  • The shorter range available from the amount of hydrogen that can be stored on a train compared to the range of a diesel train.
  • He points out limitations with the design of the Alstom Breeze train.

This is the last paragraph.

Whilst this may have seemed like a challenge designed purely to promote the battery alternatives that Vivarail is developing, and which he believes to be more efficient, Mr. Shooter explained: ‘I think that hydrogen fuel cell trains could work in this country, but people just need to remember that there are downsides. I’m sure we’ll see some, and in fact we should because competition improves the breed.’

i think Mr. Shooter may have made several good points.

These are my thoughts.

Creating Green Hydrogen

I haven’t done an analysis of the costs of creating green hydrogen from electrolysis, but I have a feeling, that electrolysis won’t be the only way to create large amounts of carbon-free hydrogen, in a few years.

These methods are currently available or under development or construction.

  • The hydrogen tram-buses in Pau have a personal electrolyser, that provides hydrogen at 350 bar.
  • London’s hydrogen buses will be provided with hydrogen from an electrolyser at Herne Bay by truck. Will the trucks be hydrogen-powered?

Some industrial processes like the Castner-Kellner process create hydrogen as a by-product.

In Shell Process To Make Blue Hydrogen Production Affordable, I describe the Shell Blue Hydrogen Process, which appears to be a way of making massive amounts of carbon-free hydrogen for processes like steel-making and cement production. Surely some could be piped or transported by truck to the rail depot.

In ITM Power and Ørsted: Wind Turbine Electrolyser Integration, I describe how ITM Power and Ørsted plan to create the hydrogen off shore and bring it by pipeline to the shore.

Note.

  1. The last two methods could offer savings in the cost of production of carbon-free hydrogen.
  2. Surely, the delivery trucks if used, must be hydrogen-powered.
  3. The Shell Blue Hydrogen Process uses natural gas as a feedstock and converts it to hydrogen using a newly-developed catalyst. The carbon-dioxide is captured and used or stored.
  4. If the local gas network has been converted to hydrogen, the hydrogen can be delivered to the depot or filling station through that gas network.

I very much feel that affordable hydrogen can be supplied to bus, train, tram or transport depot. For remote or difficult locations. personal electrolysers, powered by renewable electricity, can be used, as at Pau.

Hydrogen Storage On Trains

Liquid hydrogen could be the answer and Airbus are developing methods of storing large quantities on aircraft.

In What Size Of Hydrogen Tank Will Be Needed On A ZEROe Turbofan?, I calculated how much liquid hydrogen would be needed for this ZEROe Turbofan.

I calculate that to carry the equivalent amount of fuel to an Airbus A320neo would need a liquid hydrogen tank with a near 100 cubic metre capacity. This sized tank would fit in the rear fuselage.

I feel that in a few years, a hydrogen train will be able to carry enough liquid hydrogen in a fuel tank, but the fuel tank will be large.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I calculated how much liquid hydrogen would be needed to provide the same amount of energy as that carried in a full diesel tank on a Class 68 locomotive.

The locomotive would need 19,147 litres or 19.15 cubic metres of liquid hydrogen, which could be contained in a cylindrical tank with a diameter of 2 metres and a length of 6 metres.

Hydrogen Locomotives Or Multiple Units?

We have only seen first generation hydrogen trains so far.

This picture shows the Alstom Coradia iLint, which is a conversion of a Coradia Lint.

It is a so-so train and works reasonably well, but the design means there is a lot of transmission noise.

This is a visualisation of an Alstom Breeze or Class 600 train.

Note that the front half of the first car of the train, is taken up with a large hydrogen tank. It will be the same at the other end of the train.

As Mr. Shooter said, Alstom are converting a three-car train into a two-car train. Not all conversions live up to the hype of their proposers.

I would hope that the next generation of a hydrogen train designed from scratch, will be a better design.

I haven’t done any calculations, but I wonder if a lighter weight vehicle may be better.

Hydrogen Locomotives

I do wonder, if hydrogen locomotives are a better bet and easier to design!

  • There is a great need all over the world for zero-carbon locomotives to haul freight trains.
  • Powerful small gas-turbine engines, that can run on liquid hydrogen are becoming available.
  • Rolls-Royce have developed a 2.5 MW gas-turbine generator, that is the size of a beer-keg.

In The Mathematics Of A Hydrogen-Powered Freight Locomotive, I wondered if the Rolls-Royce generator could power a locomotive, the size of a Class 68 locomotive.

This was my conclusion.

I feel that there are several routes to a hydrogen-powered railway locomotive and all the components could be fitted into the body of a diesel locomotive the size of a Class 68 locomotive.

Consider.

  • Decarbonising railway locomotives and ships could be a large market.
  • It offers the opportunities of substantial carbon reductions.
  • The small size of the Rolls-Royce 2.5 MW generator must offer advantages.
  • Some current diesel-electric locomotives might be convertible to hydrogen power.

I very much feel that companies like Rolls-Royce and Cummins (and Caterpillar!), will move in and attempt to claim this lucrative worldwide market.

In the UK, it might be possible to convert some existing locomotives to zero-carbon, using either liquid hydrogen, biodiesel or aviation biofuel.

Perhaps, hydrogen locomotives could replace Chiltern Railways eight Class 68 locomotives.

  • A refuelling strategy would need to be developed.
  • Emissions and noise, would be reduced in Marylebone and Birmingham Moor Street stations.
  • The rakes of carriages would not need any modifications to use existing stations.

It could be a way to decarbonise Chiltern Railways without full electrification.

It looks to me that a hydrogen-powered locomotive has several advantages over a hydrogen-powered multiple unit.

  • It can carry more fuel.
  • It can be as powerful as required.
  • Locomotives could work in pairs for more power.
  • It is probably easier to accommodate the hydrogen tank.
  • Passenger capacity can be increased, if required by adding more coaches.

It should also be noted that both hydrogen locomotives and multiple units can build heavily on technology being developed for zero-carbon aviation.

The Upward Curve Of Battery Power

Sparking A Revolution is the title an article in Issue 898 of Rail Magazine, which is mainly an interview with  Andrew Barr of Hitachi Rail.

The article contains a box, called Costs And Power, where this is said.

The costs of batteries are expected to halve in the next years, before dropping further again by 2030.

Hitachi cites research by Bloomberg New Energy Finance (BNEF) which expects costs to fall from £135/kWh at the pack level today to £67/kWh in 2030 and £47/kWh in 3030.

United Kingdom Research and Innovation (UKRI) are predicting that battery energy density will double in the next 15 years, from 700 Wh/l to 1400 Wh/l in 2-35, while power density (fast charging) is likely to increase four times in the same period from 3 kW/kg to 12 kW/kg in 2035.

These are impressive improvements that can only increase the performance and reduce the cost of batteries in all applications.

Hitachi’s Regional Battery Train

This infographic gives the specification of Hitachi Regional Battery Train, which they are creating in partnership with Hyperdrive Innovation.

Note that Hitachi are promising a battery life of 8-10 years.

Financing Batteries

This paragraph is from this page on BuyaCar, which is entitled Electric Car Battery Leasing: Should I Lease Or Buy The Batteries?

When you finance or buy a petrol or diesel car it’s pretty simple; the car will be fitted with an engine. However, with some electric cars you have the choice to finance or buy the whole car, or to pay for the car and lease the batteries separately.

I suspect that battery train manufacturers, will offer similar finance models for their products.

This paragraph is from this page on the Hyperdrive Innovation web site.

With a standardised design, our modular product range provides a flexible and scalable battery energy storage solution. Combining a high-performance lithium-ion NMC battery pack with a built in Battery Management System (BMS) our intelligent systems are designed for rapid deployment and volume manufacture, supplying you with class leading energy density and performance.

I can envisage that as a battery train ages, every few years or so, the batteries will get bigger electrically, but still be the same physical size, due to the improvements in battery technology, design and manufacture.

I have been involved in the finance industry both as a part-owner of a small finance company and as a modeller of the dynamics of their lending. It looks to me, that train batteries could be a very suitable asset for financing by a fund. But given the success of energy storage funds like Gore Street and Gresham House, this is not surprising.

I can envisage that battery electric trains will be very operator friendly, as they are likely to get better with age and they will be very finance-friendly.

Charging Battery Trains

I must say something about the charging of battery trains.

Battery trains will need to be charged and various methods are emerging.

Using Existing Electrification

This will probably be one of the most common methods used, as many battery electric services will be run on partly on electrified routes.

Take a typical route for a battery electric train like London Paddington and Oxford.

  • The route is electrified between London Paddington and Didcot Junction.
  • There is no electrification on the 10.4 miles of track between Didcot Junction and Oxford.

If a full battery on the train has sufficient charge to take the train from Didcot Junction to Oxford and back, charging on the main line between London Paddington and Didcot Junction, will be all that will be needed to run the service.

I would expect that in the UK, we’ll be seeing battery trains using both 25 KVAC overhead and 750 VDC third rail electrification.

Short Lengths Of New Strategic Electrification

I think that Great Western Railway would like to run either of Hitachi’s two proposed battery electric trains to Swansea.

As there is 45.7 miles pf track without .electrification, some form of charging in Swansea station, will probably be necessary.

The easiest way would probably be to electrify Swansea station and perhaps for a short distance to the North.

This Google Map shows Swansea station and the railway leading North.

Note.

  1. There is a Hitachi Rail Depot at the Northern edge of the map.
  2. Swansea station is in South-West corner of the map.
  3. Swansea station has four platforms.

Swansea station would probably make an excellent battery train hub, as trains typically spend enough time in the station to fully charge the batteries before continuing.

There are other tracks and stations of the UK, that I would electrify to enable the running of battery electric trains.

  • Leeds and York, which would enable carbon-free London and Edinburgh services via Leeds and help TransPennine services. This is partially underway.
  • Leicester and East Midlands Parkway and Clay Cross North Junction and Sheffield – These two sections would enable EMR InterCity services to go battery electric.
  • Sheffield and Leeds via Meadowhall, Barnsley Dearne Valley and the Wakefield Line, which would enable four trains per hour (tph) between Sheffield and Leeds and an extension of EMR InterCity services to Leeds.
  • Hull and Brough, would enable battery electric services to Hull and Beverley.
  • Scarborough and Seamer, would enable electric services services to Scarborough and between Hull and Scarborough.
  • Middlesbrough and Redcar, would enable electric services services to Teesside.
  • Crewe and Chester and around Llandudno Junction station – These two sections would enable Avanti West Coast service to Holyhead to go battery electric.
  • Shrewsbury station – This could become a battery train hub, as I talked about for Swansea.
  • Taunton and Exeter and around Penzance, Plymouth and Westbury stations – These three sections would enable Great Western Railway to cut a substantial amount of carbon emissions.
  • Exeter, Yeovil Junction and Salisbury stations. – Electrifying these three stations would enable South Western Railway to run between London and Exeter using Hitachi Regional Battery Trains, as I wrote in Bi-Modes Offered To Solve Waterloo-Exeter Constraints.

We will also need fast chargers for intermediate stations, so that a train can charge the batteries on a long route.

I know of two fast chargers under development.

I believe it should be possible to battery-electrify a route by doing the following.

  • Add short lengths of electrification and fast charging systems as required.
  • Improve the track, so that trains can use their full performance.
  • Add ERTMS signalling.
  • Add some suitable trains.

Note.

  1. I feel ERTMS  signalling with a degree of automatic train control could be used with automatic charging systems, to make station stops more efficient.
  2. In my view, there is no point in installing better modern trains, unless the track is up to their performance.

January 4, 2021 Posted by | Energy, Hydrogen, Transport | , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Northern Powerhouse Rail – Significant Upgrades And Journey Time Improvements To The Hope Valley Route Between Manchester And Sheffield

In this article on Transport for the North, which is entitled Northern Powerhouse Rail Progress As Recommendations Made To Government, one of the recommendations proposed for Northern Powerhouse Rail is significant upgrades and journey time improvements to the Hope Valley Line between Manchester and Sheffield.

I shall look at a few of the possibilities for the route.

Northern Powerhouse Rail’s Objective For The Route

Wikipedia, other sources and my calculations say this about the trains between Manchester and Sheffield.

  • The distance between the two stations is 42.6 miles
  • The current service takes 49 to 57 minutes and has a frequency of two trains per hour (tph)
  • This gives an average speed of 52.2 mph for the fastest journey.
  • The proposed service with Northern Powerhouse Rail will take 40 minutes and have a frequency of four tph.
  • This gives an average speed of 63.9 mph for the journey.

This last figure of 63.9 mph, indicates to me that a 100 mph train will be able to meet Northern Powerhouse Rail’s objective.

Current Trains On The Hope Valley Line

In July this year, I went along the Hope Valley Line between Manchester Piccadilly and Dore and Totley stations, which I wrote about in Along The Hope Valley Line – 13th July 2020.

My train was a pair of refurbished Class 150 trains.

These trains can handled the current timetable but they have an operating speed of only 75 mph.

Looking at Real Time Trains for last week, it now appears that Northern are using new three-car Class 195 trains.

These are much better.

  • They are 100 mph trains with much better acceleration.
  • The train was still running the timetable for the slower trains.

With thirteen stops, I suspect that these new trains could be under fifty minutes between Manchester and Sheffield.

Will The Hope Valley Line Be Electrified?

Consider.

  • Currently, the Hope Valley Line is electrified between Manchester Piccadilly and Hazel Grove stations.
  • In the future, the line is likely to be electrified between Sheffield and Dore & Totley stations, in conjunction with rebuilding the Midland Main Line, to the North of Clay Cross North junction for High Speed Two.
  • After the electrification at the Eastern end, just over thirty miles will be without electrification.
  • The Hope Valley Line has an operating speed of 90 mph.

This Hitachi infographic shows the specification of the Hitachi Regional Battery train.

As these are a 100 mph train with a range of 90 km or 56 miles on battery power, these trains could work Manchester and Sheffield in the required time of forty minutes. provided they could be charged at the Sheffield end of the route.

TransPennine’s Class 802 trains can be fitted with batteries to become Regional Battery Trains, so it would appear that TransPennine’s services on this route could go zero-carbon.

In addition Northern, who are the other passenger operator on the route are working with CAF on battery electric trains, as I wrote about in Northern’s Battery Plans,

I don’t believe there are pressing reasons to electrify the Hope Valley Line to allow passenger trains to meet Northern Powerhouse Rail’s objective.

Will Operating Speed On The Hope Valley Line Be Increased?

Under Plans in the Wikipedia entry for the Hope Valley Line, this is said.

Network Rail, in partnership with South Yorkshire ITA, will redouble the track between Dore Station Junction and Dore West Junction, at an estimated cost of £15 million. This costing is based on four additional vehicles in traffic to deliver the option, however, this will depend on vehicle allocation through the DfT rolling stock plan. This work will be programmed, subject to funding, in conjunction with signalling renewals in the Dore/Totley Tunnel area.

Other proposals include a 3,600 feet (1,100 m) loop in the Bamford area, in order to fit in an all-day (07:00–19:00) hourly Manchester–Sheffield via New Mills Central stopping service, by extending an existing Manchester–New Mills Central service. Planning permission for this was granted in February 2018, but delays mean that this will now not be completed until 2023.

These changes to allow three fast trains, a stopping train and freight trains each hour were also supported in a Transport for the North investment report in 2019, together with “further interventions” for the Northern Powerhouse Rail programme.

It would also probably be a good idea, to increase the operating speed of the line to 100 mph where possible.

Effect On Passenger Services

100 mph trains on a track with an operating speed of 100 mph, could show some impressive timings.

On the Great Eastern Main Line, which is a very busy 100 mph double-track railway, 100 mph trains, achieve a 77 mph average for 90 minutes over the 115 miles, between London Liverpool Street and Norwich with a single stop.

A one-stop Manchester and Sheffield service at this speed would take just 33.2 minutes.

The stopping trains would be more of a challenge to get under forty minutes, but at least if they were battery electric trains, they’d have the better acceleration and deceleration of the electric trains.

  • Fifty minutes would be a realistic time.
  • Ten minutes turnround time at each end, would be ideal for charging the batteries and give an efficient two hour round trip.

Efficient timetabling could create a very comprehensive service for the Hope Valley Line.

Freight Trains On The Hope Valley Line

Under Freight in the Wikipedia entry for the Hope Valley Line, this is said.

Over a million tons of cement a year is taken away by rail from Earle’s Sidings at Hope.

That is a very large number of freight trains, all of which are currently hauled by diesel locomotives.

  • Looking at Real Time Trains, there are nearly always two freight trains in every hour of the day.
  • If you look at the routes, they go to a myriad number of destinations.
  • Following the routes between Dore Junction and the quarries to the South of the Hope Valley Line, there are several tunnels.
  • There are numerous quarries in a cluster, all served by their own rail lines.

Electrifying the delivery of the cement and limestone from the quarries would be a large and very expensive operation.

This Google Map shows Earle’s Sidings at Hope.

Perhaps a half-way house solution would be to use diesel to haul trains between the quarries and Earle’s sidings, where the locomotive is changed for an electric one?

  • But that would then mean that all routes from between the Peak District quarries and their destinations would need to be fully-electrified.
  • It should be noted that that the problem of zero-carbon trains, also exists at port and rail freight interchanges, where safe operation with 25 KVAC overhead wires everywhere can be a nightmare.
  • Rail freight companies are unlikely to change their old diesel locomotives for new expensive electric locomotives, until all possible routes are fully electrified.
  • It is also a big problem, all over the world.

Perhaps, what is needed is a self-powered zero-carbon locomotive with sufficient power to haul the heaviest trains?

I believe such a locomotive is possible and in The Mathematics Of A Hydrogen-Powered Freight Locomotive, I explored the feasibility of such a locomotive, which was based on a Stadler Class 68 locomotive.

The zero-carbon locomotive, that is eventually developed, may be very different to my proposal, but the commercial opportunities for such a locomotive are so large, that I’m sure the world’s best locomotive designers are working on developing powerful locomotives for all applications.

Conclusion

Northern Powerhouse Rail’s ambition for Manchester and Sheffield via the Hope Valley Line is simply stated as four tph in forty minutes. But this may be something like.

  • Three fast tph in forty minutes.
  • One stopping tph in perhaps fifty minutes.
  • One freight tph in each direction to and from the quarries that lie to the South of the line.

I didn’t realise how close that the line is to that objective, once the following is done.

  • Introduce 100 mph passenger trains on the route.
  • Improve the track as has been planned for some years.

Note that all the passenger trains, that now run the route; Class 185, 195 and 802 trains, are all 100 mph trains, although they are diesel-powered.

With a length of just under 43 miles, the route is also ideal for battery electric trains to work the passenger services, be the trains be from Hitachi, CAF or another manufacturer, after High Speed Two electrifies the Midland Main Line to the North of Clay Cross North Junction, in preparation for high speed services between London and Sheffield.

I would recommend, that one of High Speed Two’s first Northern projects, should be to upgrade the Midland Main Line between Clay Cross North junction and Sheffield station to the standard that will be required for High Speed Two.

I would also recommend, that the Government sponsor the development of a hydrogen electric locomotive with this specification.

  • Ability to use 25 KVAC overhead or 750 VDC electrification
  • 110 mph operating speed on electrification.
  • Ability to use hydrogen.
  • 100 mph operating speed on hydrogen.
  • 200 mile range on hydrogen.

A locomotive with this specification would go a long way to decarbonise rail freight in the UK and would have a big worldwide market.

Project Management Recommendations

This project divides neatly into three.

  • Perform the upgrades at Dore Junction and add the loop in the Bamford area, as detailed in Wikipedia, which will increase the capacity of the Hope Valley Line.
  • Electrify the Midland Main Line between Clay Cross North junction and Sheffield, as will be needed for High Speed Two. This electrification will allow battery electric trains to run between Manchester and Sheffield and between Sheffield and London.
  • Procurement of the trains. CAF and Hitachi are currently finalising suitable designs for this type of operation.

It would also be helpful, if the freight trains could be hauled by zero-carbon hydrogen electric locomotives, to create a much-improved zero-carbon route between Manchester and Sheffield.

 

 

 

 

 

November 23, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , , , , , , , , | 2 Comments

The Mathematics Of A Hydrogen-Powered Freight Locomotive

If we are going to decarbonise the railways in the UK and in many countries of the world, there is a need to replace diesel locomotives with a zero-carbon alternative.

In looking at Airbus’s proposal for hydrogen powered aircraft in ZEROe – Towards The World’s First Zero-Emission Commercial Aircraft, it opened my eyes to the possibilities of powering freight locomotives using gas-turbine engines running on liquid hydrogen.

A Hydrogen-Powered Equivalent Of A Class 68 Locomotive

The Class 68 Locomotive is a modern diesel locomotive used on UK railways.

This is a brief specification

  • It can pull both passenger and freight trains.
  • It has an operating speed of 100 mph.
  • The diesel engine is rated at 2.8 MW
  • It has an electric transmission.
  • It has a 5,000 litre diesel tank.
  • It weighs 85 tonnes.
  • It is 20.5 metres long.

There are thirty-four of these locomotives in service, where some haul passenger trains for Chiltern Railways and TransPennine Express.

Rolls-Royce’s Staggering Development

Staggering is not my word, but that of Paul Stein, who is Rolls-Royce’s Chief Technology Officer.

He used the word in a press release, which I discuss in Our Sustainability Journey.

To electrify aviation, Rolls-Royce has developed a 2.5 MW generator, based on a small gas-turbine engine, which Paul Stein describes like this.

Amongst the many great achievements from E-Fan X has been the generator – about the same size as a beer keg – but producing a staggering 2.5 MW. That’s enough power to supply 2,500 homes and fully represents the pioneering spirit on this project.

This generator is designed for flight and the data sheet for the gas-turbine engine is available on the Internet.

  • It has a weight of under a couple of tonnes compared to the thirteen tonnes of the diesel engine and generator in a Class 68 locomotive.
  • It is almost as powerful as the diesel.
  • It looks to be as frugal, if not more so!
  • Rolls-Royce haven’t said if this gas-turbine can run on aviation biofuel, but as many of Rolls-Royce’s large engines can, I would be very surprised if it couldn’t!

Rolls-Royce’s German subsidiary; MTU is a large producer of rail and maritime diesel engines, so the company has the expertise to customise the generator for rail applications.

Could this generator be modified to run on liquid hydrogen and used to power a Class 68-sized locomotive?

  • The size of the generator must be an advantage.
  • Most gas-turbine engines can be modified to run on natural gas and hydrogen.
  • Its power output is electricity.
  • There’s probably space to fit two engines in a Class 68 locomotive.

In addition, a battery could be added to the transmission to enable regenerative braking to battery, which would increase the efficiency of the locomotive.

Storing Enough Hydrogen

I believe that the hydrogen-powered locomotive should carry as much energy as a Class 68 locomotive.

  • A Class 68 locomotive has a capacity of 5,000 litres of diesel fuel.
  • This will have a mass of 4.19 tonnes.
  • Each kilogram of diesel can produce 47 Mega Joules of energy.
  • This means that full fuel tanks contain 196,695 Mega Joules of energy.
  • Each litre of liquid hydrogen can produce 10.273 Mega Joules of energy

This means that to carry the same amount of energy will need 19,147 litres or 19.15 cubic metres of liquid hydrogen.

  • This could be contained in a cylindrical tank with a diameter of 2 metres and a length of 6 metres.
  • It would also weigh 1.38 tonnes.

The E-Fan-X aircraft project must have worked out how to store, similar amounts of liquid hydrogen.

Note that I used this Energy And Fuel Data Sheet from Birmingham University.

Running On Electrification

As the locomotive would have an electric transmission, there is no reason, why it could not run using both 25 KVAC overhead and 750 VDC third-rail electrification.

This would enable the locomotive to haul trains efficiently on partially electrified routes like between Felixstowe and Leeds.

Hydrogen-Powered Reciprocating Engines

When it comes to diesel engines to power railway locomotives and big trucks, there are few companies bigger than Cummins, which in 2018, turned over nearly 24 billion dollars.

  • A large proportion of this revenue could be at risk, if governments around the world, get serious about decarbonisation.
  • Cummins have not let the worst just happen and in 2019, they acquired Hydrogenics, who are a hydrogen power company, that they now own in an 81/19 partnership with Air Liquide.
  • Could all this expertise and Cummins research combine to produce powerful hydrogen-powered reciprocating engines?
  • Other companies, like ABC and ULEMCo are going this route, to modify existing diesel engines to run on hydrogen or a mixture of hydrogen and diesel.

I believe it is very likely, that Cummins or another company comes up with a solution to decarbonise rail locomotives, based on a conversion of an existing diesel engine.

Refuelling Hydrogen-Powered Rail Locomotives

One of problems with hydrogen-powered trucks and cars, is that there is no nationwide refuelling network providing hydrogen. But railway locomotives and trains usually return to depots at the end of the day for servicing and can be fuelled there.

Conclusion

I feel that there are several routes to a hydrogen-powered railway locomotive and all the components could be fitted into the body of a diesel locomotive the size of a Class 68 locomotive.

Consider.

  • Decarbonising railway locomotives and ships could be a large market.
  • It offers the opportunities of substantial carbon reductions.
  • The small size of the Rolls-Royce 2.5 MW generator must offer advantages.
  • Some current diesel-electric locomotives might be convertible to hydrogen power.

I very much feel that companies like Rolls-Royce and Cummins (and Caterpillar!), will move in and attempt to claim this lucrative worldwide market.

September 25, 2020 Posted by | Hydrogen, Transport | , , , , , , , , , , | 10 Comments

British Start-Up Attempts To Bring Steam Power Back To Shipping

The title of this post, is the same as that of this article on Splash 247.

These are the introductory p[aragraphs.

A British start-up called Steamology is trying to bring steam power back to shipping. However, the key difference for this 21st century invention is that instead of steam generated by burning coal, Steamology’s steam is generated by burning pure oxygen and hydrogen, split from water.

The company has just won UK government innovation funding of £400,000 ($496,000) to trial the technology initially for trains but with a longer term view of getting it onboard ships.

There’s also a good graphic, which explains how the technology works.

 

 

July 2, 2020 Posted by | Energy, Transport | , , | Leave a comment

Will Steam Solve The Zero Carbon Freight Locomotive Problem?

Steamology Motion has now been awarded two Department of Transport grants to develop modern steam power for UK railways.

February 2019 – W2W Zero Emissions Power System

In Grants To Support Low-Carbon Technology Demonstrators, I quoted an extract from this article on Railway Gazette to describe their W2W Zero Emissions Power System.

Steamology’s Water 2 Water concept will use compressed hydrogen and oxygen gas in a ‘compact energy-dense steam generator’ to produce high pressure superheated steam to drive a turbine, which will generate electricity to charge the batteries as a ‘range extender’ for a Vivarail Class 230 multiple-unit produced from former London Underground vehicles.

There is not much on the Internet about this project, but I did find this article on the Bournemouth Echo, which is entitled Team Behind Chalres Burnett Steam Car Is Working On Trains.

Note that the typo in the headline is not mine, but one of the worst, I’ve seen in a newspaper, since the heady days of the Liverpool Echo in the 1960s, which gave Fritz Spiegl a second career, with all its spelling mistakes.

In the article, Chief Engineer; Christopher Lack describes the steam power like this.

We take hydrogen and oxygen and we burn them inside the chamber which then creates steam and we use that steam to drive a turbine which then powers the generator.

That all sounds very feasible, despite being a bit like the power system of a Space Shuttle, which carried liquid hydrogen and oxygen in the external tank.

At take-off the Space Shuttle carried 629.3 tonnes of liquid oxygen and 106.3 tonnes of liquid hydrogen. Will hydrogen and oxygen always have a similar 5.92 ratio by weight in any combustion process?

June 2020 – Zero Emission Rail Freight Power

In First Of A Kind Funding Awarded For 25 Rail Innovation Projects, I described this project like this.

Hydrogen-based steam turbine system to provide zero emission power for existing freight locomotives.

This is surely a much bigger challenge, as a Class 66 Locomotive for example, has a power output of nearly 2,500 kW, which might need to be sustained for three or four hours. That could be ten MWh, which explains why battery freight locomotives haven’t been developed.

As hydrogen contains 147 MJ/Kg of energy, does that mean that about 250 Kg of hydrogen and an equivalent amount of oxygen would be needed to power the locomotive for four hours?

The amount of space required for the fuel doesn’t seem to be ridiculously large, so that shouldn’t be a problem.

One of the processes in the chemical industry, that I haven’t modelled is combustion. This is probably because, when I was building mathematical models in the chemical industry, it was for ICI Plastics Division and their processes were all about pressure and/or mixing large amounts of chemicals in huge reaction vessels.

But thinking about it, if you burn hydrogen and oxygen in a combustion chamber, you’ll generate a lot of heat, but not much superheated steam to drive a turbine.

So could Steamology Motion have combined the combustion chamber and the boiler in some way?

Suppose, hydrogen and oxygen are burned in a combustion chamber and controlled amounts of water are injected into the chamber.

  • Obviously, not enough to stop the combustion.
  • The water would vaporise and surely join the combustion products and come out as turbine-ready superheated steam.

I suspect some researcher somewhere has used this process to see if they can drive a steam turbine from hydrogen and oxygen.

Perhaps, they were experimenting with a hydrogen-based energy storage system.

  • An electrolyser powered by surplus renewable energy, would split water into hydrogen and oxygen, which would be stored under pressure.
  • To recover the energy, the hydrogen and oxygen would be burned together to create superheated steam to drive a turbine.

The process could work, with an efficient hydrogen and oxygen to superheated steam generator.

But would it be economic, when compared with a hydrogen fuel cell? Fuel cells don’t need to have an oxygen feed and just uses common-or-garden air!

On the other hand, as the US space program has shown, it might work with liquid hydrogen and oxygen, which would possibly need less storage space and could mean a longer range for the locomotive.

Conclusion

It is a very large engineering challenge for Steamology Motion to get their system to work.

But, I do believe, that it’s possible to make the idea work.

I also think that the Government wouldn’t have signed up for a second project, if the first project had been a complete failure.

But, if Steamology Motion can convert a Class 66 locomotive from a polluting, noisy, carbon-spewing dinosaur into an eco-friendly hydrogen-electric locomotive, they will have done the planet an enormous favour, as there are tens of thousands of diesel locomotives, that could be converted.

They will also make billions for themselves!

 

 

June 20, 2020 Posted by | Transport | , , | Leave a comment

Climate Change: ‘Bath Sponge’ Breakthrough Could Boost Cleaner Cars

The title of this post is the same as that of this article on the BBC.

This is the introductory paragraph.

A new material developed, by scientists could give a significant boost to a new generation of hydrogen-powered cars.

The article is a must read and the development could make it a lot easy to store hydrogen in vehicles.

The problem is that hydrogen is extremely light and the article says this about storage.

In normal atmospheric pressure, to carry 1kg of hydrogen which might power your car for over 100km, you’d need a tank capable of holding around 11,000 litres.

That is rather large. This extract from the article describes the solution.

To get around this problem, the gas is stored at high pressure, around 700 bar, so cars can carry 4-5kg of the gas and travel up to 500km before refilling.

That level of pressure is around 300 times greater than in a car’s tyres, and necessitates specially made tanks, all of which add to the cost of the vehicles.

Now researchers believe they have developed an alternative method that would allow the storage of high volumes of hydrogen under much lower pressure.

The team have designed a highly porous new material, described as a metal-organic framework.

As ITM Power’s hydrogen filling stations can provide hydrogen at up to 350-700 bar, I’m sure that there could be a useful coming together, that will make hydrogen-powered vehicles more common.

Could for instance, the new material mean, that hydrogen becomes the fuel of choice for heavy trucks and railway locomotives?

April 19, 2020 Posted by | Transport, World | , , , , | Leave a comment

Pesa And PKN Orlen To Develop Hydrogen Fuel Cell Trains

The title of this post is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

Rolling stock manufacturer Pesa and energy company PKN Orlen signed a letter of intent to develop hydrogen fuel cell trains on December 12.

I am pleased that Poland appears to be turning to trains that emit less carbon, but I do worry about how the hydrogen is produced.

It appears the Dutch are moving towards green hydrogen, which is produced by the electrolysis of water using electricity produced by offshore wind farms.

But how are the Poles producing their hydrogen?

I did find this article on biznewsalert.com, which is entitled Poland Wants To Be A Hydrogen Kuwait. P2G Can Help.

This is the introductory sentence.

Hydrogen could drive low-carbon transport and also help reduce CO2 emissions. Although it is a distant perspective for now, the production of the element could support onshore wind farms.

It does appear that the Poles are thinking along lines, that will reduce carbon emissions.

What is P2G?

P2G or Power-to-Gas has an informative Wikipedia entry.

This is the first paragraph, which outlines the process.

Power-to-gas (often abbreviated P2G) is a technology that converts electrical power to a gas fuel. When using surplus power from wind generation, the concept is sometimes called windgas. There are currently three methods in use; all use electricity to split water into hydrogen and oxygen by means of electrolysis.

There certainly a lot of activity in the sector.

My Experience Of Polish Transport

Poland is a large country with an extensive rail system. I have travelled long distances across the country and many of the passenger trains are electric.

I can’t remember seeing a freight train, but I do remember large numbers of diesel trucks moving freight across the country.

Conclusion

Hydrogen could be a very important fuel for transport in Poland.

December 18, 2019 Posted by | Transport | , , , , | Leave a comment