The Anonymous Widower

Could Rolls-Royce SMRs Be The Solution To Europe’s Gas Shortage?

Of all the offshore wind farms, that I’ve looked at recently, I find Magnora’s ScotWind N3 wind farm the most interesting.

I wrote about it in ScotWind N3 Offshore Wind Farm.

I said this.

In any design competition, there is usually at least one design, that is not look like any of the others.

In the successful bids for the ScotWind leases, the bid from Magnora ASA stands out.

  • The company has an unusual home page on its offshore wind web site.
  • This page on their web site outlines their project.
  • It will be technology agnostic, with 15MW turbines and a total capacity of 500MW
  • It will use floating offshore wind with a concrete floater
  • It is estimated, that it will have a capacity factor of 56 %.
  • The water depth will be an astonishing 106-125m
  • The construction and operation will use local facilities at Stornoway and Kishorn Ports.
  • The floater will have local and Scottish content.
  • The project will use UK operated vessels​.
  • Hydrogen is mentioned.
  • Consent is planned for 2026, with construction starting in 2028 and completion in 2030.

This project could serve as a model for wind farms all round the world with a 500 MW power station, hydrogen production and local involvement and construction.

I very much like the idea of a concrete floater, which contains a huge electrolyser and gas storage, that is surrounded by an armada of giant floating wind turbines.

These are my thoughts.

Floating Concrete Structures

To many, they may have appear to have all the buoyancy of a lead balloon, but semi-submersible platforms made from concrete have been used in the oil and gas industry for several decades.

Kishorn Yard in Scotland was used to build the 600,000-tonne concrete Ninian Central Platform,in 1978. The Ninian Central Platform still holds the record as the largest movable object ever created by man.

The Ninian Central Platform sits on the sea floor, but there is no reason why a semi-submersible structure can’t be used.

Electrolysers

There is no reason, why a large electrolyser, such as those made by Cummins, ITM Power or others can’t be used, but others are on the way.

  • Bloom Energy are working on high temperature electrolysis, which promises to be more efficient.
  • Torvex Energy are developing electrolysis technology that used sea water, rather than more expensive purified water.

High Temperature Electrolysis

High temperature electrolysis needs a heat source to work efficiently and in Westinghouse And Bloom Energy To Team Up For Pink Hydrogen, I described how Bloom  Energy propose to use steam from a large nuclear power station.

Offshore Nuclear Power

I’ve never heard of offshore nuclear power, but it is not a new idea.

In 1970, a company called Offshore Power Systems was created and it is introduced in its Wikipedia entry like this.

Offshore Power Systems (OPS) was a 1970 joint venture between Westinghouse Electric Company, which constructed nuclear generating plants, and Newport News Shipbuilding and Drydock, which had recently merged with Tenneco, to create floating nuclear power plants at Jacksonville, Florida.

Westinghouse’s reactor was a 1.150 MW unit, which was typical of the time, and is very similar in size to Sizewell B.

The project was cancelled before the reactors were towed into position.

Nuclear Knowledge Has Improved

Consider.

  • In the fifty years since Offshore Power Systems dabbed their toes in the water of offshore nuclear power, our knowledge of nuclear systems and engineering has improved greatly.
  • The offshore oil and gas industry has also shown what works impeccably.
  • The floating offshore wind industry looks like it might push the envelop further.
  • There has been only one nuclear accident at Fukushima, where the sea was part of the problem and that disaster taught us a lot.
  • There have been a large number of nuclear submarines built and most reached the planned end of their lives.
  • Would a small modular nuclear reactor, be safer than a large nuclear power plant of several GW?

I would suggest we now have the knowledge to safely build and operate a nuclear reactor on a proven semi-submersible platform, built from non-rusting concrete.

An Offshore Wind Farm/Small Modular Reactor Combination Producing Hydrogen

Consider.

  • A typical floating offshore wind farm is between one and two gigawatts.
  • A Rolls-Royce small modular reactor is sized to produce nearly 0.5 GW.
  • The high temperature electrolyser will need some heat to achieve an optimum working temperature.
  • Spare electricity can be used to produce hydrogen.
  • Hydrogen can be stored platform.
  • Hydrogen can be sent ashore using existing gas pipes.
  • Hydrogen could even be blended with natural gas produced offshore to create a lower-carbon fuel.
  • It would also be possible to decarbonise nearby offshore infrastructure.

A balance between wind and nuclear power can be obtained, which would provide a steady output of energy.

Conclusion

There are a large numbers of possibilities, to locate a Rolls-Royce small modular reactor close to a wind farm to use high temperature electrolysis to create green hydrogen, which can be used in the UK or exported through the gas network.

June 23, 2022 Posted by | Energy, Hydrogen | , , , , , , , , , , , , , | 2 Comments

Nuclear-Enabled Hydrogen – How It Helps To Reach Net Zero

The title of this post, is the same as that of this article on Power Engineering.

These are the first two paragraphs.

Nuclear enabled hydrogen is zero carbon, has low cost energy input, is large scale and offers co-location synergy and energy system connectivity.

With the revival of interest in nuclear energy, interest is growing in the potential for nuclear-enabled hydrogen, otherwise sometimes known as ‘pink’ hydrogen, to meet the anticipated demand for hydrogen at scale.

The article is certainly a must-read.

Topics covered include.

  • Co-location of pink hydrogen production with industrial clusters, where heat can also be provided.
  • The production of hydrogen on a large scale.
  • The use of high temperature electrolysis, using steam from the nuclear plant.

I particularly like the idea of combining a small modular nuclear reactor with high temperature electrolysis to generate hydrogen for local industry like a steelworks or chemical plant.

June 17, 2022 Posted by | Energy, Hydrogen | , , , , , | Leave a comment

Sizewell C Nuclear Power Station: Government To Take 20% Stake

The title of this post, is the same as that of this article on the BBC.

This is the first three paragraphs.

The government plans to take a 20% stake in a £20bn large-scale nuclear plant at Sizewell, the BBC has learned.

French developer EDF will also take a 20% stake in the Suffolk power station.

Ministers hope the confirmation of two cornerstone investors will encourage infrastructure investors and pension funds to take up the remaining 60%.

I used to live near Sixewell and the general feeling of local Suffolk people is not particularly against having nuclear power stations in their back yards.

There are several small points in favour of  Sizewell C.

  • Sizewell has been operating nuclear power plants safely since the 1960s.
  • Leiston, which is the nearest town, has a very strong engineering tradition.
  • Leiston also improved by several notches during the building of Sizewell B.
  • The site is accessible by rail and possibly sea with the right ship.
  • Nuclear fuel can be brought in and out by train.
  • If they spent a small amount on the train service to Saxmundham, construction workers could come in by train.
  • Sizewell C has been proposed to be used to generate hydrogen for Freeport East at the Ports of Harwich an Felixstowe.
  • The power cable to take electricity from Sizewell C towards London is already built.
  • Sizewell is much more convenient to get to from London, than other possible nuclear sites.

Overall, I feel that Sizewell is a good place for nuclear power station.

On the other hand, there are these points against the station.

  • There will be at least 6.7 GW of wind farms built off the East Anglian coast before Sizewell C is completed.
  • There may be substantial objection to the new power station.
  • Large nuclear power stations are rarely built to time and on budget.
  • I feel that if we go the nuclear route, that small modular nuclear reactors may be better.

I can understand why Governments like Sizewell as a nuclear power station site.

March 27, 2022 Posted by | Energy | , , , | 1 Comment

Plan For New Nuclear Reactors At Wylfa And Trawsfynydd A Step Closer As Natural Resource Wales Looks At Designs

The title of this post, is the same as that of this article on nation.cymru.

These are the first two paragraphs.

Plans for new nuclear power stations at Trawsfynydd and Wylfa have taken a step closer after the UK Government asked government regulators to assess designs for the reactors.

Natural Resources Wales will be among those assessing the designs by Rolls-Royce, with both Wylfa and Trawsfynydd have been named as potential sites for housing them within the UK.

These are points about the reactors.

  • They will cost £1.8 billion each.
  • They are capable of powering a city the size of Cardiff, which has a population of about half-a-million.
  • I’ve read elsewhere that the reactors are planned to have a nameplate capacity of 470 MW.

The article did mention, that the Nimbys were lining up.

The Wylfa Site

The original Wylfa power station was a Magnox nuclear station generating 980 MW, that was decommissioned in 2015.

This Google Map shows the location of the site on Anglesey.

This second Google Map shows the site in more detail.

The power station doesn’t appear to have had a rail link, but there is a railway line a few miles away, with sidings that might have been used to handle fuel flasks.

There has been a proposal for a hybrid plant consisting of a wind farm and small modular nuclear reactors, which is described in this Wikipedia section, where this is said.

In January 2021, Shearwater Energy presented plans for a hybrid plant, to consist of a wind farm and small modular reactors (SMRs), to be installed adjacent to the existing Wylfa power station but separate from the proposed Wylfa Newydd site. Shearwater has signed a memorandum of understanding with NuScale Power for the SMRs. The plant could start generation as early as 2027 and would ultimately produce up to 3 GW of electricity and power a hydrogen generation unit producing up to 3 million kg of hydrogen per year.

Note.

  1. Wylfa Newydd was a proposal by Hitachi to build a nuclear station on the site.
  2. Shearwater Energy is a UK developer of energy opportunities.
  3. NuScale Power is an American company with its own design of small modular nuclear reactor.

In Holyhead Hydrogen Hub Planned For Wales, I talked about hydrogen and the port of Holyhead.

The Trawsfynydd Site

The original Trawsfynydd power station was a Magnox nuclear station generating 470 MW, that was decommissioned in 1991.

This Google Map shows the location of the site in North Wales.

This second Google Map shows the site in more detail.

Note.

  1. The power station was built on the Northern shore of Llyn Trawsfynydd.
  2. Llyn Trawsfynydd is a man-made lake, that was built in the 1920s to supply water to the 24 MW Maentwrog hydro electric power station.
  3. There is a railway from near the site, that connects to the Conwy Valley Line at Blaenau Ffestiniog.

The Trawsfynydd site is a lot more than just a decommissioned Magnox power station.

Pumped Energy Storage In Snowdonia

Currently, there are two existing pumped storage in Snowdonia.

A third scheme is under development at Glyn Rhonwy, which could have a capacity of 700 MWh.

Looking at the size of Llyn Trawsfynydd, I do wonder, if it could be the top lake of a future pumped storage scheme.

  • Llyn Trawsfynydd, contains 40 million tonnes of water.
  • There is a head of 190 metres.

That could give energy storage of 20 GWh. That sounds a lot of GWhs! But with two possible small modular nuclear reactors at possibly 500 MW each nearby and some help from windfarms, it could be filled within a day, if there is a suitable low-level reservoir.

Rolls-Royce And The Duisburg Container Terminal

In Rolls-Royce Makes Duisburg Container Terminal Climate Neutral With MTU Hydrogen Technology, I showed how Rolls-Royce and its subsidiary were providing an innovative climate neutral solution for Duisburg Container Terminal in Germany.

A North West Wales Powerhouse

Could Rolls-Royce be planning a Duisburg-style solution for North West Wales.

  • Small modular nuclear reactors at Wylfa and Trawsfynydd.
  • Hydrogen electrolysers to create hydrogen for the Port of Holyhead and heavy transport.
  • Adequate pumped hydro storage for surplus energy.

But there could be little serious above-ground construction.

Conclusion

Something is awakening in North West Wales.

March 11, 2022 Posted by | Energy, Hydrogen | , , , , , , , , , , | 2 Comments

Rolls-Royce Makes Duisburg Container Terminal Climate Neutral With MTU Hydrogen Technology

The title of this post, is the same as this press release from Rolls-Royce.

This is the first sentence.

Rolls-Royce will ensure a climate-neutral energy supply at the container terminal currently under construction at the Port of Duisburg, Germany.

There is also this Rolls-Royce graphic, which shows the energy sources.

It would appear batteries,  combined heap and power (CHP), grid electricity, hydrogen electrolyser, hydrogen storage and renewable electricity are being brought together to create a climate-neutral energy system.

  • As the graphic was named hydrogen technology for ports, I would assume that this is a Rolls-Royce mtu system that will be deployed at more than one port around the world.
  • Note the H2 CHPs in the graphic. Could these be applications for Rolls-Royce’s beer keg-sized 2.5 MW electrical generator based on a Super Hercules engine?
  • One of Rolls-Royce’s small modular nuclear reactors could be ideal for a large port outside Germany.

This is the last paragraph of the press release.

“Hydrogen technology is no longer a dream of the future, but hydrogen technology will prove itself in everyday use in Duisburg. The parallel use of fuel cell solutions and hydrogen engines shows that we have taken the right path with our technology-open approach to the development of new solutions for the energy supply of the future,” says Andreas Schell, CEO of Rolls-Royce Power Systems.

Rolls-Royce mtu appear to be very serious about the possibilities of hydrogen.

 

December 24, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , | 2 Comments

Rolls-Royce Submits SMR Design For UK Assessment

The title of this post, is the same as that of this article on World Nuclear News.

This is the first paragraph.

Rolls-Royce SMR Limited has submitted its 470 MWe small modular reactor (SMR) design for entry to the UK’s Generic Design Assessment (GDA) regulatory process. The review of the SMR design – based on a small pressurised water reactor – will formally begin once the government has assessed the company’s capability and capacity to successfully enter the GDA process.

It’s good to see this project progressing.

November 18, 2021 Posted by | Energy | , , | Leave a comment

Is This One Of The Most Significant Pages On The Internet?

The page is Rolls-Royce’s List Of Press Releases.

On July 8th, 2021, the company issued this press release, which is entitled Rolls-Royce Welcomes All-Electric Ground Support From Jaguar Land Rover For All-Electric Flight Speed World Record Attempt.

This is the opening paragraph.

Rolls-Royce’s all-electric aircraft the ‘Spirit of Innovation’ will take to the skies for the first time in the coming weeks as we work towards a world-record attempt with a target speed of 300+ MPH (480+ KMH). This exciting project will be carbon neutral and to support this ground-breaking innovation Jaguar Land Rover is loaning all-electric zero emission Jaguar I-PACE cars as towing and support vehicles.

This picture shows Spirit of Innovation and one the Jaguar I-PACE cars together in this Rolls-Royce picture

They make an interesting pair.

There is a full analysis of the plane in this article on CleanTechnica, which is entitled Rolls-Royce Attempting 100% Electric Aircraft Speed Record, Jaguar I-PACE Offering Ground Support.

The Jaguar can even tow the plane.

Unusual.

Also on On July 8th, 2021, the company issued this press release, which is entitled Rolls-Royce And Cavendish Nuclear Sign Delivery And Manufacturing Partnership Agreement For SMR Programme.

Another world-class company has joined the small modular nuclear reactor programme.

I have feelings, that this could be the start of something small and incredibly powerful!

Conclusion

I suspect Rolls-Royce have lots of useful research sitting in their archives. We should all follow, what they doing.

July 19, 2021 Posted by | Transport/Travel | , , , , , | 3 Comments

Rolls-Royce Seeks Private Funds To Power Nuclear Project

The title of this post, is the same as that of this article on The Times.

The article is based on this press release on the Rolls-Royce web site, which is entitled More Power And Updated Design Revealed As Nuclear Power Team Targets First Place In The Assessment Queue In Autumn 2021.

This is the first two paragraphs.

The consortium, led by Rolls-Royce, which is creating a compact nuclear power station known as a small modular reactor (SMR), has revealed its latest design and an increase in power as it completes its first phase on time and under budget.

It has also announced it is aiming to be the first design to be assessed by regulators in the second half of 2021 in the newly-opened assessment window, which will keep it on track to complete its first unit in the early 2030s and build up to 10 by 2035.

It would appear that they are following AstraZeneca’s example and building the relationships with the regulators early, so the process of regulation doesn’t delay entry into service.

An Updated Design

These two paragraphs describe the design changes.

As the power station’s design has adjusted and improved during this latest phase – with more than 200 major engineering decisions made during this latest phase – the team has optimised the configuration, efficiency and performance criteria of the entire power station , which has increased its expected power capacity, without additional cost, from 440 megawatts (MW) to 470MW.

The refreshed design features a faceted aesthetic roof; an earth embankment surrounding the power station to integrate with the surrounding landscape; and a more compact building footprint, thanks to successes optimising the use of floor space.

These changes appear to be positive ones.

Transformation To A Focussed Business

Rolls-Royce are transforming the current consortium to an as yet unnamed stand-alone business, as detailed in this paragraph from the press release.

With a focus on continuing its progress at pace, the UK SMR team is transitioning from being a collaborative consortium to a stand-alone business, which will deliver a UK fleet of power stations to become a low carbon energy bastion alongside renewables, while securing exports to make the power station a key part of the world’s decarbonisation toolkit.

Are Rolls-Royce aiming to repeat the success they’ve had with Merlins in World War II and large turbofan engines for airliners with small modular nuclear reactors that decarbonise the world? The strategy is certainly not going against the heritage of the company.

Use Of A Small Modular Nuclear Reactor

This paragraph from the press release outlines a few uses.

The power station’s compact size makes it suitable for a variety of applications, helping decarbonise entire energy systems. Each power station can supply enough reliable low carbon power for around one million* homes, or be used to power net zero hydrogen and synthetic aviation fuel manufacturing facilities, desalination plants or energy intensive industrial sites.

Their size would appear to increase the number of applications.

Hydrogen Production

I particularly like the idea of using an SMR to produce hydrogen for chemical feedstock or to make steel.

I indicated this in Will INEOS And Rolls-Royce Get Together Over Hydrogen Production?

I estimate that a 470 MW SMR would produce around 4,900 tonnes of hydrogen per day.

The numbers certainly seem convenient.

Cost Of Energy And Capital Costs

Tom Samson, Chief Executive Officer of the UK SMR consortium is quoted as saying.

Nuclear power is central to tackling climate change, securing economic recovery and strengthening energy security. To do this it must be affordable, reliable and investable and the way we manufacture and assemble our power station brings down its cost to be comparable with offshore wind at around £50 per megawatt-hour.

Hinckley Point C has a strike price of over £80 per megawatt-hour.

The release also gives a price of around £2.2 billion per unit dropping to £1.8 billion by the time five have been completed.

Benefits To The UK

The press release lists these benefits to the UK.

  • create 40,000 regional UK jobs by 2050
  • generate £52 billion of economic benefit
  • have 80% of the plant’s components sourced from the UK
  • target an additional £250 billion of exports – memoranda of understanding are already in place with Estonia, Turkey and the Czech Republic

The value of exports would indicate export sales of over a hundred reactors.

Lifetime

The press release indicates the following about the lifetime of the reactors.

  • The reactor will operate for at least 60 years.
  • The design, which will be finalised at the end of the regulatory assessment process, proposes that all used fuel will be stored on each site for the lifetime of the plant.

I would assume that Rolls-Royce are developing a philosophy for taking the SMRs apart at the end of their life.

Construction

This paragraph from the press release talks about the construction process.

The power station’s design cuts costs by using standard nuclear energy technology used in 400 reactors around the world, so no prototyping is required. The components for the power station are manufactured in modules in factories, before being transported to existing nuclear sites for rapid assembly inside a weatherproof canopy. This replicates factory conditions for precision activities and further cuts costs by avoiding weather disruptions. The whole sequence secures efficiency savings by using streamlined and standardised processes for manufacturing and assembly, with 90% of activities carried out in factory conditions, helping maintain extremely high quality. In addition, all spoil excavated will be reused on site to build the earth embankment, removing the need for it to taken off site, reducing road journeys that are both financially and environmentally costly.

I have talked to project managers, who have assembled factory-built railway stations and their experiences would back the Rolls-Royce method of construction.

My project management knowledge would also indicate, that the construction of an SMR could be much more predictable than most construction projects, if the factory-built modules are built to the specification.

Funding

According to the article in The Times, the consortium now seems to be in line for £215 million of Government funding, which will unlock £300 million of private funding.

Conclusion

It looks like this project will soon be starting to roll.

 

May 18, 2021 Posted by | Energy, Finance | , , , , | 1 Comment

Green Hydrogen To Power First Zero Carbon Steel Plant

The title of this post, is the same as that of this article on renews.biz.

This is the two introductory paragraphs.

A new industrial initiative, backed by EIT InnoEnergy, will build the world’s first large-scale steel production plant powered by green hydrogen, in north Sweden.

The H2 Green Steel industrial initiative, which will mobilise €2.5bn of investment, aims to deliver a project that will create a new green steel producer from inception.

These further points are made.

  • There will be downstream steel products manufacture.
  • The initiative will create 10,000 direct and indirect jobs.
  • Production could start in 2024.
  • Up to five million tonnes of steel could be produced by 2030.

The plant will be built in the Boden-Lulea area of Northern Sweden.

Note.

  1. Boden is in the North-West corner of the map.
  2. Lulea is in the South-East corner of the map.

H2 Green Steel has a web site, which explains more.

What About Scunthorpe?

Surely, the obvious location for green steel production plant in the UK would be Scunthorpe.

  • The HumberZero network can bring in hydrogen and take away any carbon dioxide.
  • The steelworks makes world-class products like railway rails.
  • It is a massive site.
  • The site has good rail access.

But there don’t seem to be any plans for hydrogen steelmaking at Scunthorpe.

Conclusion

I hope we’ve not missed the boat for hydrogen steelmaking.

  • We’ve certainly got the sites, the renewable energy and the hydrogen technology.
  • On the other hand, I can remember sensible arguments for lots of much smaller steel plants from fifty years ago, as an alternative to nationalisation of the steel industry by the Wilson Government in 1967.
  • I can also remember proposals for nuclear steelmaking.

I just wonder, if a design of hydrogen steelmaking plant could be developed, perhaps even using a small modular nuclear reactor to generate the hydrogen.

If we are going to have a steel industry in the future, we must do something radical.

February 27, 2021 Posted by | Energy, World | , , , , , , , , , | 4 Comments

EC To Consider Hydrogen Produced From Nuclear Power As Low-Carbon

The title of this post, is the same as that of this article on Nuclear Engineering International.

This is the opening paragraph.

The European Commission (EC) will consider hydrogen produced from nuclear power as “low-carbon”, Paula Abreu Marques, head of unit for renewables and CCS policy told the European Commission’s energy directorate. “Electrolysis can be powered by renewable electricity, which would then be classified as renewable hydrogen,” she said.

I think that those advocating this have a point, as no carbon-dioxide will be released once the nuclear plant has been built.

This type of hydrogen is referred to as purple hydrogen in the article.

I wonder how costs will compare with Shell’s new process, that I wrote about in Shell Process To Make Blue Hydrogen Production Affordable.

Conclusion

Nuclear power used to generate hydrogen with electrolysers could be a valuable way to generate hydrogen for transport needs, in a country that because of geography can’t generate a lot of electricity from renewables. A farm of small modular nuclear reactors linked to a large electrolyser could be the most affordable way to satisfy their needs.

It could also be a way for an industrial company to generate large amounts of hydrogen for steelmaking or an integrated chemical plant.

November 26, 2020 Posted by | Hydrogen | , , , , , , | Leave a comment