The Anonymous Widower

Alstom’s Coradia iLint Hydrogen Train Makes Its Swedish Debut

The title of this post, is the same as that of this article on Global Railway Review.

This picture shows a hydrogen-powered Alstom Coradia iLint train near Hamburg

If you’re ever in Hamburg, take a ride to Buxtehude and take a ride to Cuxhaven.

These trains are now in service in Germany and have been ordered in quantity in Germany and have been demonstrated in Austria, Italy and The Netherlands.

August 26, 2021 Posted by | Hydrogen, Transport/Travel | , , , , , , | Leave a comment

The Diagnosis Of My Gallstones

I arrived at Homerton hospital as instructed today for the endoscopy.

Strangely, it was C’s birthday.

The procedure would involve passing an ultrasound probe down my throat and through my stomach to take an ultrasound image of the lump close to my liver.

I’d had two endoscopies before in the late 1990s at Addenbrookes to check for coeliac disease. One was a normal one, but in the second, I was also providing a sample of fluid for a research project at Cambridge University.

I seem to remember at Addenbrookes, I had been instructed to turn up in something like a tee-shirt and shorts, which is what I did. In this case, I took my shirt off and put a hospital gown over my cord trousers.

As I’d had the two endoscopies at Addenbrookes without a sedative, I suggested strongly, that they do the investigation without one this time as well.

The doctor, who was of an age to be very experienced, said he was up for it and we went for it without a sedative.

There was two big differences to the procedure at Addenbrookes.

  • There were more staff, than Addenbrooke’s doctor and a technician.
  • They were fully gowned up, as opposed to normal clothes.

But, then I got the expression at Addenbrooke’s they were aiming for speed and they were only confirming their earlier diagnosis of coeliac disease. that had been made by a genetic test.

Everything this time, went without a hitch.

  • I was laying on my left side.
  • I had oxygen tubes up my nose.
  • With my right hand I can feel the probe in my stomach.
  • To calm me down, a nurse was stroking my beard.

After not a long time, everything was done and I was walked back to recovery area.

Within half an hour, I was informed by the second doctor, that I had got gallstones and they would be taken out by endoscopy on September the 30th. Later they would take out my gall bladder by surgery.

I got the impression, it was the first time, that he’d seen this procedure without a sedative, as he described me as the Star-Of-The-Day. But then I’m a London Mongrel, with more survival genes than a garden full of Japanese knotweed.

I went home the way I came – On the bus!

After Effects

The only after effects were that the air in the theatre had dried me out and my left left arm hurt because I’d been lying on it.

So I vowed to drink a lot of fluids before the operation and do something to improve the strength of my damaged left arm.

August 26, 2021 Posted by | Health | , , | 4 Comments

Dwell Time On High Speed Two Trains

This document on the Government web site is the Train Technical Specification for High Speed Two trains.

There is a Section 7.15.6, which is entitled Dwell Time

This is said.

The Unit shall deliver 95% confidence of achieving a Dwell Time of 2 minutes at intermediate stations, calculated in accordance with the Static Dwell Time Model in Appendix I using the 1SL.

The rationale is also given.

Achievement of a two-minute Dwell Time is key to achievement of HS2 railway capacity and journey times.

The Static Dwell Time Model evaluates the key architectural elements of the interior layout that impact the Passenger exchange part of Dwell Time.

Dwell time is mentioned many times in the Technical Specification.

There is a Section 9.7.3.4, which is entitled Train Captain Changeover Time

This is said.

The Unit shall facilitate a changeover of Train Captains within a two-minute Dwell Time.

In this time period there shall be time for the exiting Train Captain to:

    • Release and opening doors.
    • Log out of the Cab
    • Exit the Cab and Unit.

In this time period there shall be time for the entering Train Captain to:

    • Enter the Unit and Cab
    • Log in to the Cab
    • Adjust Cab setting to the Train Captain’s personal preferences
    • Fulfil the Train Captain’s role in closing doors, which does not include checking the PTI.

Note how all these actions must be performed in a two-minute dwell time.

The Technical Specification is certainly very detailed.

August 26, 2021 Posted by | Design, Transport/Travel | , | 4 Comments

ATO Stop and Safe Location On High Speed Two Classic-Compatible Trains

This document on the Government web site is the Train Technical Specification for High Speed Two trains.

There is a Section 8.6.2, which is entitled ATO Stop and Safe Location

This is said.

ATO Stop is an additional function compared to the ATO over ETCS SRS. The purpose of
this function is to enable the Train Captain to command the Train to stop at the next Safe
Location. A Safe Location is a pre-defined location on the HS2 Network where Trains can
wait safely, and evacuation can be carried out if necessary. If it is not necessary to make an
emergency brake application, this enables more control of where Trains make un-planned
stops.

Perhaps all vehicles on motorways need to be fitted with a similar system.

August 26, 2021 Posted by | Transport/Travel | , , | 2 Comments

The Cross-Section Of A High Speed Two Classic-Compatible Train

This document on the Government web site is the Train Technical Specification for High Speed Two trains.

There is a Section 7.14.3, which is entitled Maximum Cross Section

This is said.

The Unit shall have a maximum cross-section of 11m².

The rationale is also given.

HS2 interface – This maximum cross-section has been used in the design of the tunnels.
HS2’s gauging analysis has shown that a Vehicle compatible with the CRN infrastructure will probably
have a cross-section closer to 10m²

A Class 800 train is 2.70 metres wide, so if a High Speed Two Classic-Compatible train is the same width, the height based on the 10m² figure will be around 3.7 metres or about the same as an Electrostar.

The next  section 7.14.4 gives an interesting piece of information.

Tunnels on the HS2 Network include porous tunnel portals in the infrastructure design to mitigate the adverse effects of micro-pressure waves. Therefore it will not be necessary to include micro-pressure wave mitigation features in the Unit design.

Interesting that they are tackling what is best described as tunnel-plop in the design of the tunnels, rather than catering for it on the train. I wrote about this in HS2 Way Out In Front In Tunnel Design For High-Speed Rail.

August 26, 2021 Posted by | Design, Transport/Travel | , | 1 Comment

Improving The Cross Country Route

The Cross Country Route is one of the UK’s forgotten railway lines.

  • It runs between York and Bristol Temple Meads.
  • Intermediate stations include Leeds, Wakefield Westgate, Rotherham Central, Meadowhall, Sheffield, Chesterfield, Derby, Burton-on-Trent, Tamworth, Birmingham New Street, University, Bromsgrove, Worcestershire Parkway, Cheltenham Spa and Bristol Parkway.
  • At the Northern end trains can swap to the electrified East Coast Main Line and can extend services to Edinburgh and Aberdeen.
  • At the Southern end trains can swap to the Great Western Main Line and extend services to Taunton, Exeter, Plymouth and Penzance.
  • Trains can also swap to the South Wales Main Line in the Bristol area, to serve Cardiff and South Wales.
  • Operating speeds are generally around 100 mph, but there are sections of 125 mph running.
  • Some sections of the route have 25 KVAC overhead electrification.

I very much believe that it is a route that is ripe for improvement.

These are my thoughts.

Extra And Rebuilt Stations

Recently, Worcestershire Parkway station has been opened on the route.

Bromsgrove station was rebuilt and reopened in 2016.

Derby station was remodelled in 2018.

In addition, there are aspirations for other mew stations and station improvements on the route.

I can see more station improvements and additions on the Cross Country Route.

New Trains

Most services are run by CrossCountry, who only use diesel trains.

Their core services are as follows.

Plymouth And Edinburgh uses the route between York and Bristol Temple Meads. The service runs under wires North of Leeds and at Bristol Parkway and at Birmingham New Street.

Southampton Central And Newcastle uses the route between York and Birmingham New Street. The service runs under wires North of Leeds and at Reading and at Birmingham New Street.

Bournemouth and Manchester Piccadilly uses the route at Birmingham New Street. The service runs under wires North of Birmingham New Street.

Bristol Temple Meads and Manchester Piccadilly uses the route between Bristol Temple Meads and Birmingham New Street. The service runs under wires at Bristol Parkway and North of Birmingham New Street.

Cardiff Central and Nottingham uses the route between Gloucester and Derby. The service runs under the wires West of Bristol Parkway and at Birmingham New Street.

Birmingham New Street and Nottingham uses the route between Birmingham New Street and Derby. The service runs under the wires at Birmingham New Street.

Birmingham New Street and Stansted Airport does not use the route. The service runs under the wires at Birmingham New Street and around Cambridge and Peterborough.

Birmingham New Street and Leicester does not use the route. The service runs under the wires at Birmingham New Street.

Note.

  1. Several services run under wires for sufficient time to charge a battery-electric train.
  2. Several services turn in stations for sufficient time to charge a battery-electric train.
  3. At least six or possibly seven of the services run for at least fifty miles on tracks that can handle 125 mph running. Some of this track will be upgraded to 140 mph with digital signalling.

This Hitachi infographic shows the Hitachi Intercity Tri-Mode Battery Train.

I believe that Hitachi could produce a version of this train, that would partially meet CrossCountry’s need for a new fleet to reduce their carbon footprint.

For the purpose of this analysis, I will assume this about the trains.

  • Battery power will always be used in stations.
  • The trains have a battery range of around forty miles at 100 mph.
  • Running at 125 mph will need 25 KVAC overhead electrification.

This table shows the current electrification status of the Cross Country Route.

  • York and South Kirby junction- 45.4 miles – Electrified
  • South Kirby junction and Birmingham New Street – 96.6 miles – Not Electrified
  • Birmingham New Street and Bromsgrove – 16 miles – Electrified
  • Bromsgrove and Bristol Parkway – 69.8 miles – Not Electrified
  • Bristol Parkway and Bristol Temple Meads – 4.8 miles- Not Electrified

The trains would appear to still need to use diesel on some parts of the route.

Or Hitachi ABB Power Grids could install short lengths of 25 KVAC overhead electrification to top up the trains’ batteries in appropriate places.

I believe CrossCountry could decarbonise this route using battery-electric trains and discontinuous electrification.

This would surely refresh the line and attract passengers, but would the trains speed up the service?

  • Birmingham New Street and Leeds is 116.4 miles and currently takes just under two hours at an average speed of 59.3 mph in a Class 221 train.
  • Several sections of line between Birmingham New Street and Leeds can sustain 125 mph running.
  • London Liverpool Street and Norwich is 114.5 miles and has regularly been achieved by British Rail-era electric trains in ninety minutes on a 100 mph line, which is an average speed of 76 mph.
  • Averaging 76 mph between Birmingham New Street and Leeds would give a time of 92 minutes.

For these and other reasons, I am fairly sure that a battery-electric train capable of running at 125 mph with fast acceleration could run between Birmingham New Street and Leeds in under ninety minutes, with the addition of some discontinuous electrification.

  • There is currently one tph between Birmingham New Street and Leeds, which also serves Sheffield.
  • There is also one tph between Birmingham New Street and Sheffield by a different route.
  • There is two tph between Birmingham New Street and Nottingham.
  • My calculations indicate that the Nottingham and Sheffield services would take under an hour to and from Birmingham New Street, with the Leeds service taking thirty minutes longer.

In normal circumstances no diesel would be used.

Track Improvements And Discontinuous Electrification

This table shows the current electrification status of the Cross Country Route.

  • York and South Kirby junction- 45.4 miles – Electrified
  • South Kirby junction and Birmingham New Street – 96.6 miles – Not Electrified
  • Birmingham New Street and Bromsgrove – 16 miles – Electrified
  • Bromsgrove and Bristol Parkway – 69.8 miles – Not Electrified
  • Bristol Parkway and Bristol Temple Meads – 4.8 miles – Not Electrified

Solutions will have to be found to decarbonise a lot of the route.

I have flown my virtual helicopter from Tamworth to Sheffield and this part of the route seems to the sort of route that could be upgraded to a full 125 mph line, as it is fairly straight and some sections already allow trains to travel at this speed.

As the 15.5 miles between Clay Cross North Junction and Sheffield will be updated and electrified for High Speed Two’s spur into Sheffield sometime in the future, I would feel that as updating this section benefits High Speed Two, the Midland Main Line, the Cross Country Route and the Hope Valley Line, that this section should be rebuilt as necessary and electrified, as soon as is practically possible.

I believe that Clay Cross North Junction and Sheffield is one of the most important routes in the country to be electrified, if not the most important.

This table shows the electrification status of the Cross Country Route after electrification of Clay Cross North Junction and Sheffield.

  • York and South Kirby junction- 45.4 miles – Electrified
  • South Kirby junction and Sheffield – 18.8 miles – Not Electrified
  • Sheffield and Clay Cross North junction – 15.5 miles – Electrified
  • Clay Cross North junction and Birmingham New Street – 62.1 miles – Not Electrified
  • Birmingham New Street and Bromsgrove – 16 miles – Electrified
  • Bromsgrove and Bristol Parkway – 69.8 miles – Not Electrified
  • Bristol Parkway and Bristol Temple Meads – 4.8 miles – Not Electrified

It looks that by electrifying the 15.5 miles between Sheffield and Clay Cross North junction, the gap of 18.8 miles between South Kirby junction and Sheffield could be easily bridged by a battery-electric train.

The section between Clay Cross North junction and Birmingham New Street can be split into three.

  • Clay Cross North junction and Derby – 20.9 miles
  • Derby and Tamworth – 23.9 miles
  • Tamworth and Birmingham New Street – 17.3 miles

If Hitachi ABB Power Grids installed discontinuous electrification at Derby and Tamworth, this should bridge the gap to the electrification at Birmingham.

As some of this section can sustain 125 mph running, it may be better to fully electrify part of the route.

This table shows the electrification status of the route would become

  • York and South Kirby junction- 45.4 miles – Electrified
  • South Kirby junction and Sheffield – 18.8 miles – Not Electrified
  • Sheffield and Clay Cross North junction – 15.5 miles – Electrified
  • Clay Cross North junction and Derby – 20.9 miles – Not Electrified
  • Derby and Tamworth – 23.9 miles – Not Electrified
  • Tamworth and Birmingham New Street – 17.3 miles – Not Electrified
  • Birmingham New Street and Bromsgrove – 16 miles – Electrified
  • Bromsgrove and Bristol Parkway – 69.8 miles – Not Electrified
  • Bristol Parkway and Bristol Temple Meads – 4.8 miles – Not Electrified

I have also flown my virtual helicopter from Bromsgrove to Westerleigh junction, where the Cross Country Route joins the electrified Great Western Main Line, about 4.5 miles East of Bristol Parkway station.

It looks to me that this Southern short section of electrified line would be able to charge a battery-electric train so that it could reach Bristol Temple Meads station.

But the sixty-plus miles of route without electrification between Bromsgrove and Westerleigh junction would be too far to travel without some electrification.

This could either be full electrification or discontinuous using the methods proposed by Hitachi ABB Power Grids.

It certainly looks to me, that Hitachi’s technology or similar, that I talked about in Solving The Electrification Conundrum could be used to run battery-electric trains between York and Bristol Temple Meads on the Cross Country Route.

Digital Signalling

I would assume this will be installed on the route, to give more precise control of trains on the more complicated sections of the route.

East Coast Main Line Improvements

There are several improvements to the North of York, that will reduce journey times on all services using the East Coast Main Line.

These could contribute time saving of up to ten minutes, according to High Speed Two’s Journey Planner and current timetables.

Comparison With The Proposed Eastern Leg Of High Speed Two

With all the talk about possible cancellation of the Eastern Leg of High Speed Two could an improved Cross Country Route be used in the interim?

I will look at a few timings from Birmingham.

Birmingham And Leeds

A fully-developed High Speed Two is claiming forty-nine minutes, as against the one hour and fifty-eight minutes today.

I have stated that ninety minutes is an attainable time on a 116.4 mile journey, where a good proportion of 125 mph running will be possible, sustained by electrification.

But with full electrification, more 125 mph running and even some 140 mph running under the control of digital signalling, I suspect that ninety minutes is only an upper limit to the journey time between Birmingham and Leeds.

High Speed Two are saying they will run two tph between Birmingham and Leeds, which is twice the current frequency.

I could see that an improved frequency on the Cross Country Route could be very convenient, if it increased the frequency between the two cities to four tph.

Is it going to annoy passengers, that services will leave from two different stations in Birmingham and if you go to the wrong one, you’ll have to wait thirty minutes for the next train?

Birmingham And Middlesbrough

Times between Birmingham and Middlesbrough will be determined by adding a Leeds and Middlesbrough time to the Birmingham and Leeds times.

The best time between Leeds and Middlesbrough today is one hour and 23 minutes, which I suspect will lose a few minutes due to East Coast Main Line improvements North of York.

This gives using High Speed Two to Leeds a time of two hours and eight minutes, as against two hours and forty-nine minutes using an improved Cross Country Route.

Birmingham And Newcastle

A fully-developed High Speed Two is claiming one hour and  fifty-seven minutes, as against the three hours and twenty-six minutes today.

Based on the current and possible times between Birmingham at Leeds using CrossCountry, I feel times to stations North of Leeds will be reduced by at least twenty-eight minutes, putting the Birmingham and Newcastle time a few minutes under three hours.

Birmingham And Nottingham

A fully-developed High Speed Two is claiming twenty minutes to East Midlands Hub, which when adding in the tram to Nottingham City Centre will be thirty-five minutes..

,Current services are one hour and ten minutes today.

On an improved Cross Country Route, with with battery-electric trains and some 125 mph running, I can see this time shrink to under an hour, even with the reverse at Derby.

Midlands Connect are also proposing a high speed service between Birmingham Curzon Street and Nottingham station, which will take thirty-three minutes.

High Speed Two are saying they will run three tph between Birmingham and East Midlands Hub, which compares with two tph using the Cross Country Route.

Birmingham And Sheffield

A fully-developed High Speed Two is claiming fifty-seven minutes, as against the one hour and fifteen minutes today.

I have stated that an hour is an attainable time on this route, with battery-electric trains and some 125 mph running.

A time of an hour would be very competitive with the Eastern Leg of High Speed Two.

High Speed Two are saying they will run two tph between Birmingham and Sheffield with a change at East Midlands Hub, which compares with two tph using the Cross Country Route.

Conclusion

A fully developed East Coast Main Line will give High Speed Two a good run for its money on services between London and Yorkshire, North East England and Scotland. I indicated my thoughts and conclusions in What Is Possible On The East Coast Main Line?.

I also believe that an improved Cross Country Route could give the Eastern Leg of High Speed Two a very good run for its money.

Perhaps, we should safeguard the route of Eastern Leg of High Speed Two for building later to increase capacity when it is needed, but in the interim we should upgrade the following routes.

  • Cross Country Route
  • East Coast Main Line
  • Midland Main Line
  • Northern Powerhouse Rail
  • West Coast Main Line

These routes should have at least these minimum standards.

  • All passenger trains electric or battery-electric.
  • All freight locomotives electric, battery-electric or hydrogen-electric.
  • Where possible all lines should allow 125 mph running.
  • Universal in-cab digital signalling
  • There should be sections of 140 mph running, where possible.

We will need the Eastern Leg of High Speed Two in the future, but we don’t need it in the next few years.

 

 

 

 

 

August 26, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , | 4 Comments