The Anonymous Widower

Can We Move The Equilibrium Point Of The Energy Market?

Equilibrium In Systems

As a Control Engineer, I believe that most systems eventually end up in a state of equilibrium.

How many football batches have you watched between two evenly-matched teams that have ended, where the statistics are even and the match has ended in a nil-nil draw or a win by one goal.

Now suppose one manager makes an inspired substitution, one important player gets injured or one player gets sent off.

One team will have an advantage, the statistics will no longer be even and one team will probably win.

The equilibrium point will have been shifted.

Zopa’s Stable Peer-to-Peer Lending System

I used Zopa’s peer-to-peer lending system for several years and found it a very stable system, that over the years paid a steady return of between four and five percent before tax.

I even developed a method to maximise my savings income, which I wrote about in The Concept Of Hybrid Banking.

It was a sad day for me, when Zopa closed its ground-breaking peer-to-peer lending system.

As a Control Engineer, I believe that Zopa’s strength was a well-written computerised algorithm, that matched lenders and borrowers and spread the risk.

  • There was no bias in the system, introduced by personal prejudices.
  • The algorithm was agnostic and judged all borrowers on their profiles and credit ratings alone.
  • Money was allocated under fair rules for borrowers.
  • I never borrowed from Zopa, but from my experience of owning half of a finance company, their terms were the most customer-friendly I’ve ever seen.

Someone will go back to the basics of peer-to-peer lending and it can’t be soon enough for both savers and borrowers.

Zopa In Troubled Times

Over the years that I invested in Zopa, my returns stayed very much the same, as the algorithm seemed to be able to maintain sufficient difference between lenders’ returns and borrowers’ rates. I also suspect the dynamics of savvy lenders and borrowers helped to stabilise both the system and the difference between rates.

It even worked through the Banking Crisis of 2008 and other mini-hiccups along the way.

My Conclusion About Zopa

As someone, who knows computing well, I would rate Zopa, one of the best computer systems, I’ve ever seen.

But it showed how a large transactional system can work well.

One of the keys to its success and smooth operation was that the computer was totally in control and it took all transaction decisions without direct human intervention.

The Energy Market

The energy market is a network of energy providers and users.

It is controlled by complicated rules and it has settled into an equilibrium, which involves.

  • Importation of energy, which I suspect is not at a low price
  • Some high priced energy generators, based on gas, which has a high-price, due to Putin’s war.
  • Waste of wind energy due to lack of energy storage.
  • The intermittency of renewable sources.
  • A  lack of gas storage, means that we probably get the wrong end of fluctuations in the gas price.

This results in a high price to consumers.

Can We Move The Equilibrium Point Of The Energy Market?

And we also need to move it quickly to a more favourable place, which benefits everybody!

As a Control Engineer, I believe that there are five ways to move the equilibrium point.

  • Stop Putin’s war.
  • Increase gas storage.
  • Generate more low-cost electricity.
  • Increase electricity storage.
  • Improve the control algorithm.

I will now look at each in more detail.

Stopping Putin’s War

Giving in to Putin’s ambitions, would be an easy way to solve our energy crisis. But at what cost?

My parents generation, watched as Nazi Germany took over Austria and Czechoslovakia, whilst the world did nothing.

  • We mustn’t repeat that mistake.
  • We must not flinch in our support of the Ukraine.
  • We must be ready to support Moldova, Finland and the Baltic States if Putin expands his ambitions.

I do wonder, if Boris will turn up with Churchillian-style anti-Putin rhetoric all over Eastern Europe.

Increasing Gas Storage

The major gas storage facility is Rough, which is handily close to the Easington gas terminal.

The facility needs maintenance and this paragraph from the Wikipedia entry gives the current status.

In May 2022, the Secretary of State for Business, Energy and Industrial Strategy, Kwasi Kwarteng, began talks with the site’s owners with a view to reopening the site to help ease the ongoing cost-of-living crisis in the United Kingdom. In June 2022, owners Centrica submitted an application to the North Sea Transition Authority (NSTA), the licencing authority for the UK Government, to reopen the facility. Approval was granted in July. Subsequently, Centrica indicated that they are working hard to restore storage operations at Rough which would depend on securing subsidies from the British government. Centrica was aiming to have some capacity available for the winter of 2022/23 against an overall plan to increase storage capacity gradually over time.

Note.

  1. Rough can store around 2832 million cubic metres of gas.
  2. This article on Energy Live News is entitled Reopening Of Rough Storage Gets The All-Clear.

Less well-known is SSE and Equinor’s Aldborough Gas Storage.

These three paragraphs from SSE web site, describe the gas storage.

The Aldbrough Gas Storage facility, in East Yorkshire, officially opened in June 2011. The last of the nine caverns entered commercial operation in November 2012.

The facility, which is a joint venture between SSE Thermal (66%) and Equinor, has the capacity to store around 330 million cubic metres (mcm) of gas.

SSE Thermal and Equinor have consent to increase the storage capacity at the Aldbrough site (Aldbrough Phase 2) and during the last couple of years have been working to involve the local community where appropriate to refine aspects of this project, which has not been progressed to date due to market conditions.

Future plans for the facility, may include converting it to one of the world’s largest hydrogen stores.

In the grand scheme of things, Rough and Aldborough, when you consider that the UK uses 211 million cubic metres of gas every day, will only keep us going for a few days.

But it should be noted, that the Easington gas terminal is connected to the Norwegian gas fields, by the Langeled pipeline.

So Yorkshire and Humberside will be alright.

Generating More Low-Cost Electricity

The only low-cost electricity of any size to come on stream will be wind-power.

This article on Renewables Now is entitled UK Hits 25.5 GW Of Wind Power Capacity.

These wind farms seem to be coming on stream soon or have been commissioned recently.

  • Dogger Bank A – 1200 MW – Commissioning 2023 expected
  • Dogger Bank B – 1200 MW – Commissioning 2024/25 expected
  • Dogger Bank C – 1200 MW – Commissioning 2024/25 expected
  • Hornsea Two – 1386 MW – Commissioned 2022
  • Moray East – 950 MW – Commissioning 2022 expected
  • Neart Na Gaoithe – 450 MW – Commissioning 2024 expected
  • Seagreen – 1075 MW – Commissioning 2023 expected
  • Triton Knoll – 857 MW – Commissioning 2022 expected

That is expected to be over 5 GW of offshore wind by the end of 2023.

In case there is some double counting, I’ll only say that wind power capacity could be near to 30 GW by December 2023, with perhaps another 3 GW by December 2024.

Other large wind farms in the future include.

  • Berwick Bank – 4100 MW – Commissioning 2028 expected
  • East Anglia Two – 900 MW – Commissioning 2026 expected
  • East Anglia Three – 1400 MW – Commissioning 2027 expected
  • Inch Cape Phase 1 – 1080 MW – Commissioning 2027 expected
  • Hornsea Three – 2800 MW – Commissioning 2027 expected
  • Moray West – 294 MW – Commissioning 2027 expected
  • Morgan and Mona – 3000 MW – Commissioning for 2028 expected
  • Morven – 2900 MW – Commissioning for 2028 expected
  • Norfolk Boreas – 1400 MW – Commissioning 2027 expected
  • Norfolk Vanguard – 1400 MW – Construction start planned for 2023
  • Sofia – 1400 MW – Commissioning 2026 expected

That is over 14 GW of wind power.

I should also take note of solar and onshore wind power detailed in this document from the Department of Business, Industry and Industrial Strategy that lists all the Contracts for Difference Allocation Round 4 results for the supply of zero-carbon electricity.

It gives these figures and dates.

  • Solar – 251 MW – Commissioning 2023/24 expected
  • Solar – 1958 MW – Commissioning 2024/25 expected
  • Onshore Wind – 888 MW – Commissioning 2024/25 expected

I can now build a yearly table of renewables likely to be commissioned in each year.

  • 2022 – 3193 MW
  • 2023 – 2275 MW
  • 2024 – 701 MW
  • 2025 – 5246 MW
  • 2026 – 2300 MW
  • 2027 – 6974 MW
  • 2028 – 11400 MW

Note.

  1. Where a double date has been given, I’m taking the latter date.
  2. I have assumed that Norfolk Vanguard will be commissioned in 2028.
  3. I have ignored Hinckley Point C, which should add 3.26 GW in mid-2027.
  4. I have only taken into account one of the Scotwind wind farms in Scotland, some of which could be commissioned by 2028.
  5. I have assumed that BP’s Mona, Morgan and Morven will all be commissioned by 2028.

This is a total of 32 GW or an average of nearly 5 GW per year.

Increasing Electricity Storage

Big schemes like the 1.5 GW/ 30 GWh Coire Glas and 600 MW Cruachan 2 will help, but with 32 GW of renewable energy to be installed before 2028 and energy prices rocketing, we need substantial energy storage in the next couple of years.

One feasible plan that has been put forward is that of Highview Power’s CEO; Rupert Pearce,, that I wrote about in Highview Power’s Plan To Add Energy Storage To The UK Power Network.

The plan is to build twenty of Highview Power’s CRYOBatteries around the country.

  • Each CRYOBattery will be able to store 30 GWh.
  • Each CRYOBattery will be one of the largest batteries in the world.
  • They will have three times the storage of the pumped storage hydroelectric power station at Dinorwig.
  • They will be able to supply 2.5 GW for twelve hours, which is more output than Sizewell B nuclear power station.

Note.

  1. The first 30 GWh CRYOBattery is planned to be operational by late 2024.
  2. 600 GWh distributed around the country would probably be sufficient.

I believe that as these batteries are made from standard proven components, they could be built fairly quickly.

Paying For The Energy Storage

This press release from Highview Power is entitled New Analysis Reveals Extent Of UK Renewable Energy Waste, which makes these three bullet points.

  • Enough renewable energy to power 500,000 homes a day wasted since the energy crisis began.
  • 8 out of 10 Britons want more investment in boosting Britain’s energy resilience.
  • UK spent £390 million turning off wind farms and using gas since September 2021.

Note.

  1. As the press release was published in July 2022, was the £390 million for ten months.
  2. Will this level of spend continue, as we’re not creating any electricity storage or building any factories that will start in a year or so, that will need large amounts of electricity?
  3. The Germans are at least building the NeuConnect interconnector between the Isle of Grain and Wilhelmshaven.
  4. As we’re adding up to 5 GW per year to our renewable energy systems, this problem will surely get worse and we’ll spend more money switching off wind turbines.

We have the money to build a very large amount of energy storage.

Improving The Control Algorithm

A better control algorithm would always help and politicians should only be allowed to set objectives.

Conclusion

There is a chance we’ll have an oversupply of electricity, but this will have effects in the UK.

  • Gas-fired power-stations will be retired from front-line service to produce electricity.
  • Some will question the need for nuclear power.
  • Gas may even be used selectively to provide carbon dioxide for agricultural, scientific and industrial processes.
  • Industries that need a lot of electricity may build factories in the UK.
  • We will have a large supply of green hydrogen.

But it should bring the price of electricity down.

 

September 5, 2022 Posted by | Computing, Energy, Energy Storage | , , , , , , , , , , , , , , , , , , | 7 Comments

SSE Renewables Completes Acquisition Of European Renewable Energy Development Platform

The title of this post, is the same as that of this press release from SSE.

This paragraph introduces the deal.

SSE Renewables has completed the transaction with Siemens Gamesa Renewable Energy (SGRE) to acquire its existing European renewable energy development platform for a consideration of €580m.

I have a few thoughts.

Why Have Siemens Gamesa Sold Their European Renewable Energy Development Platform?

This article on Renewables Now is entitled Siemens Gamesa Wraps Up Sale Of 3.9-GW Wind Portfolio To SSE Renewables, gives a reason.

For the turbine maker, the sale represents one of the measures implemented to rein in profit losses quarter after quarter due to internal challenges, high costs and supply chain issues.

As with many things, it appears to be all about the money.

Can SSE Renewables Afford It?

Consider.

SSE seem to have found a Scottish magic money tree.

€580m is just small change.

What Projects Are Included In The Deal?

This is a paragraph from the press release.

The SGRE portfolio includes c.3.8GW of onshore wind development projects – around half of which is located in Spain with the remainder across France, Italy and Greece – with scope for up to 1.4GW of additional co-located solar development opportunities. Development of the portfolio of projects has continued to progress since the acquisition was announced in April, with additional opportunities identified and permits and grid connections advancing. Over 2GW of the total pipeline is considered to be at a secured stage, where a grid connection or land agreement has been secured or relevant permits granted.

Note.

  1. As an engineer, I note that there is no offshore wind, which surely is the renewable energy development with most risk and installation costs.
  2. SSE Renewables have a lot of experience of onshore wind, so delivering and financing the extra 3.8 GW, shouldn’t be a problem.
  3. The 1.4 GW of solar comes with the word co-located. Wind and solar together, perhaps with a battery must surely be a good investment in the sunnier climes of Europe.

It doesn’t look to me that SSE Renewables have bought a load of assets that no-one wants.

I do wonder thought, if Siemens Gamesa were having trouble progressing this large diverse portfolio of projects, due to a shortage of resources like money and engineers.

So are SSE finishing off a few projects and they can transfer a few engineers to these projects?

Are SSE Spreading The Risk?

SSE operate mainly in the UK and Ireland, so is adding Spain, France, Italy and Greece a good idea?

Of the four new countries, it’s unlikely that all will perform well, but a mixed portfolio is usually a good idea.

Will SSE Renewables  Buy Siemens Gamesa Turbines In The Future?

SSE Renewables seem to do an individual deal on each wind farm, as no one manufacturer dominates.

But now Siemens Gamesa may be more financially stable, perhaps they can get a better deal for the turbines they want.

Conclusion

I don’t think SSE Renewables have done a bad deal.

 

 

September 5, 2022 Posted by | Energy | , , , , , , , , , | Leave a comment

Extending The Elizabeth Line – Improving The Northern City Line

Some parts of North and North-East London, have less-than-good connections with the Elizabeth Line.

  • The Piccadilly Line has no direct connection with the Elizabeth Line.
  • The Victoria Line has no direct connection with the Elizabeth Line.
  • The Bank branch of the Northern Line has only a poor connection with the Elizabeth Line at Moorgate station.
  • The Northern City Line has only a poor connection with the Elizabeth Line at Moorgate station.
  • The Charing Cross branch of the Northern Line has a good connection with the Elizabeth Line at Tottenham Court Road station.
  • The Lea Valley Lines of the London Overground have good connections with the Elizabeth Line at Liverpool Street station.
  • Thameslink has a good connection with the Elizabeth Line at Farringdon station.

It would appear that if you live near one of the Lea Valley Lines or Thameslink stations, you can access the Elizabeth Line fairly easily at Liverpool Street or Farringdon stations, but if you rely on a Northern, Northern City, Piccadilly or Victoria Line local station, you are not so lucky!

Could The Northern City Line Be Improved To Give Better Connections Between North London And The Elizabeth Line?

This map from cartometro.com shows the lines between Finsbury Park and Highbury & Islington stations.

Note.

  1. The dark blue tracks are the Piccadilly Line, which calls at M (Manor House), Finsbury Park, Arsenal, Holloway Road and Caledonian Road, before going South-West to King’s Cross St. Pancras.
  2. The lighter blue tracks are the Victoria Line, which calls at Finsbury Park and Highbury & Islington, before going South-West to King’s Cross St. Pancras.
  3. The black tracks on the Western side of the map are those of the East Coast Main Line into King’s Cross.
  4. The black tracks going South-East from Finsbury Park are the Northern City Line, which calls at Finsbury Park, Drayton Park, Highbury & Islington, E (Essex Road) and Old Street before terminating at Moorgate.

This second map shows the lines through Finsbury Park station.

 

Note.

  1. The dark blue tracks are the Piccadilly Line.
  2. The lighter blue tracks are the Victoria Line.
  3. The black tracks going through Drayton Park station are the Northern City Line.
  4. The platforms of the Piccadilly and Victoria Lines are paired at Finsbury Park station, so that passengers can change lines with a simple walk-across.

This third map shows the lines through Highbury & Islington station.

Note.

  1. The dark blue tracks are the Piccadilly Line.
  2. The lighter blue tracks are the Victoria Line.
  3. The orange tracks are the London Overground.
  4. The black tracks going through Drayton Park and Highbury & Islington stations are the Northern City Line, which terminates at Moorgate station.
  5. The platforms of the Northern City and Victoria Lines are paired at Highbury & Islington station, so that passengers can change lines with a simple walk-across.

The big problem with Highbury & Islington station is that is not step-free.

A Step-Free Route Between Wood Green And Moorgate  Stations

Currently, it is possible to go between Wood Green and Moorgate stations by using three trains.

  • Piccadilly Line – Wood Green to Finsbury Park – 6 mins
  • Victoria Line – Finsbury Park to Highbury & Islington – 6 mins
  • Northern City Line – Highbury & Islington to Moorgate – 10 mins

Note.

  1. These are actual times measured on my phone.
  2. The total time is twenty-two minutes.
  3. I had to wait a couple of minutes at both changes.
  4. Both changes are walk-across.
  5. The changes are not as perfect as they could be, although they would be easily managed with a buggy or a heavy case.

These pictures show the change at Highbury & Islington station.

These pictures show the change at Finsbury Park station.

This route works for all stations Between Manor House and Cockfosters.

  • Cockfosters – Add 15 minutes
  • Oakwood – Add 12 minutes
  • Southgate – Add 9 minutes
  • Arnos Grove – Add 6 minutes
  • Bounds Green – Add 3 minutes
  • Turnpike Lane – Subtract 2 minutes
  • Manor House – Subtract 5 minutes

But look at the frequencies of the three sections in trains per hour (tph)

The Northern City Line frequency is not high enough, as you could have a fifteen minute wait for a train.

Improvements Needed To The Northern City Line

The Northern City Line now has new Class 717 trains, a terminal platform at Stevenage and full digital signalling is being installed.

  • The major improvement needed would be to improve frequency to at least 12 tph.
  • Six tph on both branches should be possible.

I would also install step-free access at more stations.

Moorgate Station’s Northern City Line Platforms

These pictures show the platforms of the Northern City Line at Moorgate station.

Note.

Improved Connections At Moorgate Station

I talked about the connections between the Northern and Elizabeth Lines at Moorgate station in Elizabeth Line To Northern Line At Moorgate Station.

This was my conclusion.

Routes between the Northern and Elizabeth Lines at Moorgate need to be improved.

I feel that some of the improvements could be fairly minor, but adding step-free access to the Northern City Line could be more difficult.

An Improved Connection Between Bank And Moorgate Stations

Currently, there are three ways between Bank and Moorgate stations.

  • Use the Northern Line
  • Use a 21, 43 or 141 bus routes
  • Walk

I believe that it would also be possible to dig a pedestrian tunnel between the two stations and fit it out with a moving walkway.

This visualisation shows the updated Bank station.


Note.

  1. Moorgate station is to the left.
  2. The only more-or-less completed bits are the two Northern Line tunnels and platforms and parallel pedestrian tunnel.
  3. The four cross tunnels can be picked out towards the far end of the station.
  4. Three of the cross tunnels can now be used by passengers.
  5. The moving walkway can be accessed from the two cross tunnels nearest to the Central Line.
  6. The escalators from the yet-to-open Cannon Street entrance appear to lead directly into a cross tunnel and a parallel tunnel to the moving walkway.

I believe that the moving walkway to Moorgate station could connect with the Bank station complex, at the Moorgate end of the new moving walkway in Bank station.

 

September 5, 2022 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , , , , | 2 Comments