The Anonymous Widower

Megawatt Charging System Set To Rapidly Reduce Fuelling Time For Commercial EVs

The title of this post, is the same as that of this article on Electric Autonomy Canada.

This is the sub-title.

An international task force says their recent high power “charge-in” event has yielded promising results with successful testing of novel connector prototypes that could overhaul the long-haul industry.

The problem of charging heavy freight trucks is a big market in North America and it seems that the event attracted some big players, like ABB, Daimler and Tesla.

  • In the trucking industry, speed and range count for a lot.
  • Trucks need to be charged during a driver’s rest break of about thirty minutes.
  • In the U.S., transport made up 28 per cent of greenhouse gas emissions.
  • Charging lots of trucks on typical state-of-the-art car chargers would probably crash the system.

The Megawatt Charging System aims to solve the problems.

How Would It Work?

This paragraph from the article, outlines the problems.

But how, one may ask, could such a massive electrical draw — as much as 4.5 megawatts — be supported by a grid, especially when the usage scale is not just one truck charging up, once a day, but thousands of 18-wheelers rolling and charging across the country.

The MCS Task Force seem to be suggesting that these systems will work as follows.

  • A large battery or energy storage system will be trickle charged.
  • The truck will be connected and the electricity will flow into the truck.
  • It could all be automated.

It sounds very much like Vivarail’s Fast Charge system, which uses batteries as the intermediate store.

As an Electrical and Control Engineer, I would use a battery with a fast response.

I think I would use a Gravitricity battery. This page on their web site describes their technology.

Gravitricity™ technology has a unique combination of characteristics:

  • 50-year design life – with no cycle limit or degradation
  • Response time – zero to full power in less than one second
  • Efficiency – between 80 and 90 percent
  • Versatile – can run slowly at low power or fast at high power
  • Simple – easy to construct near networks
  • Cost effective – levelised costs well below lithium batteries.

Each unit can be configured to produce between 1 and 20MW peak power, with output duration from 15 minutes to 8 hours.

 

October 30, 2020 Posted by | Energy, Energy Storage, Transport | , , , , , , | Leave a comment

Hydrogen Is A Top Contender In The Race To Zero-Carbon

The title of this post, is the same as that of this article on Forbes.

It is written by influential academics at the Gutierrez Energy Management Institute at the University of Houston, who make some strong points about hydrogen.

  • Hydrogen can’t by mined or extracted without a manufacturing process.
  • They are warm on electrolysis. Does the US have an electrolyser factory?
  • Hydrogen is ideal for medium trucks upwards.
  • Research into hydrogen deployment is needed.
  • I don’t think, that they’re impressed with Government response.
  • Although they do say that the European Commission’s plan with $75billion of funds to deploy the technology is ambitious.

But their strongest comments are reserved for a comparison between the heavy trucks of Tesla and Nikola.

July 24, 2020 Posted by | Hydrogen | , | 5 Comments

Innolith Claims It’s On Path To 1,000 Wh/kg Battery Energy Density

The title of this post is the same as that of this article on InsideEVS.

This is the introductory paragraph.

Innolith, the Switzerland-based company with labs in Germany, announced that it is developing the world’s first rechargeable battery with an energy density of 1,000 Wh/kg (or simply 1 kWh per kg of weight). Such high energy would easily enable the production of electric cars with a range of 1,000 km (620 miles).

If they achieve their aim, a one MWh battery will weigh a tonne.

I am sceptical but read this second article on CleanTechnica, which is entitled Swiss Startup Innolith Claims 1000 Wh/kg Battery.

Innolith has a working battery at Haggerstown, Virginia, but say full production is probably 3 to 5 years away.

The CleanTechnica article, also says this about Tesla’s batteries.

Let’s put that into perspective. It is widely believed that Tesla’s latest 2170 lithium ion battery cells produced at its factory in Nevada can store about 250 Wh/kg. The company plans to increase that to 330 Wh/kg as it pursues its goal of being a world leader in battery technology. 1000 Wh/kg batteries would theoretically allow an electric car to travel 600 miles or more on a single charge.

So it would appear that Tesla already has an power density of 250 Wh/Kg.

Conclusion

I am led to believe these statements are true.

  • Tesla already has an energy density of 250 Wh/Kg.
  • Tesla will increase this figure.
  • By 2025, the energy density of lithium-ion batteries will be much closer to 1 KWh/Kg.
  • Innolith might achieve this figure. But they are only one of several companies aiming to meet this magic figure.

These figures will revolutionise the use of lithium-ion batteries.

February 17, 2020 Posted by | Energy Storage, Transport | , , , | 1 Comment