The Anonymous Widower

XLCC Obtains Planning Approval To Build UK’s First HVDC Cable Factory In North Ayrshire

The title of this post, is the same as that of this press release from XLCC.

These are the first three paragraphs.

On 29th June 2022, the North Ayrshire Council Planning Committee resolved to grant planning permission for XLCC’s HVDC subsea cable manufacturing operations in Hunterston, Scotland.

Breaking ground in the coming months, the brownfield site will create a new UK industry to support global decarbonisation targets. Once fully operational, the facility will support 900 jobs in the area, with thousands more in the wider supply chain.

XLCC’s first order is for four 3,800km long cables to connect solar and wind renewable power generation in the Sahara to the UK for the Xlinks Morocco-UK power project.

XLCC have also issued two other important press releases.

XLCC To Build New Cable Laying Vessel To Address Increase In Future Demand For HVDC Cable

These are the first paragraphs.

XLCC, the new HVDC, renewable energy focused business in the UK, has completed the concept design of an advanced, first-of-a-kind Cable Laying Vessel to be delivered in the first half of 2025.

As the world strives for Net Zero, the UK, EU and other world economies have set themselves ambitious targets for decarbonisation. The UK, for example, has stated that it will be powered entirely by clean energy by 2035 and that it will fully decarbonise the power system in the same time frame. This ambition is driving an exponential growth in high voltage cable demand as the increase in installation of offshore wind and interconnectors drive a forecast six times increase (2020 – 2027 over 2014 – 2020) for HVDC cable.

The planned delivery of the XLCC CLV will support the Morocco – UK Power Project, the first client project, through the delivery of four 3,800km subsea HVDC cables from a wind and solar generation site in Morocco to the UK.

This press release can be read in full here.

XLCC Signs UK Steel Charter For New Export-Led Cable Industry

These are the first paragraphs.

XLCC signed the UK Steel Charter at an event in Parliament on 19 April 2022, alongside representatives from politics, business and the trade union movement.

XLCC will create a new export-led HVDC cable manufacturing industry for the UK, nearly doubling the world’s current production. It aims to support renewable energy projects with the first factory planned for Hunterston, Scotland. XLCC will deliver its first project for the Xlinks Morocco-UK Power Project, consisting of four 3,800km long subsea cables, with the first phase between 2025-2027 connecting wind and solar power generated in Morocco exclusively to the UK in Devon.

Signing the UK Steel Charter shows a commitment to supporting existing and future jobs within the sector and the supply chain. Along with strengthening UK-based business, sourcing steel locally will cut transport emissions and seek to support decarbonisation in a sector dedicated to finding ways to minimise environmental impact of steel use.

This press release can be read in full here.

I have a few thoughts.

You Wait For A Large Interconnector Project To Come Along And Then Two Arrive Holding Hands

This paragraph introduces the Morocco-UK Power Project.

The Xlinks Morocco-UK Power Project will be a new electricity generation facility entirely powered by solar and wind energy combined with a battery storage facility. Located in Morocco’s renewable energy rich region of Guelmim Oued Noun, it will cover an approximate area of 1,500km2 and will be connected exclusively to Great Britain via 3,800km HVDC sub-sea cables.

XLCC have this mission statement on their home page.

XLCC will establish a new, export-led, green industry in the UK: world class HVDC subsea cable manufacturing.

Our mission is to provide the connectivity required for renewable power to meet future global energy needs.

Xlinks Morocco-UK Power Project and XLCC appear to be made for each other.

In some ways it takes me back to the 1970s, where large oil and gas projects in the North Sea were paired with platform building in Scottish lochs.

There Are Several Interconnector Projects Under Development

We will see a lot of undersea interconnectors in the next few years.

  • Country-to-country interconnectors
  • Interconnectors along the coast of the UK.
  • Connections to offshore wind farms.

This capacity, with a ship to lay it, is being created at the right time.

Icelink

Icelink is a proposed interconnector between Iceland and the UK.

  • It would be up to 1200 km long.
  • It would have a capacity of around 1 GW

XLCC could spur the development of this project.

Floating Wind Farms Hundreds Of Miles Out To Sea

The developer of a floating wind farm, say a hundred miles out to sea, is not going to develop it, if there isn’t a secure supply of cable.

Where Will Finance Come From?

Wind farms have proven to be good investments for finance giants such as Aviva.

See World’s Largest Wind Farm Attracts Huge Backing From Insurance Giant, for Aviva’s philosophy.

As mathematical modelling for electrical systems get better, the estimates of the finance needed and the returns to be made, will indicate whether these mega-projects can be funded.

It was done with North Sea oil and gas and it can be done with offshore wind power and its interconnectors.

In The Times on the 4th of July 2022, there is this article, which is entitled Schroders Chief Buzzing To Take Finance Offshore Wind Farms.

It is a must-read!

Conclusion

XLCC and its cable factory will spur the expansion of zero-carbon electricity in the UK.

July 3, 2022 Posted by | Energy | , , , , , , , , , , , | 3 Comments

MacHairWind Wind Farm

MachairWind wind farm has its own page on the ScottishPower Renewables web site.

These are the two introductory paragraphs.

The MacHairWind project off the coast of Islay, which could deliver 2GW of cleaner renewable energy, will make a significant contribution to tackling climate change and achieving Net Zero, with the potential to generate enough clean electricity to power over 2 million homes in Scotland.

It will also build on ScottishPower’s long-standing presence and positive track record of investing in and working with local communities and businesses across Argyll & Bute to realise the benefits of renewable energy developments.

This Google Map shows the area of the wind farm, which is to the North West of the island of Islay.

Note.

  1. There certainly is a large space of empty sea to the North-West of Islay.
  2. Glasgow is not far away.

This second Google Map shows the area to the North-East of Islay.

Note.

Wikipedia says this about the relationship of the Cruachan power station and Hunterston’s nuclear stations.

Construction began in 1959 to coincide with the Hunterston A nuclear power station in Ayrshire. Cruachan uses cheap off-peak electricity generated at night to pump water to the higher reservoir, which can then be released during the day to provide power as necessary.

Now that the two nuclear stations are being decommissioned, will the MacHairWind wind farm be used to pump water to Cruachan’s higher reservoir?

Conclusion

The MacHairWind wind farm seems a well-positioned wind farm.

  • It is close to Glasgow.
  • It can be used in tandem with the Cruachan pumped hydro power station.
  • It will have access to the Western HVDC Link to send power to the North-West of England.

Is Scotland replacing the 1.2 GW Hunterston B nuclear power station with a 2 GW wind farm, with help from Cruachan and other proposed pumped storage hydro schemes to the North of Glasgow?

It also looks like increasing the power at Cruachan from the current 440 MW to a GW, by the building of Cruachan 2 would give the area even more energy security.

 

March 23, 2022 Posted by | Energy, Energy Storage | , , , , , , , | 4 Comments

Amp Wins Consent For 800MW Scots Battery Complex

The title of this post, is the same as that of this article on renews.biz.

These are the first two paragraphs.

Canadian storage player Amp Energy has revealed that its 800MW battery portfolio in Scotland has secured planning consent.

The portfolio is due to be operational in April 2024 and will comprise two 400MW battery facilities, each providing 800 megawatt-hours of energy storage capacity.

Some other points from the article.

  • The two facilities will be located at Hunterston and Kincardine.
  • They will be the two  largest grid-connected battery storage facilities in Europe.
  • The two batteries will be optimised by Amp Energy‘s proprietary software.

This Google Map shows the Hunterston area.

Note.

  1. The Hunterston A and Hunterston B nuclear power stations, which are both being decommissioned.
  2. Hunterston B only shut down on the 7th of January, this year.
  3. There is also a large brownfield site in the North-East corner of the map.

This second Google Map shows the South-East corner of the nuclear power station site.

It’s certainly got a good grid connection.

But then it had to support.

  • The Hunterston A nuclear power station rated at 360 MW.
  • The Hunterston B nuclear power station rated at 1.2 GW.
  • The Western HVDC Link, which is an interconnector to Connah’s Quay in North Wales, that is rated at 2.2 GW.

I’m sure that National Grid has a suitable socket for a 400 MW battery.

This Google Map shows the Kincardine area.

Note.

  1. The Clackmannanshire Bridge down the Western side of the map.
  2. The Kincardine Substation to the East of the bridge close to the shore of the River Forth.
  3. The 760 MW Kincardine power station used to be by the substation, but was demolished by 2001.

As at Hunterston, I’m sure that National Grid could find a suitable socket for a 400 MW battery.

Amp Energy’s Philosophy

As a trained Control Engineer I like it.

  • Find a well-connected site, that can handle upwards of 400 MW in and out.
  • Put in a 800 MWh battery, that can handle 400 MW in and out.
  • Optimise the battery, so that it stores and supplies electricity as appropriate.
  • Throw in a bit of artificial intelligence.

Old power station sites would seem an ideal place to site a battery. Especially, as many demolished coal, gas and nuclear stations are around 400-600 MW.

It should be noted that Highview Power are building a 50 MW/400 MWh CRYOBattery on an old coal-fired power station site in Vermont.

The Western HVDC Link

I mentioned earlier that the Northern end of the Western HVDC Link, is at Hunterston.

The Wikipedia entry for the Western HVDC Link, says this about the link.

The Western HVDC Link is a high-voltage direct current (HVDC) undersea electrical link in the United Kingdom, between Hunterston in Western Scotland and Flintshire Bridge (Connah’s Quay) in North Wales, routed to the west of the Isle of Man.[2] It has a transmission capacity of 2,250 MW and became fully operational in 2019.

The link is 262 miles long.

This Google Map shows the Connah’s Quay area in North Wales.

Note.

  1. The red arrow indicates the Flintshire Bridge HVDC converter station, which is the Southern end of the Western HVDC Link.
  2. The Borderlands Line between Liverpool and Chester, runs North-South to the East of the convertor station.
  3. To the East of the railway are two solar farms. The Northern one is Shotwick Solar Park, which at 72 MW is the largest solar farm in the UK.
  4. To the West of the converter station, just to the East of the A 548 road, is the 498 MW Deeside power station.
  5. Follow the A548 road to the West and over the River Dee, the road passes South of the 1420 MW Connah’s Quay Power station.
  6. The two power stations burn gas from Liverpool Bay.
  7. There are a lot of wind turbines along the North Wales Coast and Liverpool Bay.

The map also shows a lot of high electricity users like Tata Steel.

I can certainly see why the Western HVDC Link was built to connect Scotland and North Wales.

  • There is a lot of renewable energy generation at both ends.
  • There are heavy electricity users at both ends.
  • The Scottish Central Belt is at the North.
  • Greater Merseyside is at the South.

The Western HVDC Link is an electricity by-pass, that must have avoided expensive and controversial construction on land.

I wouldn’t be surprised to see another 400 MW/800 MWh battery at the Southern end.

Conclusion

The Canadians seem to have bagged two of the best battery sites in Europe.

  • Both sites would appear to be able to handle 400 MW, based on past capabilities.
  • There is lots of space and extra and/or bigger batteries can probably be connected.
  • Scotland is developing several GW of wind power.

I can see Amp Energy building a series of these 400 MW sites in the UK and around Europe.

This is the big news of the day!

 

January 26, 2022 Posted by | Energy, Energy Storage | , , , , , , , , , | 1 Comment