The Anonymous Widower

Nuclear Deal Gives Rolls-Royce £2.5bn Boost

The title of this post, is the same as that of this article on The Times.

This is the sub-heading.

UK engineers selected to build a fleet of mini-nuclear power plants in the Czech Republic

These are the first two introductory paragraphs.

Almost £2.5 billion was added to the market value of Rolls-Royce after it was selected to build a fleet of mini-nuclear power plants in the Czech Republic, the first deal of its kind in Europe.

Rolls was selected as the preferred supplier for the development and construction of a number of small modular reactors by the Czech government from a shortlist of seven companies. The exact number of SMRs due to be delivered will be announced in the next few weeks.

Strangely, despite the announcement having a positive movement on the company’s share price, there was no corporate press release. but the Rolls-Royce subsidiary; Rolls Royce SMR did publish this press release, which is entitled Rolls-Royce SMR Named As Preferred Supplier To Build In Czechia.

These four paragraphs are the complete release.

Rolls-Royce SMR CEO, Chris Cholerton, said: “We welcome today’s landmark announcement by the Government of the Czech Republic and the Czech State utility, ČEZ Group, naming Rolls-Royce SMR as their preferred supplier for the development and construction of Small Modular Reactors (SMRs).

“This decision, to select Rolls-Royce SMR from a list of seven potential SMR technology providers, follows a rigorous evaluation process by ČEZ Group. Discussions are ongoing to finalise contract terms and the final agreements are subject to customary regulatory clearances. Details of the agreement will be published at signing.

“This important strategic partnership further strengthens Rolls-Royce SMR’s position as Europe’s leading SMR technology, and will put CEZ, Rolls-Royce SMR and its existing shareholders at the forefront of SMR deployment.

“Rolls-Royce SMRs will be a source of clean, affordable, reliable electricity for Czechia – creating jobs, enabling decarbonisation, reducing the reliance on imported energy and supporting the global effort to reach net zero.”

These are my thoughts.

Rolls-Royce And Small Nuclear Reactors

The Wikipedia entry for Rolls-Royce Submarines, who build the nuclear engines for submarines, indicates that the subsidiary was formed in 1954.

The first nuclear submarine with a Rolls-Royce engine was HMS Valiant, which was commissioned in 1966, according to its Wikipedia entry.

Valiant was powered, until it was decommissioned in 1994, by a Rolls-Royce PWR or Pressurised Water Reactor, that is described in this Wikipedia entry.

Since Valiant, the UK has built nearly forty nuclear submarines for the Royal Navy, and all have been or will be powered by that original Rolls-Royce PWR or derivatives of the design.

The next nuclear submarine project for Rolls-Royce Submarines, will be the nuclear power unit for the SSN-AUKUS, which is described in this Wikipedia entry, which describes the submarine like this in the first paragraph.

The SSN-AUKUS, also known as the SSN-A, is a planned class of nuclear-powered fleet submarine (SSN) intended to enter service with the United Kingdom’s Royal Navy in the late 2030s and Royal Australian Navy in the early 2040s. The class will replace the UK’s Astute-class and Australia’s Collins-class submarines.

The Wikipedia entry for the Rolls-Royce PWR, says this about the power unit for the SSN-AUKUS.

Rolls Royce is building the reactor for SSN-AUKUS, which may be the PWR3, or a derivative.

The PWR3 is the latest version of the original 1966 design.

If you fly on the latest Airbus A350, the aircraft is powered by Rolls-Royce Trent XWB engines, which are the most powerful engines in the Trent family of turbofan engines.

The Trent engine was developed from the RB-211 engine of the 1960s. The RB-211 may have bankrupted the company, but it later provided the cash-flow for the world-class company we see today.

I don’t think Rolls-Royce need have any fears about using sixty years of nuclear reactor technology to build the Rolls-Royce SMR.

Rolls-Royce And The US Department Of Defense Nuclear Microreactor Program

I discuss this in Rolls-Royce To Play Key Role In US Department Of Defense Nuclear Microreactor Program.

Surely to be involved in a key US program, Rolls-Royce’s offering must be tip-top.

Will The Czechs Play Any Part In The Manufacture?

This article in the Financial Times, is entitled Rolls-Royce Wins Pioneering Deal To Build Mini Nuclear pPlants In Czech Republic.

A paragraph sounds very much like active participation to me.

Between the Two World Wars, Skoda Works in Czechoslovakia, was according to its Wikipedia entry, was one of the largest European industrial conglomerates of the 20th century.

This paragraph from the Wikipedia entry describes their history after the First World War.

By World War I, Škoda Works had become the largest arms manufacturer in Austria-Hungary, supplying the Austro-Hungarian army with mountain guns, mortars and machine guns, including the Škoda M1909, and the ships of the Austro-Hungarian navy with heavy guns. After the end of the war and the creation of the First Czechoslovak Republic, the company, previously focused on manufacturing of armaments, diversified and became a major manufacturer of locomotives, aircraft, ships, machine tools, steam turbines, equipment for power utilities, among other industrial products.

The company sounded just like a Czechoslovakian version of Vickers.

I believe that as a teenager, I heard a story, that the armour plate for the British battleship; Duke of York, was smuggled out of Czechoslovakia, under the noses of the Nazis. I can’t find the story on the Internet, but Czech armour seemed to be of high quality, between the two wars.

This paragraph from the Wikipedia entry describes the history of Skoda Works after World War II.

After World War II, Škoda Works was nationalized and split into several companies by the newly communist government in Czechoslovakia. Important products during the Communist era include nuclear reactors and trolley buses.

I don’t think they made nuclear trolley buses, but they might have had the capability.

What happened to the knowledge about all the steelworking needed to make nuclear reactors?

This further paragraph gives an indication. that lack of modern designs killed the business.

The factory concentrated on markets in the Soviet Union and the Eastern Bloc. The company produced a wide range of heavy machinery such as nuclear reactors and locomotives. A lack of updates to its product designs and infrastructure considerably weakened the company’s competitive position and its brand.

Note.

  1. Can Rolls-Royce and their partner; The Welding Institute (TWI), provide modern designs and techniques to build the parts of reactors for modern SMRs in Czechia?
  2. The Welding Institute, which is based just outside of Cambridge, describes themselves as the leading engineering institution supporting welding and joining professionals with welding, joining and allied technologies.
  3. Czechia is also in the heart of Europe and components would be easily shipped by rail or road to European construction sites.
  4. Wikipedia also says that a lot of post-Soviet trams and trolley busses, were made by Skoda, so the same must count for something.

There will be much worse places to build components for SMRs than Czechia.

Will The Czechs Help With The Soviet Reactors?

If the Czechs built the reactors, they will have a lot of answers about things like.

  • Where the Soviet reactors are?
  • When will the Soviet reactors need replacing?
  • How were they transported?
  • How were they assembled?
  • What will be the difficult parts to take apart?

Choosing the Czechs for their knowledge as partners seems a good idea.

Conclusion

The Czechs would appear to be good partners for Rolls-Royce.

 

September 22, 2024 Posted by | Energy | , , , , , , , , , , | 2 Comments

Would You Buy A Battery Energy Storage System From Rolls-Royce?

I don’t often click on adverts that appear in web pages.

But I had to click on one from Rolls-Royce mtu, which advertised Battery Energy Storage Systems.

I wonder what the Honourable Charles Rolls would have thought of adverts on the Internet for the company he jointly founded?

I suspect he would have liked the idea, as Rolls was very much a promoter of motoring and aviation and opened one of the first car dealerships in the UK, according to his Wikipedia entry.

The Wikipedia entry for his business partner; Sir Henry Royce starts with this sentence.

Sir Frederick Henry Royce, 1st Baronet, OBE (27 March 1863 – 22 April 1933) was an English engineer famous for his designs of car and aeroplane engines with a reputation for reliability and longevity.

He is also described as a perfectionist.

This sentence from the Wikipedia entry, describes how he started the design of the legendary “R” engine.

In October 1928, he began design of the “R” engine while walking with some of his leading engineers on the beach at West Wittering, sketching ideas in the sand. Less than a year later, the “R” engine, designed in his studio in the village, set a new world air speed record of 357.7 miles per hour and won the Schneider Trophy of 1929.

Later with help from the maddest person my father ever met (his words, not mine!) ; Lady Houston, the Supermarine S.6B won the trophy in 1931 and then broke the world speed record at over 400 mph. Not bad for a seaplane. Take the floats off an S.6B and you almost have a Spitfire.

The Wikipedia entry also describes how the “R” engine was developed into what many engineers believe was the finest internal combustion engine of all time; the Rolls-Royce Merlin.

Following the success of the “R” engine, it was clear that they had an engine that would be of use to the Royal Air Force. As no Government assistance was forthcoming at first, in the national interest they went ahead with development of what was called the “PV-12” engine (standing for Private Venture, 12-cylinder). The idea was to produce an engine of about the same performance as the “R”, albeit with a much longer life. Rolls-Royce launched the PV-12 in October 1933 and the engine completed its first test in 1934, the year after Royce died. The PV-12 became the Rolls-Royce Merlin engine.

Where would we have been in the Battle of Britain without the Merlin engine?

Since 1969, the engineers at Rolls-Royce have followed Sir Henry’s example of perfection and developed the revolutionary RB-211 into the modern day Trent, which is now about to take a big leap into a low-carbon future with the UltraFan.

If the quality of Rolls-Royce mtu’s Battery Energy Storage System matches the levels of perfection Rolls-Royce achieved with the Merlin and the Trent, then I suspect that Sir Henry would have given his approval.

This picture is shown on the web page for the Battery Energy Storage System.

These two paragraphs introduce, what Rolls-Royce mtu are calling the mtuEnergyPack.

In today’s world of economic growth and increasing populations, the demand for electricity is soaring. Governments and industries globally shift to distributed renewable energy, challenging centralized grids. To adapt to this changing energy landscape, the mtuEnergyPack offers an ideal solution.

It integrates renewable sources like solar and wind power, paving the way for future-ready sustainable power systems. The mtu EnergyPack is a scalable, all-in-one solution for autonomous off-grid facilities. It ensures reliable power through peak shaving, load-shifting, and grid stabilization, making it suitable for various applications.

These are my thoughts.

What Is The Output And The Storage Capacity?

This paragraph on this page gives this answer.

It efficiently stores electricity from distributed sources and delivers on demand. The mtu EnergyPack is available in different sizes: The QS and the QL, ranging from 200 kVA to 2,000 kVA, and from 312 kWh to 2,084 kWh, and the QG for grid scale storage needs, ranging from 4,400 kVA and 4,470 kWh to virtually any size.

It seems that you specify your requirements and Rolls-Royce mtu should be able to satisfy it.

What Devices Can Be Connected?

This paragraph on this page gives this answer.

The mtu EnergyPack serves as a key component in enhancing the reliability and profitability of microgrids and energy systems. It stores electricity generated by distributed power sources, including gensets, wind turbines, or solar panels, and delivers it when needed.

In the 1970s, when I was working at ICI, others in the section were working on a system called MEDIA, where every sensor on a chemical plant was connected to the central computer, through its own analog-to-digital computer. It would now be called plug-and-play by some.

I believe that Rolls-Royce mtu are using similar ideas to connect equipment to the control computer.

These are my thoughts about connecting various equipment.

I don’t see why every device can’t work to the same protocol.

What Is The Power Density Like?

This paragraph on this page gives this answer.

The mtu EnergyPack’s compact battery system designs suit projects with limited space and logistical restrictions.

In ‘Spirit of Innovation’ Stakes Claim To Be The World’s Fastest All-Electric Vehicle, I talked about Rolls-Royce’s record-breaking electric plane called Spirit of Innovation.

Has what has been learned about energy storage in the confined spaces of an aeroplane been applied to a Battery Energy Storage System?

What Do Rolls-Royce mtu Consider To Be Important Features?

On this page, they list these features.

  • Power Density
  • Digitally Connected
  • Multilevel Safety
  • Black Start Capability
  • Scalability
  • Ultra-Fast Response
  • Flexible Use
  • Plug-And-Play Installation

The design seems to have everything covered.

Can Similar Systems Be Designed By Others?

I would expect that similar systems can be designed, as technology like batteries is available to all and the operation is only as good as the software controlling the various components of the system.

But similar systems will be without the famous Rolls-Royce logo.

Could One Of These Systems Decarbonise A Village?

I once lived in a village with about fifty houses and perhaps a hundred inhabitants.

I suspect an mtuEnergyPack could control all these inputs and provide the village with the following.

  • Enough electricity to power all the needs of the inhabitants, businesses and their vehicles.
  • If an electrolyser were to be provided, it could probably produce enough hydrogen to power every boiler and hydrogen-powered vehicle.

Note.

  1. Farmers would like the local availability of hydrogen, as it will be ideal for tractors and agricultural machinery.
  2. I actually believe that if a village had a reliable and affordable hydrogen supply, that a large proportion of the inhabitants would switch to hydrogen-powered vehicles.

There would still be the National Grid there for backup.

Conclusion

If I needed an mtuEnergyPack, I’d certainly give one a close look.

December 22, 2023 Posted by | Computing, Design, Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , | 4 Comments

Rolls-Royce Announces Successful Run Of UltraFan Technology Demonstrator To Maximum Power

The title of this post, is the same as that of this press release from Rolls-Royce.

This is the sub-heading.

Rolls-Royce today announces it has successfully run its UltraFan® technology demonstrator to maximum power at its facility in Derby, UK. The initial stage of the test was conducted using 100% Sustainable Aviation Fuel (SAF).

These are the first four paragraphs.

This is an important milestone for the UltraFan demonstrator, which was successfully tested for the first time earlier this year. Since then, the UltraFan team has been gradually increasing the power as part of the rigorous testing regime and the demonstrator has performed in line with our expectations. The results of the test will provide us with valuable learning and data, which our teams will now take away and continue to analyse.

This achievement reinforces our confidence in the suite of technologies that has been developed as part of the UltraFan programme. Confirming this capability is a big step towards improving the efficiency of current and future aero-engines as UltraFan delivers a 10% efficiency improvement over our Trent XWB, which is already the world’s most efficient large aero-engine in service. In total that’s a 25% efficiency gain since the launch of the first Trent engine.

UltraFan’s scalable technology from ~25,000-110,000lb thrust also offers the potential to power the new narrowbody and widebody aircraft anticipated in the 2030s.

As part of the UltraFan development programme we have identified a number of technologies that are potentially transferable to our current Trent engines, which will provide our customers with even greater availability, reliability and efficiency.

These are my thoughts.

What Is UltraFan?

UltraFan has a section in the Wikipedia entry for the Rolls-Royce Trent engine, where these are the two opening paragraphs.

After the Advance comes the UltraFan, initially aimed to be ready for service from 2025. A geared turbofan with a variable pitch fan system that promises at least 25% improvement in fuel burn, the UltraFan aims for a 15:1 bypass ratio and 70:1 overall pressure ratio.

The Ultrafan keeps the Advance core, but also contains a geared turbofan architecture with variable-pitch fan blades. As the fan will vary pitch to be optimised for each flight phase, it won’t need a thrust reverser. Rolls-Royce will use carbon composite fan blades instead of its usual hollow titanium blades, and along with new material adoption will save 340 kg (750 lb) per engine.

This is a bit different from previous engines.

Variable-Pitch Fan Blades

Variable Pitch Fan has its own Wikipedia entry, where these are the two opening paragraphs.

A variable pitch fan is similar in concept to that of a variable-pitch propeller and involves progressively reducing the pitch (or blade angle) of the fan on a turbofan as the engine is throttled. Although variable pitch fans are used in some industrial applications, the focus of this article is on their use in turbofan engines. No production engine uses such a feature; however, it will likely be required on at least some of the next generation of high bypass ratio turbofans.

One of the methods used to reduce Thrust-specific fuel consumption is to improve Propulsive Efficiency. This involves reducing the effective jet velocity of the engine by reducing specific thrust. This, in turn, reduces the optimum fan pressure ratio required and consequently the cold nozzle pressure ratio. At cruise flight speeds the nozzle is choked and the fan working line is fairly steep and linear. However, at low flight speeds the ram pressure rise in the air intake is so low the nozzle is well un-choked. Consequently, the fan working line is highly curved and well to the left of the cruise flight speed working line, potentially reducing the fan surge margin to a dangerous level, particularly at lower throttle settings. Readers unfamiliar with surge lines, working lines, etc. should read the Wikipedia article on Compressor map.

The extract says that no production engine uses this feature. So will UltraFan be the first?

Variable pitch fan blades seem to offer two advantages; better efficiency and lower weight. If the reliability is acceptable, then that must be a winner.

No Thrust Reverser

This sentence is also in the Wikipedia entry for Variable Pitch Fan.

One advantage of the variable fan option is that varying the fan pitch offers the possibility of reversing engine thrust without the need for heavy blocker doors, cascades, etc.

It does look like the UltraFan will be a lighter engine, than its predecessor.

Composite Fan Blades

Composite Fan Blades were tried in the 1960s for the Rolls-Royce RB211 engine.

But they failed and were replaced by titanium blades.

At the time, I was at Liverpool University and John Wilkinson was a fellow student.

John’s father was the manager of a Tesco store in Derby.

That Tesco store had a nice line in selling out-of-date chickens and turkeys to Rolls-Royce to test the engines for bird strikes.

Improving The Engine’s Efficiency

This is the second paragraph of the press release.

This achievement reinforces our confidence in the suite of technologies that has been developed as part of the UltraFan programme. Confirming this capability is a big step towards improving the efficiency of current and future aero-engines as UltraFan delivers a 10% efficiency improvement over our Trent XWB, which is already the world’s most efficient large aero-engine in service. In total that’s a 25% efficiency gain since the launch of the first Trent engine.

Note.

  1. The Trent engine was first run in 1990 and has improved 25 % since.
  2. The Trent XWB engine was first run in 2010 and has improved 10 % since.

The increase in efficiency appears to be linear.

A Saleable Design

This is the third paragraph of the press release.

UltraFan’s scalable technology from ~25,000-110,000lb thrust also offers the potential to power the new narrowbody and widebody aircraft anticipated in the 2030s.

If that means that an UltraFan can power an aircraft as small as an A320, then that is sensational, as it will give Rolls-Royce access to the A320/Boeing 737 market, where they have virtually no sales.

UltraFan Is About A Suite Of Technologies

This is from the second paragraph of the extract.

This achievement reinforces our confidence in the suite of technologies that has been developed as part of the UltraFan programme.

And this is the fourth paragraph.

As part of the UltraFan development programme we have identified a number of technologies that are potentially transferable to our current Trent engines, which will provide our customers with even greater availability, reliability and efficiency.

As you learn more about your future project, why not apply that knowledge to current projects.

Running On SAF Is Part Of The Testing

I’m reassured that testing of the technology using Sustainable Aviation Fuel has started early in the program.

This is surely going to be the fuel, that aircraft will use until hydrogen becomes available.

Conclusion

It looks like Rolls-Royce are redefining, what a standard aero engine looks like.

  1. It will give a 10 % fuel saving over their latest engines launched thirteen years ago.
  2. The UltraFan engines will save weight and hopefully more fuel.
  3. It will allow Rolls-Royce to compete in the A320/737 market, where they have no engine at present.

I would watch the share price

 

November 13, 2023 Posted by | Hydrogen, Transport/Travel | , , , , , , , , , | 2 Comments