The Anonymous Widower

Battery-Poweed Trams To Beat Congestion

The title of this post is the same as that of an article in today’s copy of The Times.

This is the first two paragraphs.

New tram networks could be rolled out in towns and cities across England under government plans to cut congestion and pollution.

The Department for Transport said that so-called light rail systems could help “reduce dependence on private cars”. A report published yesterday said that trams could carry 20,000 passengers an hour in each direction – about four times more than buses.

It goes on to discuss battery-powered trams and their advantages.

It then discusses the future and says that funding for new tram networks could come from the £2.5billion Transforming Cities Fund.

I’ve been trying to find the report, but it doesn’t appear to be on the Department for Transport web site.

Thanks to Peter, the report is called Light Rail And Other Rapid Transit Solutions In Cities And Towns: Call For Evidence and it is on this page of the Government web site.

February 8, 2019 Posted by | Transport | , | 1 Comment

Pan Up And Pan Down At Drayton Park Station

The years and decades go by and the new Class 717 trains, just like their predecessors; the Class 313 trains, continue to change between 25 KVAC overhead and 750 VDC third rail electrification at Drayton Park station.

There appears to have been little noticeable development in the forty years since the Class 313 reains were introduced. But the operation of the Class 717 trains appears smoother and quieter.

I would have thought, that for safety reasons, the new trains would have used battery power between Drayton Park and Moorgate stations.

After all it’s only two and a half miles, that is run using third-rail electrification.

I’d be very interested to see how much power is used by the new Class 717 trains South of Drayton Park.

In Weight And Configuration Of A Class 717 Train, I showed that the kinetic energy of a jam-packed Class 717 train at 85 mph is 56.15 kWh.

  • I doubt that this sort of speed is achieved in the tunnels.
  • At 60 mph, the energy would be 28 kWh
  • At 40 mph, the energy would be just 12 kWh.

Obviously, hotel power for air-conditioning and lights will be needed for the train, but even at 5 kWh per car per mile, that would only be 150 kWh.

To carry 200 kWh of batteries on a six-car train is a very practical proposition.

  • Vivarail have done it in a three-car train.
  • There could be a short length of third-rail electrification to top up the batteries at Moorgate station, if required.
  • Battery power could be used in depots to move trains, which would mean depots could have less electrification.
  • Trains could be moved to the next station, if the electrification should fail.

The route between Moorgate and Drayton Park stations, is probably one of the best and easiest in the UK for battery operation.

January 31, 2019 Posted by | Transport | , , , , | Leave a comment

Could A Class 399 Tram-Train With Batteries Go Between Manchester Victoria And Rochdale/Bury Bolton Street/Rawtenstall Stations?

In Rossendale Reopening Prospect, I looked at a proposal to run a new service between Manchester Victoria and Bury Bolton Street stations.

Could this route be run by a Class 399 tram-train with a battery capability?

These tram-trains would be very similar to the Stadler Citylink Metro Vehicles, that have been specified for the South Wales Metro.

  • Wikipedia gives the weight of the vehicle as 66 tonnes.
  • Manchester Victoria has an altitude of 44 metres
  • Bury has an altitude of 100 metres.
  • Rochdale has an altitude of 137 metres.
  • Rawtenstall has an altitude of 174 metres.
  • I will assume 200 passengers at 90 Kg. each, which gives a weight of 12 tonnes.

Using Omni’s Potential Energy Calculator gives the following.

  • Manchester Victoria to Bury Bolton Street has an increase in potential energy of 12 kWh.
  • Manchester Victoria to Rochdale has an increase in potential energy of 20 kWh.
  • Manchester Victoria to Rawtenstall has an increase in potential energy of 28 kWh.

When you consider that a Class 230 train has 400 kWh of batteries in a two-car train, I don’t think that there will be any problem fitting batteries big enough to take a Class 399 tram-train from Manchester Victoria to Bury Bolton Street, Rochdale or Rawstenstall stations under battery power with a full load of passengers.

  • The batteries would be charged in Manchester Victoria station.
  • Returning to Manchester Victoria station would use a small amount of battery power, with some assistance from Newton’s friend; gravity.
  • The batteries would get a certain amount of charge from the regenerative braking of the tram-trains.

This Google Map shows the Eastern approaches into Manchester Victoria station.

Note.

  1. The four through platforms numbered 3 to 6.
  2. The two bay platforms numbered 1 and 2.
  3. The four platform faces and three tracks of the Metrolink.

Having seen several tram-train systems all over Europe, I believe it would be possible to connect tram-trains running on batteries on the Calder Valley Line to the Manchester Metrolink at Manchester Victoria station.

  • Going from Manchester to Bury Bolton Street, Rochdale or Rawtenstall, the tram-train would stop in the Manchester Victoria tram-stop, drop the pantograph and then continue on its way under battery power.
  • Returning from the North, the tram-train would stop in the Manchester Victoria tram-stop, raise the pantograph and then continue on its way using power from the overhead wires.
  • Batteries would be charged whilst running through Manchester.

There couldn’t be too many tram-train systems that would be easier to build than this?

It is interesting to note that Hebden Bridge station is just twenty-three miles from Manchester Victoria station and has an altitude of 190 metres.

So would it be possible for a Class 399 tram-train to reach Hebden Bridge station on battery power? I very much think it would be!

Class 399 Tram-Trains And Class 156 Trains

Class 156 trains are one of the better workhorses of the railways in the North and despite their age, they scrub up well.

If their performance is compared to that of a Class 399 tram-train, they are not that different.

  • Noise and vibration of the electric tram-train is obviously much lower.
  • The modern interior of the tram-train is geared to the needs of passengers.
  • Passenger capacity of the two vehicles is also about the same.
  • In Karlsruhe, tram-trains travel for up to 100 miles from the centre of the city.

Both Karlsruhe and Sheffield use three-car tram-trains, but Valencia uses much longer ones, so on heavily-used routes larger tram-trains could be used.

I doubt there would be many complaints, if a Class 156 service were to be replaced with one run by Class 399 tram-trains.

Electrification Of The Calder Valley Line

Electrifying the Calder Valley Line with 25 KVAC overhead wires as far as Rochdale station, would certainly make running to Hebden Bridge station possible.

  • That electrification  would also mean that electric trains could be turned-back at Rochdale station, just as diesel trains are now!
  • I have flown my helicopter along the route and it looks like of the seven or eight bridges on the route, mostly appear to be modern structures for new roads or motorways.
  • As 25 KVAC overhead electrification is currently being erected between Manchester Victoria and Stalybridge, a spur to Rochdale would be very much a simple addition.

It could be a very useful short length of electrification.

Tram-Trains In Manchester

This article on Rail Technology Magazine was puiblished yesterday and is entitled Plans For Tram-Trains In Manchester Unveiled As Grayling And Burnham Mull Expansion Of Metrolink.

Conclusion

Could we see tram-trains running from Bury Bolton Street, Hebden Bridge, Rawtenstall and Rochdale into Manchester Victoria and then taking to the existing tram network?

If you’ve ever been to Karlsruhe, as I have to see the Class 399 tram-trains German cousins, you wouldn’t rule out anything.

That would include tram-train services to Blackburn, Buxton, Chester, Glossop, Hebden Bridge, Sheffield, Southport and Wigan.

 

 

 

January 25, 2019 Posted by | Transport | , , , , , , , , , | 2 Comments

Comparing A Class 769 Train With An Alstom Breeze

Who’d have thought that two thirty-year-old British Rail-era electrical multiple units, would be fighting in the same market for bi-mode trains to replace diesel multiple units?

Class 319 Train

Class 319 trains started life as four-car dual-voltage  electrical multiple units for Thameslink and Porterbrook are now converting them into four-car electro-diesel multiple units, which have been given the TOPS classification of Class 769 trains.

Class 321 Train

Class 321 trains started life as four-car 100 mph electrical multiple units for East Anglia and Eversholt and Alstom are now converting them into hydrogen-powered multiple units, which have been given the name of Breeze.

So how does a Class 769 compare with an Alstom Breeze?

Ability To Work Using Electrification

This article on Rail Engineer, which is all about the Class 769 train, is entitled Bi-Mode Good, Tri-Mode Better.

The title says it all about the ability to work from three different power sources.

  • 25 KVAC overhead electrification
  • 750 VDC third-rail electrification
  • Onboard power from two diesel generators.

This must have impressed Great Western Railway as they’ve ordered nineteen trains.

Nothing has been directly said, about whether an Alstom Breeze can use electrification, but as the partially-electrified Liverpool to Chester route has reportedly been chosen as a test route, I would think, that the ability to use electrification is very likely.

Operating Speed

In the Rail Engineer article, this is said about the operating speed of a Class 769 train.

Modelling has shown the gradient balancing speed on a flat gradient when powered by the diesel engines to be approximately 87 mph and the trains will retain the 100 mph capability when powered by electricity.

Alstom are claiming 87 mph on hydrogen power.

Operational Range

My brochure for a Class 769 train, says this about the operational range of the train.

Class 769 could operate the route between Manchester and Buxton and achieve timings equal to a Class 150. The Class 769 unit would have the capacity to make five return trips per day for two days before refuelling is required.

This is a total of about 540 km on a route, which climbs three hundred metres with twelve stops.

Alstom quote the Breeze as having a range of a thousand km. But over what sort of terrain!

This doesn’t appear to be an equal comparison.

So perhaps the Buxton trials should be undertaken!

Refuelling

The Class 769 train runs partially on diesel fuel, which makes the train easy to refuel.

The Alstom Breeze needs a hydrogen supply, which can either be sourced from a piped or tanked supply or a local hydrogen generator.

I believe that as Alstom are going down the hydrogen route, at least on a Europe-wide basis, that the provision of hydrogen, will not be a large problem.

Passenger Capacity

When they were built, I suspect that as both trains had a lot of 2+3 seating, that the capacity of both trains was very similar.

My brochure for a Class 769 train shows a suggested layout with 12 First Class seats, 255 Standard Class seats and a Universal Access Toilet.

In Hydrogen Trains Ready To Steam Ahead, I estimated that a three-car Alstom Breeze would have a seating capacity of around 140 seats, with the ability to perhaps take an additional 160 standees.

I also believe that longer versions of Alstom Breezes are possible, with the addition of trailer cars. I estimate capacities, which would include standees could be.

  • Four-car – 450 passengers
  • Five-car – 600 passengers

Both Class 769 trains and Alstom Breezes would appear to have sufficient capacity for typical routes.

Noise Signature

I have not heard either train in action, as neither is in service yet.

This article on Rail Engineer is entitled Class 769 In Action.

This is an extract talking about the noise and vibration of a Class 769 train.

There was no need to worry; just walking through the car park with the train alongside was a revelation. The two idling MAN diesel engines were almost purring; none of the ‘rattling’ that one is used to from older diesels and no visible exhaust either. A conversation at normal volume was easily possible, sitting on the benches outside the café just four metres away from the train.

As to the Alstom Breeze, it is likely to be a near-silent train, if my rides in battery-powered trains are anything to go by.

Carbon Footprint

The Alstom Breeze has a zero carbon footprint, whereas the Class 769 train will produce some carbon dioxide, as it’s partially diesel-powered.

The Alstom Breeze has the possibility of running using hydrogen produced by a zero carbon method, such as the electrolysis of water or brine using electricity from a renewable source such as geothermal, solar, water or wind power.

Recycling Credentials

Both trains effectively recycle existing trains, that would otherwise be scrapped or sold off to an operator in the Developing World.

Conclusion On Comparison

Both trains have their good points and both should find a niche market in the UK, as the Class 769 train already has with four orders for a total of thirty-nine trains.

The Future

In addition, the Alstom Breeze is a demonstrator for the company’s hydrogen technology in a train for a UK-sized rail network.

I would not be surprised, if the Breeze is successful, to see Alstom develop a family of trains based on the technology.

They would have the following characteristics.

  • Flexible length and capacity.
  • Modern aluminium construction.
  • Modern well-designed interiors with everything passengers, operators and staff want and need.
  • 100 mph on hydrogen and electrification
  • Efficient hydrogen generation and refuelling stations
  • Availability in various gauges.

I can also envisage a complete package being offered to railways in a country like Ireland or New Zealand, to run hydrogen-powered trains on a route that is currently not electrified.

By good design, I feel that the only difference between standard, Irish and narrow gauge versions would be a change of bogie.

The Gazelle In The Wings

Bombardier are proposing a 125 mph bi-mode Aventra, which I talked about in Bombardier Bi-Mode Aventra To Feature Battery Power.

Bombardier obviously have extensive mathematical models of the Aventra and just as this has led to a 125 mph bi-mode Aventra, I believe that if it is possible, Bombardier will propose a bi-mode train with the following characteristics.

  • Flexible length and capacity.
  • Small diesel engine and batteries
  • 100 mph on both diesel and electric power.
  • Level floor
  • Almost silent operation.

There will be plenty of applications for this bi-mode train.

It is interesting to note, that Bombardier have dismissed hydrogen as a fuel.

Could it be, that their modelling has shown, that the large tanks for hydrogen make a new-build hydrogen-powered bi-mode train an unviable proposition?

Diesel on the other hand is a much more convenient fuel.

Conclusion

It is going to be an interesting fight between, diesel and hydrogen bi-modes to determine the future of the rail industry.

It is a tribute to the much-maligned British Rail, that the first major battle between the two fuels is being fought using rebuilt thirty-year-old trains built by British Rail Egineering Limited.

Which fuel will win?

Some applications will be ideal for hydrogen and others will need diesel.

But as battery technology improves and electrification increases, it is likely that the need for hydrogen and diesel will decrease.

 

January 13, 2019 Posted by | Transport | , , , , , , | Leave a comment

The Combined Car Park And Storage Battery

I don’t drive these days, but I did for well over forty years.

If I was still driving now and still lived in Suffolk, I’d be looking seriously at an electric car as an everyday runabout, as rarely in the last twenty years, have I had the need to do a long journey, that I couldn’t do by train.

So my electric car would probably sit in a car park space at Cambridge North station, attached to a charger, a lot of the time. But with better batteries and vehicle-to-grid systems, there will come a time, when you will park your battery vehicle and tell it you’ll be returning in a few hours or days and you’ll need say four hours of charge on return. Obviously, if your circumstances change, you will have an app on your phone to make adjustments.

Suppose your average car had a 30 kWh battery, this would mean that the 450 space car park at Cambridge North station, if say 300 spaces were for electric cars would have a electricity storage capacity of around 0.9MWh.

So if the wind wasn’t blowing or the sun wasn’t shining, then there’s probably about half a MWh of electricity that can be borrowed and still allow drivers to get home.

It may all sound terribly complicated, but electricity put into batteries at night or other quiet times, gets used when it’s needed.

Batteries and other forms of energy storage will be everywhere; in houses, offices, public buildings, wind and solar farms, and in every electric vehicle.

There are 31.,6million cars alone in the UK and how many are quietly sitting in car parks and garages or at the side of the street, for most of the day.

The Car Park As A Power Station

There will be multi-story car-parks reserved for electric cars.

  • Each parking space will have a charging point.
  • The roof will of course have solar panels.
  • I would expect that in a few years time the connection between car and charger will be automatic.
  • The parking charge would be based on a mixture of time parked and energy passed to or from the battery.
  • Car parks would probably also be paid by National Grid dependent on how much energy they can make available automatically.

The control system for all this lot, would do my head in! But it would mean that all generated energy was either used or stored!

In some ways a car pack for electric cars would become a small power station.

Examples Of Car Parks

These car-parks would have some interesting applications.

Airports

Airports like Heathrow have a pollution problem and it’s not just the planes, but masses of diesel and petrol vehicles.

  • To encourage more passengers to drive electric vehicles to an airport, why not make the closest car parks electric car only?
  • Long-term car parks for electric vehicles could be a massive storage battery, which would be used to help power the airport.
  • Car parks for electric cars would be less polluted.
  • Car parks for electric cars could be under the ground with runways and taxiways on top.

Everyone would be a winner.

  • Passengers’ electric cars would be earning an energy storage charge from the National Grid.
  • The Airport would have a reliable back-up power source.
  • There would be much less pollution at the Airport.
  • National Grid would gain additional much-needed energy storage.

There will be a lot of thought going in to making airport parking more efficient and affordable for electric cars.

Business Parks And Offices

Much of the logic for airports would apply.

But I do feel, that companies with medium and large-sized fleets of vehicles will go electric, as they can then integrate energy management across their premises and fleet.

Town And City Centres

Towns and cities with a pollution problem like London, will surely use the best car parks as bribes to get more electric vehicles into the centre.

Residential Developments

The mind boggles at what could be done in residential developments.

  • Cars could go to and from parking automatically.
  • Every house would come with energy storage plus that in the car.
  • The development would appear car-free.
  • Cars could be in shared ownership with the development.
  • There could be automatic trolleys running through the development delivering parcels.

The market will determine what is needed.

Conclusion

Creating car parks solely for electric cars will create energy storage units at points of employment, living, shopping and transport.

January 6, 2019 Posted by | Transport, Uncategorized | , , , , | Leave a comment

Axed Rail Routes May Be Reopened Under New Department for Transport Plans

The title of this post is the same as that on this article on Sky News.

This is the first two paragraphs.

The Department for Transport has confirmed it is actively working with a number of groups to explore the possibility of reopening old rail routes, axed under the so-called Beeching cuts of the 1960s.

It follows a call by Transport Secretary Chris Grayling a year ago, encouraging those in the public and private sector to submit proposals for potential projects to regenerate old lines.

It also quotes a Department of Transport spokesman.

This is on top of exploring reopening the Northumberland Line for passenger use, supporting the reinstatement of stations on the Camp Hill Line, developing new rail links to Heathrow and a new station at Cambridge South

He apparently, didn’t say more because of confidentiality.

The article then talks about the success of the Borders Railway in Scotland.

So is this just a good news story for Christmas or is there a plan to reopen old railway lines?

I feel that a several factors are coming together, that make the reopening of railway lines and the creation of new ones more likely.

Digital Signalling

Signalling is expensive, but where you have rolling stock to a high modern standard, with digital in-cab signalling, does this mean that new or reopened rail lines can be built without conventional signalling?

In addition, installing digital signalling on some routes, would probably make it easier to add a new station. Surely, it must just be a reprogramming of the route!

It could be a problem that, I would expect that on a digitally-signalled line, all trains must be capable of using it. But in many areas of the country, like East Anglia, these routes will be run by new trains.

Digital signalling must also make it easier to design more efficient single-track railways, with perhaps a passing loop to allow higher frequencies.

More Efficient Track Construction

Network Rail and their contractors and suppliers are getting better and more efficient at building track and bridges through difficult terrain and places, judging by some of their construction in recent years, such as the Acton Dive-Under and the Ordsall Chord. They have also overseen some notable successes in the refurbishment of viaducts and tunnels.

It should also be noted that the reopening of the Borders Railway was a successful project in terms of the engineering and was completed on budget and on time.

According to Wikipedia, though there was criticism of the infrastructure.

This is said.

The line’s construction has been described as resembling a “basic railway” built to a tight budget and incorporating a number of cost-saving features, such as using elderly two-carriage diesel trains and running the line as single track.

But looking back on the line from over three years since it opened, it has certainly been judged by many to be an undoubted success.

Would it have had the same level of success, if it had been built as a double-track electrified railway?

Single-Track Lines

The Borders Railway is a good example of an efficient single-track railway, that runs a half-hourly service.

Other routes like the East Suffolk Line and the Felixstowe Branch Line, show how good design can handle more than the most basic levels of traffic, with perhaps selective double track or a well-placed passing loop.

They may be dismissed by rail purists as basic railways, but when well-designed, they are able to provide the service that is needed along the route, for a construction cost that is affordable.

I would though advocate, that if a new single-track railway is built, that provision is made where possible to be able to add the second track. But not at too great an expense or to provide a service level that will never be needed.

I believe that good design of a new railway can cut the construction cost by a fair amount.

Single-Platform Stations

Several of the new stations built in recent years have been stations with only a single-platform.

  • Cranbrook – A station in Devon on the West of England Main Line to serve a new housing development.
  • Ebbw Vale Parkway – A parkway station in Ebbw Vale.
  • Galashiels – A station, that handled 356,000 passengers last year. It is a unique station on a narrow site, that shares facilities with a large bus station on the other side of the road. It is a very functional transport interchange.
  • James Cook – A basic but practical station, that serves the hospital in Middlesbrough. – It cost just over £2million in 2014.
  • Newcourt – A £4million station handling over 100,000 passengers per year.
  • Pye Corner – A basic station in Newport handling nearly 100,000 passengers per year.

The stations have several common characteristics.

  • They can all handle at least a four-car train.
  • The single-platform is used for services in both directions.
  • Disabled access is either level or by a gently-sloping ramp.

Only James Cook station has a footbridge over the track.

These single-platform stations must cost less, as for instance a footbridge with lifts costs upwards of a million pounds.

Note that of the nine stations on the Borders Railway only three have two platforms.

Single-Platform Terminal Stations

There are also several terminal stations in the UK with only one platform.

  • Aberdare – Handling over 500,000 passengers per year.
  • Aberystwyth – Handling around 300,000 passengers per year.
  • Alloa – Handling around 400,000 passengers per year.
  • Aylesbury Vale Parkway – Handling over 100,000 passengers per year.
  • Blackpool South – Handling over 100,000 passengers per year.
  • Exmouth – Handling nearly a million passengers per year.
  • Felixstowe – Handling around 200,000 passengers per year.
  • Henley-on-Thames – Handling around 800,000 passengers per year.
  • Marlow – Handling nearly 300,000 passengers per year.
  • Merthyr Tydfil – Handling around 500,000 passengers per year.
  • North Berwick – Handling around 600,000 passengers per year.
  • Redditch– Handling over a million passengers per year.
  • Seaford – Handling over 500,000 passengers per year.
  • Shepperton – Handling around 400,000 passengers per year.
  • Sheringham – Handling around 200,000 passengers per year.
  • Walton-on-the-Naze – Handing around 130,000 passengers per year
  • Windsor & Eton Central – Handling nearly two million passengers per year.

Many of these stations have only a single hourly train. whereas Redditch and Windsor & Eton Central stations have three trains per hour (tph).

As a single terminal platform can probably handle four tph, I suspect that most terminals for branch lines could be built with just a single platform.

No Electrification

Chris Grayling has said that the East West Rail Link will be built without electrification.

I wasn’t surprised.

  • Network Rail has a very poor performance in installing electrification.
  • There have been complaints about the visual intrusion of the overhead gantries.
  • Electrification can cause major disruption to road traffic during installation, as bridges over the railway have to be raised.

In addition, I’ve been following alternative forms of low- or zero-carbon forms of train and feel they could offer a viable alternative

Bi-Mode, Hydrogen And Battery-Electric Trains

When the Borders Railway was reopened, unless the line had been electrified, it had to be run using diesel trains.

But in the intervening three years, rolling stock has developed and now a new or reopened railway doesn’t have to be electrified to be substantially served by electric trains.

  • Bi-Mode trains are able to run on both diesel and electric power and Hitachi’s Class 800 trains are successfully in service. They will be shortly joined by Porterbrook’s innovative Class 769 trains.
  • Hydrogen-powered trains have already entered service in Germany and they are being developed for the UK.
  • Battery-electric trains have already been successfully demonstrated in the UK and will enter service in the next few years.

All of these types of train, will be able to run on a new railway line without electrification.

Bi-mode trains are only low-carbon on non-electrified lines, whereas the other trains are zero-carbon.

The trains on the Borders Railway must be prime candidates for replacement with hydrogen-powered or battery-electric trains.

Adding It All Up

Adding up the factors I have covered in this section leads me to conclude that rail developments over the last few years have made it possible to create a new railway line with the following characteristics.

  • An efficient mainly single-track layout.
  • Single-platform stations.
  • A single-platform terminal station capable of handling well upwards of a million passengers per year.
  • Service levels of up to four trains per hour.
  • Zero-carbon operation without electrification.
  • Low levels of visual and noise intrusion.

The new railway will also be delivered at a lower cost and without major disruption to surrounding road and rail routes.

The Need For More Housing And Other Developments

There is a very large demand for new housing and other developments all over the UK.

Several proposed rail projects are about connecting new developments with the rail network.

In London Overground Extension To Barking Riverside Gets Go Ahead, I listed a few developments in London, where developers and their financial backers, were prepared to put up around £20,000 for each house to fund decent rail-based transport links.

Obviously, developments in London are expensive, but with all the new developments, that have been built close to stations in the last few years, I suspect that infrastructure financiers. like Legal and General and Aviva, know how much being by a rail station is worth.

Conclusion

Both public and private infrastructure financiers will take advantage of the good railway and rolling stock engineering, which will mean the necessary rail links to new developments will be more affordable and zero-carbon.

December 27, 2018 Posted by | Transport | , , , , , , , | 1 Comment

Stadler’s New Tri-Mode Class 93 Locomotive

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I looked at an electro-diesel freight locomotive with batteries instead of a diesel engine, as a freight locomotive. It would have the size and weight of a Class 70 locomotive and perhaps use similar technology to Stadler’s Class 88 locomotive.

I concluded the article like this.

It would be a heavyweight locomotive with a performance to match.

I believe that such a locomotive would be a very useful addition to the UK’s fleet of freight locomotives.

Stadler have not produced a battery/electric replacement for a Class 66 locomotive, but they have added a diesel/electric/battery Class 93 locomotive with a heavyweight performance to their Class 68/88 or UKLIGHT family of locomotives built at Valencia in Spain.

Details of the locomotive are given in this article in Rail Magazine, which is entitled Rail Operations Fuels Its Ambitions With Tri-Mode Class 93s. There is also a longerand more detailed  article in the print edition of the magazine, which I purchased today.

Reading both copies of the article, I can say the following.

A More Powerful Class 88 Locomotive

At a first glance, the Class 93 locomotive appears to be a more powerful version of the Class 88 locomotive.

  • The power on electric mode is the same in both locomotives at four megawatt. It would probably use the same electrical systems.
  • Some reports give the diesel power of the Class 93 locomotive as 1.34 MW as opposed to 0.7 MW of the Class 88 locomotive.
  • The Class 93 locomotive has a top speed of 110 mph, as opposed to the 100 mph of the Class 88 locomotive.
  • The article says, “It’s an ’88’ design with the biggest engine we could fit.”

It would also appear that much of the design of the two locomotives is identical, which must make design, building and certification easier.

The Class 93 Locomotive Is Described As A Hybrid Locomotive

Much of the article is an interview with Karl Watts, who is Chief Executive Officer of Rail Operations (UK) Ltd, who have ordered ten Class 93 locomotives. He says this.

However, the Swiss manufacturer offered a solution involving involving an uprated diesel alternator set plus Lithium Titanate Oxide (LTO) batteries.

Other information on the batteries includes.

  • The batteries are used in regenerative braking.
  • Batteries can be charged by the alternator or the pantoraph.
  • Each locomotive has two batteries slightly bigger than a large suitcase.

Nothing is said about the capacity of the batteries, but each could be a cubic metre in size.

I have looked up manufacturers of lithium-titanate batteries and there is a Swiss manufacturer of the batteries called Leclanche, which has this helpful page that compares various batteries.

  • The page gives an energy density of 120-200 Wh/Kg for their traditional lithium-ion batteries and 70-80 Wh/Kg for LTO batteries.
  • But it gives LTO batteries a five-star rating, for charge power, discharge power and energy efficiency.

Leclanche also have a product called a TiRack63, which is intended for industrial applications, such as.

  • ,Grid stabilization in on-grid application
  • Providing short term power to cover the first seconds in a grid failure incident to industrial users.
  • Managing the integration of renewable energy (solar and wind) into off grid applications with diesel generators (e.g. mining),

The battery has the following characteristics.

  • 15000 charge/discharge cycles
  • 100 % depth of discharge.
  • Charging and discharging at 300 Amps.
  • Modular setup.
  • 510-810 VDC output.
  • 63 kWh capacity.
  • Size of 2300 x 1800 x 600 mm
  • Weight of 1800 Kg.

These batteries with their fast charge and discharge are almost like supercapacitors.

, It would appear that, if these batteries are used the Class 93 locomotive will have an energy storage capacity of 126 kWh.

But this is said about Class 93 locomotive performance..

LTO batteries were chosen because they offer a rapid recharge and can maintain line speed while climbing a gradient, and will recharge when running downhill.

Looking at the batteries, they could provide up to around 240 kW of extra power for perhaps half an hour to help the train climb a gradient and then recharge using regenerative braking or the diesel alternator.

This is a hybrid vehicle, with all the efficiency advantages.

The article does say, that with a light load, the locomotives can do 110 mph on hybrid. Nothing is said about what is a light load. Could it be a rake of five modern Mark 5A coaches?

In Thoughts On A Battery Electric Class 88 Locomotive On TransPennine Routes, I said this.

It is worth looking at the kinetic energy of a Class 88 locomotive hauling five forty-three tonne CAF Mark 5A coaches containing a full load of 340 passengers, who each weigh 90 Kg with baggage, bikes and buggies. This gives a total weight would be 331.7 tonnes.

The kinetic energy of the train would be as follows for various speeds.

90 mph – 75 kWh
100 mph – 92 kWh
110 mph – 111 kWh
125 mph – 144 kWh

The increase in energy is because kinetic energy is proportional to the square of the speed.

There would be little difference in this calculation, using a Class 93 locomotive, which is only a tonne heavier. The kinetic energy at 110 mph, would be 112 kWh.

This could be very convenient, as it looks like the battery capacity could be larger than the kinetic energy of a fully-loaded train.

Similar Weight And Axle Load To A Class 88 Locomotive

The article states that the locomotive will weight 87 tonnes, as opposed to the 86 tonnes of a Class 88 locomotive.

As both locomotives have four axles, this would mean that their axle loading is almost the same.

So anywhere the Class 88 locomotive can go, is most likely to be territory suitable for the Class 93 locomotive.

Again, this must make certification easier.

A Modular Design

In a rail forum, members were saying that the Class 93 locomotive has a modular design.

So will we see other specifications with different sized diesel engines and batteries?

The TransPennine routes, for example, might need a locomotive with a smaller diesel engine, more battery capacity and a 125 mph-capability for the East Coast Main Line.

Stadler have said they specialise in niche markets. Have they developed the tailor-made locomotive?

Power Of Various Locomotives

These are various UK locomotives and their power levels in megawatts.

  • Class 43 – Diesel – 1.7
  • Class 66 – Diesel – 2.4
  • Class 67 – Diesel – 2.4
  • Class 68 – Diesel – 2.8
  • Class 88 – Electric – 4
  • Class 88 – Diesel – 0.7
  • Class 90 – Electric – 3.9
  • Class 91 – Electric – 4.8
  • Class 93 – Electric – 4
  • Class 93 – Diesel – 1.3

The interesting figure, is that the Class 93 locomotive has 76 % of the diesel power of a Class 43 locomotive from an InterCity 125. The difference could probably be made up using battery power, where needed.

Could The Locomotive Be Uprated To 125 mph?

Consider.

  • The UK has successfully run 125 mph Class 43 and 91 locomotives for many years.
  • Stadler has built trains that run at that speed.
  • Mark 3, Mark 4 and Mark 5A coaches are all certified for 125 mph.
  • There are hundreds of miles of track in the UK, where 125 mph running is possible.

I would think it very unlikely, that the engineers designing the Class 93 locomotive, ruled out the possibility of 125 mph running in the future!

Only Stadler will know!

Could A Battery/Electric Version Of The Locomotive Be Created?

I don’t see why not!

The diesel engine, fuel, exhaust and cooling systems and some ancilliary systems could all be removed and be replaced with an equivalent weight of batteries.

As the C27 diesel engine in a Class 88 locomotive weighs almost seven tonnes, I suspect a ten tonne battery would be possible.

Given the current typical energy density and using the Leclanche figures, this would mean that thr batteries would have a total capacity of around 700-800 kWh.

Possible Uses Of The Class 93 Locomotive

The Rail Magazine article goes on to detail some of the uses of a Class 93 locomotive.

Express Freight

Karl Watts says this.

They can operate express freight. In Europe, there are vehicles capable of 100 mph running, and these are perfect for high-speed domestic freight. We have been running intermodals at 75 mph since the 1960s – It’s time to change that.

The locomotive would certainly be able to haul express freight at 100 mph on an electrified main line.

Note the following.

  1. This would greatly help with freight between Felixstowe and London on the 100 mph Great Eastern Main Line.
  2. Running freight trains at 100 mph on the major electrified lines would increase capacity, of the lines.
  3. Ports and freight terminals wouldn’t need to be electrified.

Overall, the proportion of freight mileage, where electric power was used, would grow significantly.

Electrification Gap Jumping

In Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive, I gave a list of typical gaps in the electrification in the UK.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

How many of these gaps could be bridged by a Class 93 locomotive working in a diesel hybrid mode?

It should be noted, that many of the busiest gaps are in the flatter Eastern areas of England.

I’m sure Stadler and Rail Operations Group have done extensive simulation of possible routes and know where the locomotives are best suited.

Class 66 Locomotive Replacement

I suspect that several of these locomotives will end up replacing duties currently done by Class 66 locomotives.

It could haul an intermodal freight from Felixstowe to Manchester, Liverpool, Glasgow or Doncaster, using electrification where it exists.

And do it at a speed of 100 mph, where speed limits allow!

No other locomotive on the UK network could do that!

Use On Electrified Urban Freight Routes

Near to where I live there are two electrified lines passing through North London; the North London Line and the Gospel Oak To Barking Line.

Both lines have several freight trains a day passing through, that are still hauled by diesel locomotives.

There are other urban freight routes around the UK, where despite electrification, polluting diesel locomotives are still used.

Class 93 locomotives would be an ideal environmentally-friendly replacement locomotive on these routes.

Thunderbird Duties

Karl Watts says this.

They can be used for network recovery as a more comprehensive Thunderbird. Currently, stand-by locomotives are hired or used by an operator to rescue its own trains, but these would be available for anything or anyone. I have sopken to Network Rail about this and they need convincing. But as the network gets busier, so it will be that one failure causes chaos.

Perhaps, a better method for recovering failed trains could be developed.

Passenger Trains

Karl Watts says this.

I can say that the 93s’ feature n two franchise bids, although I cannot say which, due to non-disclosure agreements.

We can only speculate!

Class 93 locomotives could replace the Class 68 locomotives on TransPennine Express services between Liverpool and Scarborough, where Mark 5A coaches will be used.

  • Electric mode could be used between Liverpool and Stalybridge and on the East Coast Main Line.
  • Diesel or hybrid mode would be used where needed.
  • If the locomotives could be uprated to 125 mph, that would help on the East Coast Main Line.

There are certainly, redundant Mark 4 coaches or new Mark 5A coaches that could be used to provide services.

An InterCity 125 For the Twenty-First Century

The InterCity 125 is a masterpiece of engineering, that passengers love.

One of the reasons for the success, is the superb dynamics of the train, which gives them a very comfortable ride.

Could it be that by putting two Class 93 locomotives at each end of a rake of suitable coaches could create a 125 mph train, with the same faultless dynamics?

The answer is probably yes, but in many cases either half-length trains or bi-mode multiple units may be a more affordable or capable train.

The locomotive certainly gives a lot of flexibility.

Conclusion

This is going to be a very useful locomotive.

This was the last paragraph of the printed article, as spoken by Karl Watts.

I don’t think I will be ordering only ten or 20 – there will be more.

I have registered 93001 to 93050.

The word hybrid opens the door.

I think this might be the third member of a very large and widespread family.

 

 

 

December 19, 2018 Posted by | Transport | , , , , , , , , , | 3 Comments

Thoughts On A Battery/Electric Replacement For A Class 66 Locomotive

Many of the long freight routes from Felixstowe and Southampton are hauled by diesel locomotives like the environmentally-unfriendly Class 66 locomotive.

Electric haulage can’t be used because of significant gaps in the 25 KVAC overhead electrification. Gaps and a typical transit time of a Class 66-hauled heavy freight train include.

  • Didcot and Birmingham – Around two-and-a-half hours
  • Didcot and Coventry – Just under two hours
  • Felixstowe and Ipswich – Around an hour
  • Haughley Junction and Peterborough – Around two hours
  • Southampton and Reading – Around one-and-a-half hours
  • Werrington Junction and Doncaster via Lincoln – Around two hours
  • Werrington Junction and Nuneaton – Just under two hours

Would it be possible to design a battery/electric hravy locomotive, that could bridge these gaps?

Consider the following.

  • A Class 66 locomotive has a power output of around 2500 kW.
  • To run for two hours on battery would require a battery of 5000 kWh.
  • A 5000 kWh battery would weigh around fifty tonnes.
  • A Class 70 locomotive is a heavy freight diesel Co-Co locomotive with a weight of 134 tonnes with a full tank of diesel.
  • A Class 88 locomotive is an electro-diesel locomotive, that without the diesel engine weighs about 80 tonnes.
  • A Class 88 locomotive has a power output of 4,000 kW on 25 KVAC  overhead electrification

Putting this information together and I think it would be possible to design a battery/electric locomotive with the following specification.

  • 4000 kW on 25 KVAC  overhead electrification
  • Ability to use 750 VDC third-rail electrification
  • A 5000 kWh battery.
  • Ability to use a rapid charging system.
  • Two hour range with 2500 kW on battery power.
  • Regenerative braking to the battery.
  • Co-Co configuration
  • Dimensions, weight and axle loading similar to a Class 70 locomotive.

These are a few other thoughts.

Last Mile Applications

Ports and Container Terminals are often without electrification.

The proposed locomotive would be able to work in these environments.

A couple of yeas ago, I had a long talk with a crane operator at the Port of Felixstowe, who I met on a train going to football. He was of the opinion, that Health and Safety is paramount and he would not like 25 KVAC overhead electrification all over the place.

So if freight locomotives used battery power inside the port, most would be pleased.

The only cost for ports and freight terminals would be installing some form of charging.

Maximum Power On Batteries

I suspect that the maximum power on battery would also be the same as the 4,000 kW using 25 KVAC overhead electrification, as the locomotive may have applications, where very heavy trains are moved on partially electrified lines.

Diesel-Free Operation

The proposed lovomotive will not use any diesel and will essentially be an electric locomotive, with the ability to use stored onboard power.

Environmentally-Friendly Operation

Freight routes often pass through areas, where heavy diesel locomotives are not appreciated.

  • The proposed locomotive will not be emitting any exhaust or noxious gases.
  • Noise would be similar to an electric locomotive.
  • They would be quieter using battery-power on lines without overhead electrification, as there would be no pantograph noise.

I think on balance, those living by freight routes will welcome the proposed locomotive.

Would Services Be Faster?

This would depend on the route, but consider a heavy freight train going from Felixstowe to Leeds.

  • On the electrified East Coast Main Line, the proposed battery-electric locomotive would have a power of 4,000 kW, as opposed to the 2,500 kW of the Class 66 locomotive.
  • On sections without electrification, the locomotive would have more power if required, although it would probably be used sparingly.
  • The locomotive would have a Driver Assistance System to optimise power use to the train weight and other conditions.

I feel on balance, that services could be faster, as more power could be applied without lots of pollution and noise.

Creeping With Very Heavy Loads

I suspect they would be able to creep with very heavy loads, as does the Class 59 locomotive.

Class 59 Locomotive Replacement

The proposed locomotive may well be able to replace Class 59 locomotives in some applications.

Any Extra Electrification Will Be Greatly Appreciated

Some gaps in electrification are quite long.

For example, Didcot and Birmingham takes about two and a half hours.

  • Didcot is on the electrified Great Western Main Line.
  • Birmingham has a lot of electrified lines.

So perhaps there could be some extra electrification at both ends of busy freight routes.

Electrification between Didcot and Wolvercote Junction would be a possibility.

  • It would be about twelve miles
  • It is very busy with heavy freight trains.
  • The natives complain about the railway.
  • It would allow Great Western Railway to run electric trains to and from London.
  • If Chiltern Railways were to run battery-electric trains to Oxford, it would provide electrification for charging at Oxford.
  • Electrification could be extended to Oxford Parkway station to make sure battery-electric trains would get a good send-off to Cambridge

This simple example shows, why bi-mode and battery/electric trains don’t mean the end of electrification.

All vehicles; rail or road and especially electric ones, need to take on fuel!

I also think, that there is scope to electrify some passing loops, so that locomotives can top-up en route.

Conclusion

It would be a heavyweight locomotive with a performance to match.

I believe that such a locomotive would be a very useful addition to the UK’s fleet of freight locomotives.

 

December 8, 2018 Posted by | Transport | , , , , | 4 Comments

Bi-Mode Trains In Prospect As HS2 Northern Routes Confirmed

The title of this post is the same as that of this article on Railway Gazette.

Bi-Mode Trains On High Speed Lines

There are some, who believe that all trains should run on electrified lines.

But my belief is simpler – All trains should be electric, but they might be able to run on tracks with or without  electrification.

There are currently, four proven ways to provide traction power on board an electrically-driven train.

  • Diesel
  • Hydrogen
  • Gas Turbine
  • Stored energy – Battery and/or capacitor.

Each have their advantages and disadvantages.

Talgo who are on the short list to build trains for High Speed Two, already make a train called RENFE Class 730, which has the following specification.

  • 2.4 MW on 25 KVAC overhead electrification
  • 3.8 MW on diesel
  • Dual-gauge; Iberian and standard.
  • Eleven coaches
  • Maximum speed of 160 mph

High Speed Two is designed for 225 mph running, so the trains would need to be faster than these.

But suppose a train was to run say between Euston and Holyhead or any important place a hundred miles or so from High Speed Two.

It would be unlikely that the last part of the route without electrification, would be a high speed line, with a maximum speed in excess of 125 mph.

If it were a high speed line, then it would probably be electrified.

So a typical specification for a bi-mode for High Speed Two would probably be something like.

  • Maximum speed of 225 mph on High Speed Two using the electrification.
  • Maximum speed of 125 mph on the alternative power source.
  • Ability to go between at least Crewe and Holyhead (84 miles) and back without refuelling.

Effectively, the train has two performance regimes; one for electrified high speed lines and one for classic lines without electrification.

A Possible Design For A Bi-Mode High Speed Train

Eurostar’s Class 374 train, which is one of the latest high speed trains is described like this in Wikipedia.

The Velaro e320, named because of plans to operate at 320 km/h (200 mph), would be 16 cars long, to meet the Channel Tunnel safety specifications but would have distributed traction with the traction equipment along the length of the train, not concentrated in power cars at each end.

Note.

  • Distributed power gives better acceleration and smoother braking.
  • The trains also appear to have at least six pantographs, so does that mean that each feeds a number of cars?
  • I suspect there will be an electrical bus running the length of the train which will feed the traction motors.
  • In my design of train, each car would have batteries and/or capacitors to handle the regenerative braking.
  • The energy storage would give the train a limited range away from electrification.

For the required range between Crewe and Holyhead, there would probably be a need for diesel or hydrogen power.

I feel though, that in this day and age, no-one would build a new train that used diesel, if they could get the performance from hydrogen power or some other clean source.

Perhaps one of the middle cars of the train could be a power car fuelled by hydrogen.

This should be something that works, as British Rail and Stadler have both used this layout successfully.

On What Routes Would The Train Be Used?

I have used the service between London and Holyhead as an example and this is probably the longest route away from High Speed Two.

Any route that is in range from High Speed Two or a connected electrified route, could be served by these trains, if it was so desired and the train could be run on the route.

I wouldn’t be surprised to see one of these trains have the capability to go as far North as Aberdeen and Inverness.

Conclusion

Bi-mode high speed trains could be designed, if anybody needed them.

But for short extensions from High Speed Two, energy storage would probably suffice.

 

 

 

 

 

 

November 21, 2018 Posted by | Transport | , , , | Leave a comment

Merseyrail’s Battery Intentions

In New Merseyrail Fleet A Platform For Future Innovations, I quoted from  this article on the Rail Technology Magazine web site.

The article mainly is an interview with David Powell, who is programme director of rolling stock at Merseytravel.

This is a direct quote from the article.

We will be exploring, with Stadler, what the options are for having the trains becoming self-powered. This isn’t the bi-modes that lots of other people are talking about in the industry; this is on-board electrical storage.

The Wikipedia entry for Merseyrail links to this document, which puts a lot more flesh on Merseyrail’s intentions for battery trains.

It outlines strategies for the following routes.

Ellesmere Port And Helsby

The document says this.

There is a reasonable business case for extending the Merseyrail service through to Helsby.
However this is likely to be best served by the use of Merseyrail battery powered enabled
services. This will be tested on the new units in 2020.

According to Wikipedia, the sixth Class 777 train to be delivered will be fitted with batteries.

Currently, the service between Liverpool Central and Ellesmere Port stations is as follows.

  • A train every thirty minutes.
  • Trains take eighty-five minutes to do the round trip from Ellesmere Port round the Wirral Loop under Liverpool and back to Ellesmere Port.
  • There are thirty-one stops on the route.
  • There is a five minute turnround at Ellesmere Port station.

Two trains are needed to run the service.

The Current Class 507/508 trains and the future Class 777 trains both have the same operating speed, but there are performance differences.

  • The British Rail trains have 656 kW of power per train, whereas every new Stadler train will have 2,100 kW. The speed may be the same, but the acceleration will be much greater if needed and and the regenerative braking should be powerful and smoothly controlled.
  • Loading and unloading of passengers with their increasing levels of extras will be much faster due to the hollistic design of the trains and the platforms.

It would not be unrealistic to see around a minute saved at every stop.

The extended service between Ellesmere Port and Helsby stations is not much extra distance and time.

  • Just over five miles each way.
  • About thirteen minutes each way , based on existing services on the route.

So if the terminus were to be moved to Helsby, when the new trains are in service, the time savings between Ellesmere Port and Liverpool should cover the extra distance.

It should also be noted about Helsby station.

  • It has four platforms and could probably handle four trains per hour (tph).
  • A platform with a charging station could be created.
  • It has a wide selection of services including Chester, Llandudno, Manchester and Warrington.

To my mind, Liverpool to Helsby would be an ideal route for a battery electric train.

Ormskirk-Preston Enhancements

The document says this.

This incorporates both electrification from Ormskirk through to Preston and the potential
reintroduction one or both of the Burscough Curves. In view of the deferral of electrification
proposals, and the relative low ranking of the electrification proposal in the Northern Sparks
report, it is unlikely that the electrification proposal is expected to be taken forward in the
near future. In addition to this, the business case for extending electrification to Burscough,
and the introduction of the southern Burscough Curve, is poor. The potential use of battery
powered Merseyrail units may improve the business case for both proposals. This will be
reviewed after the Merseyrail units have been tested for battery operation in 2020.

Currently, the service between Ormskirk and Preston stations is as follows.

  • A train every hour.
  • Trains take around thirty minutes to go between the two terminal stations.
  • The route is fifteen and a half miles long.
  • There are three stops on the route.
  • There is a long turnround in a bay platform at Preston station.

At the present time, the service seems rather erratic, with some services replaced by buses and long connection times at Ormskirk.

The service between Liverpool Central and Ormskirk stations takes thirty-five minutes with eleven stops and is generally every fifteen minutes, with a half-hourly service in the evening and at weekends.

If a Class 777 train could use battery power, I estimate it could run between Liverpool Central and Preston stations within an hour.

This would surely open up the possibility of a new service between Liverpool and Preston.

  • It would take only a few minutes longer than the fifty-one minutes of a direct train between Liverpool Lime Street and Preston stations.
  • It would connect a lot of stations to West Coast Main Line at Preston.
  • It would link the major sporting venues of Aintree, Anfield and Goodison or Everton’s new ground to the North.
  • At the Southern end, it could connect to Liverpool Airport.

The Class 777 trains would need to be able to do about thirty miles on battery power and if required, the technology exists to either top up the batteries at Preston or use a pantograph to access the overhead wires of the West Coast Main Line.

At the present time, the Ormskirk Branch Line between Ormskirk and Preston stations is only single track and probably needs resignalling, but I suspect that a four tph service could be run between Liverpool and Ormskirk, with two tph extended to Preston.

Extra track work, North of Ormskirk and the reinstatement of the Burscough curves would allow.

  • Four tph between Liverpool and Preston via Ormskirk.
  • A service between Liverpool and Southport via Ormskirk.
  • A service between Preston and Southport.

There is even the possibility of extending Liverpool and Preston services to Blackpool South station, if they used the overhead electrification through Preston to charge the batteries.

Borderlands Development

The document says this.

While the aspiration is to fully electrify the line, and incorporate it into the Merseyrail
network, this is very much a long term aspiration. In the interim period the aim is to develop
the line through the introduction of an improved diesel service. Merseytravel will work
closely with relevant cross-border organisations such as Growth Track 360 to bring this
about. There are a number of new station proposals for the line, the principal being a new
station close to the Deeside Industrial Park, which would improve the ability of the
workforce to access the site via public transport.

The Borderlands Line provides a service between Liverpool and Wrexham Central station with a change at Bidston station.

  • The twenty-seven miles between Wrexham Central and Bidston are not electrified.
  • The line is double-track throughout.
  • There are twelve stations on the line.
  • The service is hourly, but probably needs to be at least half-hourly.
  • The service takes about an hour between Wrexham and Bidston stations.

Using Class 777 trains on the route, using battery power between Bidston and Wrexham Central stations would enable.

  • A direct service, that terminated in the Wirral Loop under Liverpool.
  • An increased capacity at Bidston station.
  • A faster service.

I estimate that a time of perhaps seventy to eighty minutes between Liverpool Central and Wrexham Central stations will be possible.

There would be very little infrastructure work, except for new stations and the possible ability to top up batteries at Wrexham Central.

I suspect that political problems, rather than any railway ones will be larger.

Bootle Branch Electrification

The document says this.

A long term proposal which will need to be considered alongside the developing freight
strategy for the region and the expansion of the Port of Liverpool. The proposal envisages
the introduction of passenger services which will operate from the Bootle Branch into Lime
Street. An initial study is required to understand fully the freight requirements for the line
and what the realistic potential for operating passenger services over the line is.

The Bootle Branch is known as the Canada Dock Branch in Wikipedia.

Class 777 trains with a battery capability and the ability to use the overhead electrification into Liverpool Lime Street would be able to serve this route, without the need for electrification.

Obviously, if for freight efficiency, the route was electrified, the trains could use it as needed.

North Mersey Branch

The document says this.

A long term proposal; this envisages a new service operating from Ormskirk via Bootle into
Liverpool. It was reviewed as part of the Merseyrail Route Utilisation Strategy in 2009 which
identified a poor business case.

I can’t identify the actual route, but there are various rail alignments into and through the Docks.

Skelmersdale

The document says this.

Merseytravel is currently working with Lancashire County Council and Network Rail to
develop the Merseyrail network from Kirkby through to Skelmersdale. This work is expected
to be completed in 2019. Further development work will be required before this project is
implemented. While 3rd rail electrification is being considered currently, alternatives will be
considered later in the development process. A new station at Headbolt Lane to serve the
Northwood area of Kirkby is an integral part of this proposal. The potential to extend the
network further through to Wigan will need to be developed separately.

I wrote about this plan in Merseyrail To Skelmersdale – How To Plan A New Rail-Link.

Conclusion

It is a comprehensive expansion strategy, where much of the work to create the various extensions is performed by adding equipment to the trains in factories or depots, rather than by the disruptive installation of electrification.

It looks very much like a case of Have Swiss Train Will Travel.

But then, I think the London Overground is using a similar strategy to expand in partnership with Bombardier.

Other networks like the Tyne & Wear Metro and those in cities like Birmingham, Cardiff, Glasgow and Leeds will be using similar philosophies.

Cardiff has already decided and Stadler are building the trains for the South Wales Metro.

 

 

 

 

 

 

 

November 21, 2018 Posted by | Transport | , , , , , , , , | Leave a comment