The Anonymous Widower

Vattenfall Selects Norfolk Offshore Wind Zone O&M Base

The title of this post, is the same as that of this article on offshoreWIND.biz.

This is the sub-heading.

Vattenfall has selected Peel Ports as the preferred bidder, and its port at Great Yarmouth as the location for the operations and maintenance base of the Norfolk Offshore Wind Zone in the UK.

This was said about the competition to host the facility.

Vattenfall said that the competition was fierce to secure the agreement with an excellent bid from Lowestoft and Associated British Ports. With both ports offering excellent services it is clear that East Anglia’s potential as a superpower of offshore wind is secure.

I have a few thoughts.

Lowestoft In Suffolk And Great Yarmouth In Norfolk Must Work Together

This Google Map shows the coast between the two ports.

Note.

  1. Great Yarmouth is at the top of the map.
  2. Lowestoft is at the bottom of the map.
  3. The two towns are less than twelve miles apart.
  4. The Great Yarmouth Outer Harbour, is towards the top of the map.

The Google Map shows the port in more detail.

Note.

  1. Great Yarmouth Outer Harbour only opened in 2009.
  2. It has an average depth of 10 metres.
  3. It was planned as a container port, but the ships didn’t materialise.
  4. Some consider it to be a bit of a white elephant.

Could the Outer Harbour be used to assemble floating wind turbines?

I think it could but at present, there are no plans to use floating wind turbines off the coast of Norfolk.

I suspect though, if someone decided to build floating wind farms to the East of the Vattenfall’s Norfolk Zone fields, that Great Yarmouth Outer Harbour could be used to assemble the floating wind turbines.

This Google Map shows the Port of Lowestoft.

Note.

  1. There is over a kilometre of quays.
  2. It doesn’t have the water depth of Great Yarmouth.
  3. There is a lot of brownfield sites along the River Waveney.
  4. The East Anglia One wind farm is managed from Lowestoft.

Both harbours have their good and bad points.

  • Both have good rail connections to Norwich.
  • Lowestoft has a rail connection to Ipswich and has been promised a London service.
  • Road connections to Ipswich and Norwich need improvement.

I suspect that it was a close contest, as to the port that got the Vattenfall contract.

A Lowestoft And Great Yarmouth Rail Connection

This map from Open RailwayMap between the two towns.

Note.

  1. The existing railways are shown in yellow.
  2. Former railways are shown in black dotted lines.
  3. There was even a railway along the coast.

The only rail connection between the ports is via Reedham, where the track layout is shown on this second OpenRailwayMap.

Note.

  1. Reedham station is in the North West corner on the line to Norwich.
  2. The line going North-East goes to Great Yarmouth.
  3. The line going South goes to Lowestoft.

There used to be a chord connecting Great Yarmouth and Lowestoft, but it was cancelled by Beeching’s grandfather.

There is certainly scope to improve the rail connection between the two ports.

  • There could be a convenient change at Reedham, if the timetables were adjusted.
  • Trains could reverse at Reedham.
  • The chord could be reopened to allow direct trains.

It wouldn’t be the most challenging rail project to have an hourly rail service between the two ports.

A Lowestoft And London Rail Service

This was promised with a frequency of something like four trains per day (tpd)

I think it should run between London and Yarmouth with a reverse at Lowestoft.

March 17, 2023 Posted by | Energy | , , , , , , , , , , | 4 Comments

Suffolk Doesn’t Do Easy!

Many parts of the UK consider Suffolk to be rather sleepy.

I was conceived in the county and have spent at least half my life there.

I have a strong affection from my adopted county, which always seem to punch above its apparent weight.

  • All thoroughbred horses have bloodlines that can be traced back to Newmarket, which is a town of 17,000 people in West Suffolk.
  • The Battle of Landguard Fort is recorded as the last opposed attack on England, where on the 2nd of July 1667, a much larger Dutch force was repelled by Nathaniel Darrell and his marines.
  • The exploits of Ipswich Town over the years are on a par with those of many prominent clubs in much bigger towns and cities.
  • Since the 1950’s, the Port of Felixstowe has grown to be the United Kingdom’s busiest container port.

This morning I received a marketing e-mail from Adnams; the Suffolk brewer and this is an extract.

Ghost Ship 0.5% is brewed just like our other beers, so you can count on 150 years of brewing heritage. It was crafted to taste like our best-selling brew, so you can also count on its flavour.

It is always our aim to make great-tasting products, but when creating Ghost Ship 0.5%, the brewing team didn’t simply have to make something delicious, it had to taste like a well-loved and well-known beer. They were dealing with great expectations.

Adnams invested in a de-alcoholiser specifically to make this beer. We could brew in the normal way; adding the lovely fruity flavours you get from a full fermentation, before removing the alcohol. This alters the balance and the mouthfeel of a beer, so it still took months of trials and tinkering to get to where we wanted.

We used all our expertise the finest East Anglian malt and bold American hops to create a low-alcohol beer that tastes frighteningly good. It’s now our second most popular brew, and at 0.5% abv, can be enjoyed whenever and wherever the moment takes you. So, you can get out there, travel that little bit further, and taste just a little bit more.

Note in the last paragraph, that it is now their second most popular brew.

  • It tastes just like the halves of bitter, I used to drink around 1960, whilst playing snooker with my father in his club in Felixstowe.
  • Adnams has been my preferred beer since then.
  • Like all zero-alcohol beers, my coeliac gut doesn’t react to it.

As a regular drinker of this beer, it looks like Suffolk has another success on its hands.

I’ll drink to that!

January 12, 2023 Posted by | Food, Sport | , , , , , , , , , | 2 Comments

Low Carbon Construction Of Sizewell C Nuclear Power Station

Sizewell C Nuclear Power Station is going to be built on the Suffolk Coast.

Wikipedia says this about the power station’s construction.

The project is expected to commence before 2024, with construction taking between nine and twelve years, depending on developments at the Hinkley Point C nuclear power station, which is also being developed by EDF Energy and which shares major similarities with the Sizewell plant.

It is a massive project and I believe the construction program will be designed to be as low-carbon as possible.

High Speed Two is following the low-carbon route and as an example, this news item on their web site, which is entitled HS2 Completes Largest Ever UK Pour Of Carbon-Reducing Concrete On Euston Station Site, makes all the right noises.

These three paragraphs explain in detail what has been done on the Euston station site.

The team constructing HS2’s new Euston station has undertaken the largest ever UK pour of Earth Friendly Concrete (EFC) – a material that reduces the amount of carbon embedded into the concrete, saving over 76 tonnes of CO2 overall. John F Hunt, working for HS2’s station Construction Partner, Mace Dragados joint venture, completed the 232 m3 concrete pour in early September.

The EFC product, supplied by Capital Concrete, has been used as a foundation slab that will support polymer silos used for future piling works at the north of the Euston station site. Whilst the foundation is temporary, it will be in use for two years, and historically would have been constructed with a more traditional cement-based concrete.

The use of the product on this scale is an important step forward in how new, innovative environmentally sustainable products can be used in construction. It also helps support HS2’s objective of net-zero construction by 2035, and achieve its goal of halving the amount of carbon in the construction of Britain’s new high speed rail line.

Note.

  1. Ten of these slabs would fill an Olympic swimming pool.
  2. I first wrote about Earth Friendly Concrete (EFC) in this post called Earth Friendly Concrete.
  3. EFC is an Australian invention and is based on a geopolymer binder that is made from the chemical activation of two recycled industrial wastes; flyash and slag.
  4. HS2’s objective of net-zero construction by 2035 is laudable.
  5. It does appear that this is a trial, but as the slab will be removed in two years, they will be able to examine in detail how it performed.

I hope the Sizewell C project team are following High Speed Two’s lead.

Rail Support For Sizewell C

The Sizewell site has a rail connection and it appears that this will be used to bring in construction materials for the project.

In the January 2023 Edition of Modern Railways, there is an article, which is entitled Rail Set To Support Sizewell C Construction.

It details how sidings will be built to support the construction, with up to four trains per day (tpd), but electrification is not mentioned.

This is surprising to me, as increasingly, big construction projects are being managed to emit as small an amount of carbon as possible.  Sizewell C may be an isolated site, but in Sizewell B, it’s got one of the UK’s biggest independent carbon-free electricity generators a couple of hundred metres away.

The writer of the Modern Railways article, thinks an opportunity is being missed.

I feel the following should be done.

  • Improve and electrify the East Suffolk Line between Ipswich and Saxmundham Junction.
  • Electrify the Aldeburgh Branch Line and the sidings to support the construction or agree to use battery-electric or hydrogen zero-carbon locomotives.

Sizewell C could be a superb demonstration project for low-carbon construction!

Sizewell C Deliveries

Sizewell C will be a massive project and and will require a large number of deliveries, many of which will be heavy.

The roads in the area are congested, so I suspect rail is the preferred method for deliveries.

We already know from the Modern Railways article, that four tpd will shuttle material to a number of sidings close to the site. This is a good start.

Since Sizewell A opened, trains have regularly served the Sizewell site to bring in and take out nuclear material. These occasional trains go via Ipswich and in the last couple of years have generally been hauled by Class 88 electro-diesel locomotives.

It would be reasonable to assume that the Sizewell C sidings will be served in the same manner.

But the route between Westerfield Junction and Ipswich station is becoming increasingly busy with the following services.

  • Greater Anglia’s London and Norwich services
  • Greater Anglia’s Ipswich and Cambridge services
  • Greater Anglia’s Ipswich and Felixstowe services
  • Greater Anglia’s Ipswich and Lowestoft services
  • Greater Anglia’s Ipswich and Peterborough services
  • Freight services serving the Port of Felixstowe, which are expected to increase significantly in forthcoming years.

But the Modern Railways article says this about Saxmundham junction.

Saxmundham junction, where the branch meets the main line, will be relaid on a slightly revised alignment, retaining the existing layout but with full signalling giving three routes from the junction protecting signal on the Down East Suffolk line and two in the Down direction on the bidirectional Up East Suffolk line. Trap points will be installed on the branch to protect the main line, with the exit signal having routes to both running lines.

Does the comprehensive signalling mean that a freight train can enter or leave the Sizewell sidings to or from either the busy Ipswich or the quieter Lowestoft direction in a very safe manner?

I’m no expert on signalling, but I think it does.

  • A train coming from the Lowestoft direction needing to enter the sidings would go past Saxmundham junction  on the Up line. Once clear of the junction, it would stop and reverse into the branch.
  • A train coming from the Ipswich direction needing to enter the sidings would approach in the wrong direction on the Up line and go straight into the branch.
  • A train leaving the sidings in the Lowestoft direction would exit from the branch and take the Up line until it became single track. The train would then stop and reverse on to the Down line and take this all the way to Lowestoft.
  • A train leaving the sidings in the Ipswich direction would exit from the branch and take the Up line  all the way to Ipswich.

There would need to be ability to move the locomotive from one end to the other inside the Sizewell site or perhaps these trains could be run with a locomotive on both ends.

The advantage of being able to run freight trains between Sizewell and Lowestoft becomes obvious, when you look at this Google Map, which shows the Port of Lowestoft.

Note.

  1. The Inner Harbour of the Port of Lowestoft.
  2. The East Suffolk Line running East-West to the North of the Inner Harbour.
  3. Lowestoft station at the East side of the map.

I doubt it would be the most difficult or expensive of projects to build a small freight terminal on the North side of the Inner Harbour.

I suspect that the easiest way to bring the material needed to build the power station to Sizewell would be to do the following.

  • Deliver it to the Port of Lowestoft by ship.
  • Tranship to a suitable shuttle train for the journey to the Sizewell sidings.
  • I estimate that the distance is only about 25 miles and a battery or hydrogen locomotive will surely be available in the UK in the next few years, that will be able to provide the motive power for the return journey.

In The TruckTrain, I wrote about a revolutionary freight concept, that could be ideal for the Sizewell freight shuttle.

In addition, there is no reason, why shuttle trains couldn’t come in from anywhere connected to the East Suffolk Line.

Zero-Carbon Construction

Sizewell C could be the first major construction site in the UK to use electricity rather than diesel simply because of its neighbour.

Conclusion

I shall be following the construction methods at Sizewell C, as I’m fairly sure they will break new ground in the decarbonisation of the Construction industry.

December 28, 2022 Posted by | Energy, Transport/Travel | , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

EuroLink, Nautilus And Sea Link

EuroLink, Nautilus and Sea Link are three proposed interconnectors being developed by National Grid Ventures.

EuroLink

EuroLink has a web site, where this is said.

To support the UK’s growing energy needs, National Grid Ventures (NGV) is bringing forward proposals for a Multi-Purpose Interconnector (MPI) called EuroLink, which will deliver a new electricity link between Great Britain to the Netherlands. 

EuroLink could supply up to 1.8 gigawatts (GW) of electricity, which will be enough to power approximately 1.8 million homes, as well as contribute to our national energy security and support the UK’s climate and energy goals. We’re holding a non-statutory public consultation to inform you about our EuroLink proposals, gather your feedback to help refine our plans and respond to your questions.​

Note, that EuroLink is a Multi-Purpose Interconnector (MPI) and they are described on this page of the National Grid website.

In EuroLink’s case, this means it is basically an interconnector between the UK and The Netherlands, that also connects wind farms on the route to the shore.

  • Coastal communities get less disruption, as the number of connecting cables coming ashore is reduced.
  • Less space is needed onshore for substations.
  • Electricity from the wind farms can be directed to where it is needed or can be stored.

As an Electrical and Control Engineer, I like the MPI approach.

The technology to implement the MPI approach is very much tried and tested.

There are many references to EuroLink terminating at Friston.

Nautilus

Nautilus has a web site, where this is said.

Nautilus could connect up to 1.4 gigawatts (GW) of offshore wind to each country through subsea electricity whilst connecting to offshore wind farm/s at sea. By combining offshore wind generation with interconnector capacity between the UK and Belgium, Nautilus would significantly reduce the amount of infrastructure and disruption required both onshore and offshore.

With this new technology, we hope to reduce the impact of infrastructure on local communities and the environment, as well as support the government’s net zero and energy security targets. We are already working closely with other developers in the area to coordinate activities and minimise impact on local communities. We believe that through improved coordination, the UK government can achieve and support the co-existence of renewable energy with coastal communities.

Nautilus is another MPI.

This is said on the web site.

Last year, National Grid Ventures ran a non-statutory consultation for Nautilus, which proposed a connection at Friston.

NGV holds a connection agreement on the Isle of Grain in Kent as part of its development portfolio and we are currently investigating if this could be a potential location for Nautilus. Until this is confirmed to be technically feasible, Nautilus will be included as part of our coordination work in East Suffolk.

So it looks like, Nautilus could connect to the UK grid at Friston or the Isle of Grain.

Sea Link

Sea Link has a web site, and is a proposed interconnector across the Thames Estuary between Suffolk and Kent.

This is said on the web site about the need for and design of Sea Link.

The UK electricity industry is evolving at pace to help lead the way in meeting the climate challenge, whilst also creating a secure energy supply based on renewable and low carbon technologies.

The demands on the electricity network are set to grow as other sectors of the economy diversify their energy consumption from using fossil fuels towards cleaner forms, the move towards electric vehicles being just one example.

Where we’re getting our power from is changing and we need to change too. The new sources of renewable and low-carbon energy are located along the coastline. We need to reinforce existing transmission network and build new electricity infrastructure in these areas in order to transport the power to where it’s needed. This is the case along the whole of the East Coast including Suffolk and Kent.

To allow this increase in energy generation, we need to reinforce the electricity transmission system. Sea Link helps to reinforce the electricity network across Suffolk and Kent.

Our proposals include building an offshore high voltage direct current (HVDC) link between Suffolk and Kent with onshore converter stations and connections back to the national electricity transmission system.

On the web site, in answer to a question of What Is Sea Link?, this is said.

Sea Link is an essential upgrade to Britain’s electricity network in East Anglia and Kent using subsea and underground cable. The proposal includes approximately 130km of subsea cables between Sizewell area in East Suffolk and Richborough in Kent. At landfall, the cables would go underground for up to 5 km to a converter station (one at each end). The converter station converts direct current used for the subsea section to alternating current, which our homes and businesses use. A connection is then made to the existing transmission network. In Suffolk, via the proposed Friston substation; in Kent via a direct connection to the overhead line between Richborough and Canterbury.

Note, that from Kent electricity can also be exported to the Continent.

All Cables Lead To Friston In Suffolk

It looks like EuroLink, Nautilus and Sea Link could all be connected to a new substation at Friston.

But these will not be the only cables to pass close to the village.

This Google Map shows the village.

Running South-West to North-East across the map can be seen the dual line of electricity pylons, that connect the nuclear power stations at Sizewell to the UK electricity grid.

Has Friston been chosen for the substation, so that, the various interconnectors can be connected to the power lines, that connect the Sizewell site to the UK electricity grid.

This would enable EuroLink, Nautilus and/or Sea Link to stand in for the Sizewell nuclear stations,  if they are shut down for any reason?

It does appear from reports on the Internet that the Friston substation is not welcome.

Exploring Opportunities For Coordination

The title of this section is a heading in the EuroLink web site, where this is said.

In response to stakeholder feedback, NGV’s Eurolink and Nautilus projects and NGET’s Sea Link project are exploring potential opportunities to coordinate. Coordination could range from co-location of infrastructure from different projects on the same site, to coordinating construction activities to reduce potential impacts on local communities and the environment.

That sounds very sensible.

 

December 2, 2022 Posted by | Energy | , , , , , , , , , , , , , , | 3 Comments

National Grid Invites Local Community To Comment On Proposals For Green Electricity Projects Needed To Boost Home-Grown Energy Supplies And Progress Towards Net Zero

The title of this post, is the same as that of this press release from National Grid.

These are the four main bullet points.

  • New interconnector with Netherlands and subsea cable between Suffolk and Kent will strengthen electricity supplies and transport low carbon power to homes and businesses.
  • 8-week public consultations will introduce the plans and ask for views of local communities.
  • The proposals include possible co-location of infrastructure (buildings and underground cables.) to reduce the impact on local communities.
  • Projects form part of the electricity network upgrades identified across the UK to help deliver the government’s energy security strategy and net zero targets.

Note.

  1. Eurolink is a subsea electricity cable between Great Britain and the Netherlands.
  2. Sea Link is a subsea electricity cable between Suffolk and Kent.
  3. The consultations will start on October the 24th.

This paragraph from the press release describes Eurolink.

Developed by National Grid Ventures, the Eurolink multi-purpose interconnector (MPI) is designed to harness the increasing volumes of offshore wind power in the North Sea and has the potential to power approximately 1.8 million homes. It will enable the connection of offshore wind farms to both the British and Dutch electricity grids via an interconnector, enabling the transport of clean electricity from where it’s produced to where it’s needed most.

And this paragraph describes Sea Link.

Developed by National Grid Electricity Transmission, Sea Link will add additional capacity to the electricity network in Suffolk and Kent, enabling low carbon and green energy to power local homes and businesses and be transported around the country. The proposals outline a preferred route of 10km of onshore and 140km of undersea cables, together with potential landfall and converter station locations at the proposed Friston substation in Suffolk and in Richborough in Kent.

These two new interconnectors would appear to open up the delivery of green electricity to the South-East of England and the Continent.

As I’ve said before, there doesn’t be any shortage of money to build wind farms and interconnectors between Great Britain, Belgium and The Netherlands.

How Much Wind Capacity Is Lined Up Around The South-East Of England?

Wind farms listed in the area include.

  • Operation – Dudgeon – 402 MW
  • Operation – East Anglia One – 714 MW
  • Operation – Greater Gabbard – 504 MW
  • Operation – Gunfleet Sands – 184 MW
  • Operation -Kentish Flats – 140 MW
  • Operation – London Array – 630 MW
  • Operation – Rampion – 400 MW
  • Operation – Scoby Sands – 60 MW
  • Operation – Sheringham Shoal – 317 MW
  • Operation – Thanet – 300 MW
  • Proposed – East Anglia Three – 1372 MW
  • Proposed – Norfolk Boreas – 1386 MW
  • Exploratory – East Anglia One North – 800 MW
  • Exploratory – East Anglia Two – 900 MW
  • Exploratory – Rampion 2 Extension – 1200 MW
  • Exploratory – Norfolk Vanguard – 1800 MW
  • Exploratory – North Falls – 504 MW
  • Exploratory – Sheringham Shoal and Dudgeon Extensions – 719 MW

Note.

  1. These wind farms total to 12.3 GW.
  2. As the UK needs about 23 GW, these wind farms can power about half the UK.
  3. But no matter, as the East Anglian Array is planned to go to 7.2 GW and only 4.7 GW is so far operational or planned.
  4. So there could be up to another 2.5 GW to come.

This is not bad news for Rishi Sunak’s first days in office.

There’s More To Come

The National Grid press release finishes with these two paragraphs.

Last year, National Grid Ventures also ran a non-statutory consultation on Nautilus, a proposed MPI linking Britain and Belgium, which proposed a connection at Friston. National Grid Ventures is now investigating the potential to move the Nautilus MPI project to the Isle of Grain in Kent.

Much of the UK’s electricity network was built in the 1960s when the country was more reliant on fossil fuels. Today, we need to connect huge volumes of renewable power, such as offshore wind, to the network, to help deliver the government’s energy security strategy and net zero targets and to transition to a cleaner, more affordable, and more independent energy system. New infrastructure, and network upgrades are necessary to get the new clean energy from where it’s generated to where it’s needed.In addition to these proposals in Suffolk and Kent (and the East Anglia GREEN proposals which are currently being consulted on) the need for new network infrastructure has also been identified in North and South Wales, the Scottish Islands and West Coast, the East Coast of Scotland and Aberdeenshire, Lancashire, North-East England, and Yorkshire & Humber.

National Grid have numerous plans to connect up all the renewable energy being developed.

October 26, 2022 Posted by | Energy | , , , , , , , | 1 Comment

Plan To Build £150m Green Hydrogen Plant At Felixstowe Port

The title of this post, is the same as that of this article in The Times.

These two paragraphs introduce the project.

A £150 million green hydrogen plant is to be built at the UK’s busiest container port according to proposals by ScottishPower, it emerged yesterday.

The energy company has devised plans for a 100MW plant at the Port of Felixstowe which will provide fuel to power trains, trucks and ships.

There’s a lot more to this project than it would appear at first.

Where Will The Electrolyser Be Sited?

The Times article says this.

The site will be around the size of a football pitch, on brownfield land within the port.

I have flown my virtual helicopter over the port and there could be a couple of suitable football pitch-sized plots.

Where Will The Electricity Come From?

The East Anglia Array is a proposed massive series of offshore wind farms, which will be about thirty miles off the Suffolk coast.

Wikipedia says this about the size.

Up to six individual projects could be set up in the area with a maximum capacity of up to 7.2 GW.

But the main thing about the East Anglian Array is that it is being developed by a partnership of ScottishPower and Vattenfall.

Negotiations shouldn’t be difficult.

This Google Map shows the town of Felixstowe.

Note.

  1. The Ports of Felixstowe and Harwich are opposite each other on the two banks of the River Orwell.
  2. The power cable to the East Anglia Array comes ashore at Bawdsey in the North-East corner of the map.
  3. The Port of Felixstowe has two rail links, which are not electrified.

I suspect that the electric power to the electrolyser might well be routed underwater to the Port of Felixstowe either from Bawdsey or possibly direct from the wind farm.

A Meeting With A Crane Driver

I used to regularly go to Ipswich Town away matches and at one match, I met a senior crane operator from the Port of Felixstowe. We got talking about electrifying the rail link to the port and decarbonisation of the port in general.

He was adamant that electrification of the rail lines in the port, wouldn’t be a good idea as containers occasionally get dropped or crane drivers aren’t as accurate as they should be.

Hydrogen-Powered Freight Locomotives

When, I told him about the possibilities of hydrogen rail locomotives, he felt this was the way to go, as no rail electrification would be needed in the port.

Hydrogen-electric hybrid locomotives would also be able to take containers cross-country to the main electrified routes to the North and West, where they would raise their pantographs and use electric power.

How many trucks would be removed from the A14, A1 and M6?

Will Greater Anglia Convert Their Class 755 Trains to Hydrogen?

Class 755 trains have a short PowerPack in the middle and are designed for conversion to hydrogen-electric operation.

Note the PowerPack has four slots for diesel engines, batteries or hydrogen fuel-cells.

A Better Working Environment

But my fellow supporter felt the biggest gain in the port, would come with replacement or updating of all the vehicles and handling equipment, as if all these machines were hydrogen-powered, this would greatly improve the working conditions for the dock workers.

ScottishPower’s Vision

This press release on ScottishPower’s web site is entitled ScottishPower Vision For Green Hydrogen Fuels Hub At Port Of Felixstowe.

Conclusion

The Port of Felixstowe is doing the planning for this in the right way, as ensuring the hydrogen supply in the port first, is the logical way to transition to hydrogen power.

But then, I’ve watched the Port of Felixstowe grow since the 1960s and they usually get their decisions right.

The press release starts with these bullet points.

  • ScottishPower explores green hydrogen at Port of Felixstowe to help decarbonise the UK’s busiest port.
  • The project could help kick-start the low carbon transformation of the UK’s heavy transport sector.
  • 100MW facility could deliver up to 40 tonnes of green hydrogen per day – enough to power 1300 hydrogen trucks.
  • International export also being explored.

And these two paragraphs.

ScottishPower, with Hutchison Ports, is exploring the opportunity to develop, build and operate a multi-hundred MW green hydrogen production facility at the Port of Felixstowe – with the potential to decarbonise industry and transportation in the region.
Both companies have set out their vision to help create a greener port, which could provide clean fuel for customers at Britain’s busiest container port.

Plans are being developed to use green hydrogen for onshore purposes, such as road, rail and industrial use, with the potential to create liquid forms, such as green ammonia or e-methanol. This could, in turn, provide clean fuels for shipping and aviation, and create opportunities for cost-effective export to international markets. The project aims to continue engineering and site development works to align with customer demand from 2025 onwards.

It is certainly a very extremely ambitious vision!

But then the county of my conception, has a tremendous determination to succeed. And often against all conventional logic!

 

August 9, 2022 Posted by | Hydrogen, Transport/Travel | , , , , , , , , , | 1 Comment

Is There A Need For A Norfolk-Suffolk Interconnector?

The coast of East Anglia from the Wash to the Haven Ports of Felixstowe, Harwich and Ipswich is becoming the Energy Coast of England.

Starting at the Wash and going East and then South, the following energy-related sites or large energy users are passed.

Bicker Fen Substation

Bicker may only be a small hamlet in Lincolnshire, but it is becoming increasingly important in supplying energy to the UK.

Nearby is Bicker Fen substation, which connects or will connect the following to the National Grid.

  • The 26 MW Bicker Fen onshore windfarm.
  • The 1,400 MW interconnector from Denmark called Viking Link.
  • The proposed 857 MW offshore wind farm Triton Knoll.

This Google Map shows the location of Bicker Fen with respect to The Wash.

Bicker Fen is marked by the red arrow.

The Google Map shows the substation.

It must be sized to handle over 2 GW, but is it large enough?

Dudgeon Offshore Wind Farm

The Dudgeon offshore wind farm is a 402 MW wind farm, which is twenty miles off the North Norfolk coast.

  • It has 67 turbines and an offshore substation.
  • It is connected to the shore at Weybourne on the coast from where an underground cable is connected to the National Grid at Necton.
  • It became operational in Oct 2017.
  • Equinor and Statkraft are part owners of the windfarm and this is the home page of the wind farm’s web site.
  • Equinor is the operator of the wind farm.

This Google Map shows the location of Weybourne on the coast.

Note.

  1. Weybourne is in the middle on the coast.
  2. Sheringham is on the coast in the East.
  3. Holt is on the Southern edge of the map almost South of Weybourne.

This second map shows the location of the onshore substation at Necton, with respect to the coast.

Note.

  1. The Necton substation is marked by a red arrow.
  2. Holt and Sheringham can be picked out by the coast in the middle.
  3. Weybourne is to the West of Sheringham.
  4. Necton and Weybourne are 35 miles apart.

Digging in the underground cable between Necton and Weybourne might have caused some disruption.

Looking at Weybourne in detail, I can’t find anything that looks like a substation. So is the Necton substation connected directly to Dudgeon’s offshore substation?

Sheringham Shoal Offshore Wind Farm

The Sheringham Shoal offshore wind farm is a 316.8 MW wind farm, which is eleven miles off the North Norfolk coast.

  • It has 88 turbines and two offshore substations.
  • As with Dudgeon, it is connected to the shore at Weybourne on the coast.
  • But the underground cable is connected to an onshore substation at Salle and that is connected to the National Grid at Norwich.
  • It became operational in Sept 2012.
  • Equinor and Statkraft are part owners of the windfarm and this is the home page of the wind farm’s web site.
  • Equinor is the operator of the wind farm.

This second map shows the location of the onshore substation at Salle, with respect to the coast.

Note.

  1. The Salle substation is marked by a red arrow.
  2. Holt, Weybourne and Sheringham can be picked out by the coast in the middle.
  3. Weybourne is to the West of Sheringham.
  4. Salle and Weybourne are 13.5 miles apart.

Could the following two statements be true?

  • As the Sheringham Shoal wind farm was built first, that wind farm was able to use the shorter route.
  • It wasn’t built large enough to be able to handle the Dudgeon wind farm.

The statements would certainly explain, why Dudgeon used a second cable.

Extending The Dudgeon And Sheringham Shoal Wind Farms

Both the Dudgeon And Sheringham Shoal web sites have details of the proposed join extension of both wind farms.

This is the main statement on the Overview page.

Equinor has been awarded an Agreement for Lease by the Crown Estate, the intention being to seek consents to increase the generating capacity of both the Sheringham Shoal Offshore Wind Farm and the Dudgeon Offshore Wind Farm.

They then make three points about the development.

  • Equinor is proposing a joint development of the two projects with a common transmission infrastructure.
  • As part of the common DCO application, the Extension Projects have a shared point of connection at the National Grid Norwich Main substation.
  • These extension projects will have a combined generating capacity of 719MW which will make an important contribution to the UK’s target of 30GW of electricity generated by offshore wind by 2030.

This statement on the Offshore Location page, describes the layout of the wind farms.

The Sheringham Shoal Offshore Wind Farm extension is to the north and the east of the existing wind farm, while its Dudgeon counterpart is to the north and south east of the existing Dudgeon Offshore Wind Farm site. The proposed extension areas share the boundaries with its existing wind farm site.

They then make these two important points about the development.

  • Equinor is seeking to develop the extension project with a joint transmission infrastructure. A common offshore substation infrastructure is planned to be located in the Sheringham Shoal wind farm site.
  • The seabed export cable which will transmit the power generated by both wind farm extensions will make landfall at Weybourne.

There is also this map.

Note.

  1. The purple line appears to be the UK’s ten mile limit.
  2. The Sheringham Shoal Extension is outlined in red.
  3. The Dudgeon Extension is outlined in blue.
  4. The black lines appear to be the power cables.

I suspect the dotted blue lines are shipping routes sneaking their way through the turbines.

This statement on the Onshore Location page, describes the layout of the offshore and onshore cables.

A new seabed export cable will bring the electricity generated by both the Sheringham Shoal and Dudgeon Offshore Wind Farm extensions to shore at Weybourne, on the coast of Norfolk.

They then make these two important points about the development.

  • From there a new underground cable will be installed to transmit that power to a new purpose built onshore substation, which will be located within a 3km radius of the existing Norwich main substation, south of Norwich. This will be the National Grid network connection point for the electricity from both wind farm extensions.
  • The power will be transmitted from landfall to the substation using an HVAC system which eliminates the need for any relay stations along the onshore cable route.

There is also this map.

It will be a substantial undertaking to build the underground cable between Weybourne and South of Norwich.

Bacton Gas Terminal

The Bacton gas terminal is a complex of six gas terminals about ten miles East of Cromer.

  • It lands and processes gas from a number of fields in the North Sea.
  • It hosts the UK end of the BBL pipeline to The Netherlands.
  • It hosts the UK end of the Interconnector to Zeebrugge in Belgium.
  • The Baird and Deborah fields, which have been developed as gas storage, are connected to the gas terminal. They are both mothballed.

This Google Map shows the location of the terminal.

Note.

  1. The Bacton gas terminal is marked by a red arrow.
  2. Sheringham is in the North West corner of the map.
  3. Cromer, Overstrand, Trimingham and Mundesley are resort towns and villages along the coast North of Bacton.

This second map shows the Bacton gas terminal in more detail.

Would you want to have a seaside holiday, by a gas terminal?

Norfolk Boreas And Norfolk Vanguard

Norfolk Boreas and Norfolk Vanguard are two wind farms under development by Vattenfall.

  • Norfolk Boreas is a proposed 1.8 GW wind farm, that will be 45 miles offshore.
  • Norfolk Vanguard is a proposed 1.8 GW wind farm, that will be 29 miles offshore.

This map shows the two fields in relation to the coast.

Note.

  1. The purple line appears to be the UK’s ten mile limit.
  2. Norfolk Boreas is outlined in blue.
  3. Norfolk Vsnguard is outlined in orange.
  4. Cables will be run in the grey areas.

This second map shows the onshore cable.

Note.

  1. The cables are planned to come ashore between Happisburgh and Eccles-on-Sea.
  2. Bacton gas terminal is only a short distance up the coast.
  3. The onshore cable is planned to go from here across Norfolk to the Necton substation.

But all of this has been overturned by a legal ruling.

This article on the BBC is entitled Norfolk Vanguard: Ministers Wrong Over Wind Farm Go-Ahead, Says Judge.

These are the first four paragraphs.

A High Court judge has quashed permission for one of the world’s largest offshore wind farms to be built off the east coast of England.

The Norfolk Vanguard Offshore Wind Farm was granted development consent in July by the Secretary of State for Business, Energy and Industrial Strategy (BEIS).

But Mr Justice Holgate overturned the decision following legal action from a man living near a planned cable route.

A Department for BEIS spokeswoman said it was “disappointed by the outcome”.

I bet the spokeswoman was disappointed.

Vattenfall and the BEIS will go back to the drawing board.

But seriously, is it a good idea to dig an underground cable all the way across Norfolk or in these times build a massive overhead cable either?

Perhaps the solution is to connect the Norfolk Boreas And Norfolk Vanguard wind farms to a giant electrolyser at Bacton, which creates hydrogen.

  • The underground electricity cable across Norfolk would not be needed.
  • Bacton gas terminal is only a few miles up the coast from the cable’s landfall.
  • The UK gets another supply of gas.
  • The hydrogen is blended with natural gas for consumption in the UK or Europe.
  • A pure hydrogen feed can be used to supply hydrogen buses, trucks and other vehicles, either by tanker or pipeline.
  • Excess hydrogen could be stored in depleted gas fields.

The main benefit though, would be that it would transform Bacton gas terminal from a declining asset into Norfolk’s Hydrogen Powerhouse.

Great Yarmouth And Lowestoft

Great Yarmouth Outer Harbour and the Port of Lowestoft have not been the most successful of ports in recent years, but with the building of large numbers of wind farms, they are both likely to receive collateral benefits.

I wouldn’t be surprised to see the support ships for the wind farms switching to zero-carbon power, which would require good electrical connections to the ports to either charge batteries or power electrolysers to generate hydrogen.

Sizewell

Sizewell has only one nuclear power station at present; Sizewell B, but it could be joined by Sizewell C or a fleet of Small Modular Reactors (SMR).

The Sizewell Overhead Transmission Line

Sizewell also has a very high capacity overhead power line to Ipswich and the West.

I doubt, it would be possible to build an overhead transmission line like this today.

Sizewell And Hydrogen

EdF, who own the site are involved with Freeport East and may choose to build a large electrolyser in the area to create hydrogen for the Freeport.

East Anglia Array

The East Anglia Array will be an enormous wind farm., comprising up to six separate projects.

It will be thirty miles offshore.

It could generate up to 7.2 GW.

The first project East Anglia One is in operation and delivers 714 MW to a substation in the Deben Estuary, which connects to the Sizewell high-capacity overhead power line.

Most projects will be in operation by 2026.

Freeport East

As the Freeport develops, it will surely be a massive user of both electricity and hydrogen.

Problems With The Current Electricity Network

I don’t believe that the current electricity network, that serves the wind farms and the large energy users has been designed with the number of wind farms we are seeing in the North Sea in mind.

Every new windfarm seems to need a new connection across Norfolk or Suffolk and in Norfolk, where no high-capacity cables exist, this is stirring up the locals.

There is also no energy storage in the current electricity network, so at times, the network must be less than efficient and wind turbines have to be shut down.

Objections To The Current Policies

It is not difficult to find stories on the Internet about objections to the current policies of building large numbers of wind farms and the Sizewell C nuclear power station.

This article on the East Anglia Daily Times, which is entitled Campaigners Unite In Calling For A Pause Before ‘Onslaught’ Of Energy Projects ‘Devastates’ Region is typical.

This is the first paragraph.

Campaigners and politicians have called on the Government to pause the expansion of the energy industry in Suffolk, which they fear will turn the countryside into an “industrial wasteland” and hit tourism.

The group also appear to be against the construction of Sizewell C.

I feel they have a point about too much development onshore, but I feel that if the UK is to thrive in the future we need an independent zero carbon energy source.

I also believe that thousands of wind farms in the seas around the UK and Ireland are the best way to obtain that energy.

Blending Hydrogen With Natural Gas

Blending green hydrogen produced in an electrolyser  with natural gas is an interesting possibility.

  • HyDeploy is a project to investigate blending up to 20 % of green hydrogen in the natural gas supply to industrial and domestic users.
  • Partners include Cadent, ITM Power, Keele University and the Health and Safety Executive.
  • Natural gas naturally contains a small amount of hydrogen anyway.
  • The hydrogen gas would be distributed to users in the existing gas delivery network.

I wrote about HyDeploy in a post called HyDeploy.

Thje only loser, if hydrogen were to be blended with natural gas would be Vlad the Poisoner, as he’d sell less of his tainted gas.

An Interconnector Between Bicker Fen And Freeport East

I believe that an electricity interconnector between at least Bicker Fen and Freeport East could solve some of the problems.

My objectives would be.

  • Avoid as much disruption on the land as possible.
  • Create the capacity to deliver all the energy generated to customers, either as electricity or hydrogen.
  • Create an expandable framework, that would support all the wind farms that could be built in the future.

The interconnector would be a few miles offshore and run along the sea-bed.

  • This method of construction is well proven.
  • It was used for the Western HVDC Link between Hunterston in Scotland and Connah’s Quay in Wales.
  • Most wind farms seem to have existing substations and these would be upgraded to host the interconnector.

Connections en route would include.

Dudgeon Offshore Wind Farm

The interconnector would connect to the existing offshore substation.

Sheringham Shoal Wind Farm

The interconnector would connect to the existing offshore substation.

Dudgeon and Sheringham Shoal Extension Offshore Wind Farms

These two wind farms could be connected directly to the interconnector, if as planned, they shared an offshore substation in the Sheringham Shoal Extension offshore wind farm.

Bacton Gas Terminal

I would connect to the Bacton Gas Terminal, so that a large electrolyser could be installed at the terminal.

The hydrogen produced could be.

  • Stored in depleted gas fields connected to the terminal.
  • Blended with natural gas.
  • Exported to Europe through an interconnector.
  • Supplied to local users by truck or pipeline.

After all, the terminal has been handling gas for over fifty years, so they have a lot of experience of safe gas handling.

Norfolk Boreas And Norfolk Vanguard

These two wind farms could be connected directly to the interconnector, if they shared an offshore substation.

It would also help to appease and silence the objectors, if there was no need to dig up half of Norfolk.

Great Yarmouth And Lowestoft

It might be better, if these ports were supplied from the interconnector.

  • Either port could have its own electrolyser to generate hydrogen, which could be.
  • Used to power ships, trucks and port equipment.
  • Liquefied and exported in tankers.
  • Used to supply local gas users.
  • Hydrogen could be supplied to a converted Great Yarmouth power station.

Both Great Yarmouth and Lowestoft could become hydrogen hub towns.

Sizewell

This site has a high-capacity connection to the National Grid. This connection is a big eyesore, but it needs to run at full capacity to take electricity from the Energy Coast to the interior of England.

That electricity can come from Sizewell B and/or Sizewell C nuclear power stations or the offshore wind farms.

East Anglia Array

There would probably need to be a joint offshore substation to control the massive amounts of electricity generated by the array.

Currently, the only wind farm in operation of this group is East Anglia One, which uses an underground cable connection to the Sizewell high-capacity connection to the Bullen Lane substation at Bramford.

Freeport East, Ipswich And Bullen Lane Substation

This Google Map shows the area between Ipswich and the coast.

Note.

  1. Sizewell is in the North-East corner of the map.
  2. Felixstowe, Harwich and Freeport East are at the mouth of the rivers Orwell and Stour.
  3. The Bullen Lane substation is to the West of Ipswich and shown by the red arrow.

I would certainly investigate the possibility of running an underwater cable up the River Orwell to connect the Southern end of the interconnector Between Bicker Fen And Freeport East.

This Google Map shows the Bullen Lane Substation.

It looks impressive, but is it big enough to handle all the electricity coming ashore from the offshore wind farms to the East of Suffolk and the electricity from the power stations at Sizewell?

Conclusion

I believe there are a lot of possibilities, that would meet my objectives.

In addition, simple mathematics says to me, that either there will need to be extra capacity at both Bicker Fen and Bullen Lane substations and onward to the rest of the country, or a large electrolyser to convert several gigawatts of electricity into hydrogen for distribution, through the gas network.

 

 

January 30, 2022 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , , , , | 7 Comments

Could Norfolk And Suffolk Be Powered By Offshore Wind?

This week this article on the BBC was published, which had a title of Government Pledges £100m For Sizewell Nuclear Site.

These are the first three paragraphs.

The government is putting up £100m to support the planned Sizewell C nuclear plant in Suffolk, Business and Energy Secretary Kwasi Kwarteng has announced.

The investment marks the latest stage in efforts to build the £20bn reactor on the east coast of England.

However, it does not commit the government to approving the project, which is still subject to negotiations.

My view of the proposed Sizewell C nuclear plant is that of an engineer, who used to live within thirty minutes of the Sizewell site.

  • Hinckley Point C power station, which is currently being constructed, will have a nameplate capacity of 3.26 GW.
  • Sizewell C would probably be to a similar design and capacity to Hinckley Point C.
  • Sizewell C would likely be completed between 2033-2036.
  • Sizewell B is a 1250 MW station, which has a current closing date of 2035, that could be extended to 2055.
  • East Anglia and particularly the mega Freeport East, that will develop to the South at the Ports of Felixstowe and Harwich will need more electricity.
  • One of the needs of Freeport East will be a large supply of electricity to create hydrogen for the trains, trucks, ships and cargo handling equipment.
  • Sizewell is a large site, with an excellent connection to the National Grid, that marches as a giant pair of overhead cables across the Suffolk countryside to Ipswich.

But.

  • We still haven’t developed a comprehensive strategy for the management of nuclear waste in the UK. Like paying for the care of the elderly and road pricing, it is one of those problems, that successive governments have kept kicking down the road, as it is a big vote loser.
  • I was involved writing project management software for forty years and the building of large nuclear power plants is littered with time and cost overruns.
  • There wasn’t a labour problem with the building of Sizewell B, as engineers and workers were readily available. But with the development of Freeport East, I would be very surprised if Suffolk could provide enough labour for two mega-projects after Brexit.
  • Nuclear power plants use a lot of steel and concrete. The production of these currently create a lot of carbon dioxide.
  • There is also a large number of those objecting to the building of Sizewell C. It saddened me twenty-five years ago, that most of the most strident objectors, that I met, were second home owners, with no other connection to Suffolk.

The older I get, the more my experience says, that large nuclear power plants aren’t always a good idea.

Small Modular Nuclear Reactors

In Is Sizewell The Ideal Site For A Fleet Of Small Modular Nuclear Reactors?, I looked at building a fleet of small modular nuclear reactors at Sizewell, instead of Sizewell C.

I believe eight units would be needed in the fleet to produce the proposed 3.26 GW and advantages would include.

  • Less land use.
  • Less cost.
  • Less need for scarce labour.
  • Easier to finance.
  • Manufacturing modules in a factory should improve quality.
  • Electricity from the time of completion of unit 1.

But it would still be nuclear.

Wind In The Pipeline

Currently, these offshore wind farms around the East Anglian Coast are under construction, proposed or are in an exploratory phase.

  • East Anglia One – 714 MW – 2021 – Finishing Construction
  • East Anglia One North 800 MW – 2026 – Exploratory
  • East Anglia Two – 900 MW – 2026 – Exploratory
  • East Anglia Three – 1400 MW – 2026 – Exploratory
  • Norfolk Vanguard – 1800 MW – Exploratory
  • Norfolk Boreas – 1800 MW – Exploratory
  • Sheringham Shoal/Dudgeon Extension – 719 MW – Exploratory

Note.

  1. The date is the possible final commissioning date.
  2. I have no commissioning dates for the last three wind farms.
  3. The East Anglia wind farms are all part of the East Anglia Array.

These total up to 8.13 GW, which is in excess of the combined capacity of Sizewell B and the proposed Sizewell C, which is only 4.51 GW.

As it is likely, that by 2033, which is the earliest date, that Sizewell C will be completed, that the East Anglia Array will be substantially completed, I suspect that East Anglia will not run out of electricity.

But I do feel that to be sure, EdF should try hard to get the twenty year extension to Sizewell B.

The East Anglia Hub

ScottishPower Renewables are developing the East Anglia Array and this page on their web site, describes the East Anglia Hub.

This is the opening paragraph.

ScottishPower Renewables is proposing to construct its future offshore windfarms, East Anglia THREE, East Anglia TWO and East Anglia ONE North, as a new ‘East Anglia Hub’.

Note.

  1. These three wind farms will have a total capacity of 3.1 GW.
  2. East Anglia ONE is already in operation.
  3. Power is brought ashore at Bawdsey between Felixstowe and Sizewell.

I would assume that East Anglia Hub and East Anglia ONE will use the same connection.

Norfolk Boreas and Norfolk Vanguard

These two wind farms will be to the East of Great Yarmouth.

This map from Vattenfall web site, shows the position of the two wind farms.

Note.

  1. Norfolk Boreas is outlined in blue.
  2. Norfolk Vanguard is outlined in orange.
  3. I assume the grey areas are where the cables will be laid.
  4. I estimate that the two farms are about fifty miles offshore.

This second map shows the landfall between Eccles-on-Sea and Happisburgh.

Note the underground cable goes half-way across Norfolk to Necton.

Electricity And Norfolk And Suffolk

This Google Map shows Norfolk and Suffolk.

Note.

  1. The red arrow in the North-West corner marks the Bicker Fen substation that connects to the Viking Link to Denmark.
  2. The East Anglia Array  connects to the grid at Bawdsey in the South-East corner of the map.
  3. Sizewell is South of Aldeburgh in the South-East corner of the map.
  4. The only ports are Lowestoft and Yarmouth in the East and Kings Lynn in the North-West.

There are few large towns or cities and little heavy industry.

  • Electricity usage could be lower than the UK average.
  • There are three small onshore wind farms in Norfolk and none in Suffolk.
  • There is virtually no high ground suitable for pumped storage.
  • There are lots of areas, where there are very few buildings to the square mile.

As I write this at around midday on a Saturday at the end of January, 49 % of electricity in Eastern England comes from wind, 20 % from nuclear and 8 % from solar. That last figure surprised me.

I believe that the wind developments I listed earlier could provide Norfolk and Suffolk with all the electricity they need.

The Use Of Batteries

Earlier, I talked of a maximum of over 7 GW of offshore wind around the cost of Norfolk and Suffolk, but there is still clear water in the sea to be filled between the existing and planned wind farms.

Batteries will become inevitable to smooth the gaps between the electricity produced and the electricity used.

Here are a few numbers.

  • East Anglian Offshore Wind Capacity – 8 GW
  • Off-Peak Hours – Midnight to 0700.
  • Typical Capacity Factor Of A Windfarm – 20 % but improving.
  • Overnight Electricity Produced at 20 % Capacity Factor – 11.2 GWh
  • Sizewell B Output – 1.25 GW
  • Proposed Sizewell C  Output – 3.26 GW
  • Largest Electrolyser – 24 MW
  • World’s Largest Lithium-Ion Battery at Moss Landing – 3 GWh
  • Storage at Electric Mountain – 9.1 GWh
  • Storage at Cruachan Power Station – 7.1 GWh

Just putting these large numbers in a table tells me that some serious mathematical modelling will need to be performed to size the batteries that will probably be needed in East Anglia.

In the 1970s, I was involved in three calculations of a similar nature.

  • In one, I sized the vessels for a proposed polypropylene plant for ICI.
  • In another for ICI, I sized an effluent treatment system for a chemical plant, using an analogue computer.
  • I also helped program an analysis of water resources in the South of England. So if you have a water shortage in your area caused by a wrong-sized reservoir, it could be my fault.

My rough estimate is that the East Anglian battery would need to be at least a few GWh and capable of supplying up to the output of Sizewell B.

It also doesn’t have to be a single battery. One solution would probably be to calculate what size battery is needed in the various towns and cities of East Anglia, to give everyone a stable and reliable power supply.

I could see a large battery built at Sizewell and smaller batteries all over Norfolk and Suffolk.

But why stop there? We probably need appropriately-sized batteries all over the UK, with very sophisticated control systems using artificial intelligent working out, where the electricity is best stored.

Note that in this post, by batteries, I’m using that in the loosest possible way. So the smaller ones could be lithium-ion and largest ones could be based on some of the more promising technologies that are under development.

  • Highview Power have an order for a 50 MW/500 MWh battery for Chile, that I wrote about in The Power Of Solar With A Large Battery.
  • East Anglia is an area, where digging deep holes is easy and some of Gravitricity’s ideas might suit.
  • I also think that eventually someone will come up with a method of storing energy using sea cliffs.

All these developments don’t require large amounts of land.

East Anglia Needs More Heavy Consumers Of Electricity

I am certainly coming to this conclusion.

Probably, the biggest use of electricity in East Anglia is the Port of Felixstowe, which will be expanding as it becomes Freeport East in partnership with the Port of Harwich.

One other obvious use could be in large data centres.

But East Anglia has never been known for industries that use a lot of electricity, like aluminium smelting.

Conversion To Hydrogen

Although the largest current electrolyser is only 24 MW, the UK’s major electrolyser builder; ITM Power, is talking of a manufacturing capacity of 5 GW per year, so don’t rule out conversion of excess electricity into hydrogen.

Conclusion

Who needs Sizewell C?

Perhaps as a replacement for Sizewell B, but it would appear there is no pressing urgency.

 

 

January 29, 2022 Posted by | Computing, Energy, Energy Storage | , , , , , , , , , , , , , , , , , , , , | 8 Comments

Strawberries And Beer

This was my afternoon snack whilst writing on the Internet.

Beer from Suffolk and strawberries from Herefordshire.

 

 

May 12, 2021 Posted by | Food | , , , , | 2 Comments

Felixstowe And Harwich Ports Submit Bid For ‘Freeport’ Status

The title of this post is the same as this article on the BBC.

These are the first three paragraphs.

A bid for “freeport” status for two existing ports has been submitted after the project was approved by a council.

East Suffolk Council unanimously backed the bid for the Port of Felixstowe and Harwich International to become one of 10 freeport facilities across the UK.

Freeport East would see owners Hutchison operate a single custom zone covering both coastal ports.

I think, some will think this a bit cheeky, but I think it is a product of the characters of the counties of Essex and Suffolk.

I was conceived in Suffolk and have probably spent half my life in the county.

It’s a county that thinks big.

  • Is there another woman, who as Boudica did, assembled an army of hundreds of thousands and attempted to throw an unwelcome invader out of her country?
  • The history of her tribe; the Iceni is closely tied, according to some historians, to the development of the thoroughbred racehorse at New Horse Market or Newmarket as it is known today!
  • Newmarket is to horse racing as St. Andrews is to golf.
  • The town is home of about 3,500 horses and is a major centre for horse and animal health.
  • Newmarket Heath is a Site of Special Scientific Interest and is to be the largest area of mown grass in the world.
  • Suffolk sheep are one of the most numerous sheep breeds in the world, having been exported all over the world.
  • Suffolk is the only county in England with its own breed of sheep, cattle (Red Poll) and horse (Suffolk Horse)
  • Bury St. Edmunds Abbey was one of the largest churches in England.

When I was about seven, the Port of Felixstowe was just a small dock exporting grain and now it the busiest container port in the UK and the eighth in Europe.

It is no surprise to me, that Felixstowe and Harwich want to be a Freeport, so they can expand further.

There have already been related news and media reports.

Freeport East Web Site

The Freeport East web site is at www.freeporteast.com.

Read these sections.

It is an ambitious vision. As someone, who believes we must innovate, this paragraph from the Innovation section strikes the right tone.

Beyond the energy sector, Freeport East will also contribute to wider innovation in the technology sector. Hutchison Ports is already working with Cambridge University and Three UK to develop innovative 5G applications. Hutchison Ports is also working with the New Anglia LEP, Tech East and BT’s research centre at Adastral Park on new telecommunications infrastructure. Freeport East will embed these technological innovations at its heart and help to make the UK a world leader in technological innovation

The web site, also talks about the ports becoming major centres for the development and servicing of renewable energy in the North Sea.

A Little Help From Their Friends

I notice that in some reports, they have joined forces with the University of Cambridge. As Cambridge colleges are big local landowners, this can only be to the benefit of the concept.

A Hydrogen Freeport

This article on the Eadt Anglian Daily Times is entitled Top Ports Could Be Powered By Hydrogen In Major Project.

The project is well-described in the article with this infographic, that shows how nuclear power from Siewell and wind power from the North Sea can come together to decarbonise shipping and the port.

This paragraph sums up the hydrogen project.

At its peak, the power project, which will be delivered in partnership with Ryze-Hydrogen and EDF, developers of the proposed Sizewell C nuclear power station, will produce 1GW of hydrogen – 20% of the 5GW target in the Prime Minister’s Ten Point Plan for a Green Industrial Revolution.

Suffolk is thinking big again!

It certainly does appear, that several ports are following the hydrogen route. On this blog I have mentioned Antwerp, Holyhead and Portsmouth recently.

So what will the hydrogen be used for?

The East Anglian article says this.

The clean fuel would be used to power port equipment, ships, trucks and trains.

Port Equipment

I think the interesting one is port equipment.

  • The chairman of JCB is Anthony Bamford.
  • His son; Jo Bamford owns Ryze Hydrogen.
  • JCB have recently released a hydrogen-powered digger.
  • JCB is mentioned on the infographic.

Could we be seeing a range of hydrogen-powered port equipment, that has been developed by JCB?

Other companies like Hyster are certainly developing hydrogen-powered port equipment.

Ships

Decarbonisation of ships is difficult, as they need a lot of power and it usually comes from that most noxious of fuels; bunker oil.

The Wikipedia entry for bunker oil, has a section called Environmental Issues, where this is said.

Emissions from bunker fuel burning in ships contribute to air pollution levels in many port cities, especially where the emissions from industry and road traffic have been controlled. The switch of auxiliary engines from heavy fuel oil to diesel oil at berth can result in large emission reductions, especially for SO2 and PM. CO2 emissions from bunker fuels sold are not added to national GHG emissions. For small countries with large international ports, there is an important difference between the emissions in territorial waters and the total emissions of the fuel sold.

A lot of work is being done to power ships with hydrogen.

Provide refuelling for hydrogen-powered ships and you’ll get the business.

Trucks

Diesel trucks hauling goods to and from ports contribute to the pollution in the port, but if they are powered by hydrogen, the pollution for workers and neighbours is less.

I can see some freight terminals adopting a policy of No Hydrogen – No Load, with hauliers.

In Holyhead Hydrogen Hub Planned For Wales, I talked about a hydrogen hub at Holyhead. Will the ports of Dover, Felixstowe and Immingham need to have hydrogen refuelling facilities to handle hydrogen trucks hauling goods between the island of Ireland and Europe?

Trains

It is my belief, that hydrogen freight locomotives will be developed, so Felixstowe will need facilities to fuel the trains.

Imagine two highly-automated ports at Felixstowe and Holyhead, both with large supplies of hydrogen.

  • A hydrogen-powered freight train would link the two ports.
  • Hydrogen-powered handling equipment would load and unload the containers.

How many trucks would that take off the roads between Holyhead and Felixstowe?

Conclusion

The Port of Felixstowe is going to use hydrogen to become more efficient and zero-carbon, and make it more attractive to shippers wanting to pay more than lip-service to decarbonisation.

The EU have constantly accused Boris of turning the UK into Singapore-on-Thames!

But here we are creating Singaport-on-the-Haven.

The EU has freeports, so I guess it’s OK.

February 20, 2021 Posted by | Hydrogen, Transport/Travel, World | , , , , , , , , , , | 4 Comments