The Anonymous Widower

The Development Of The Foyers Pumped Storage Scheme

This leaflet from SSE Renewables probably gives as good a record as any others about the development of the Foyers Pumped Storage Scheme.

This is the introduction.

The Foyers Scheme is a 300 Megawatt (MW) combined conventional hydro and pumped storage scheme. 1896 saw the British Aluminium Company commission Foyers for the smelting of aluminium. The plant was in continuous operation for 70 years until it’s closure in 1967. The scheme was promoted by NOSHEB in February 1968 and after receiving statutory approval in April 1969 work started that autumn and was commissioned in 1975 . The high level reservoir is Loch Mhor which was formed under the original development by enlarging and joining Loch Garth and Loch Farraline.

The full catchment area of Loch Mhòr today is now 207 sq km.

Note that NOSHEB stands for North of Scotland Hydro Electric Board.

This Google Map shows Loch Mhòr.

Note.

  1. Loch Ness is in the North West corner of the map.
  2. Loch Mhòr is the loch running diagonally across the map.
  3. Loch Mhòr was originally two separate lochs; Loch Garth in the South-West and Loch Farraline in the North-East.
  4. The power station is on the shores of Loch Ness.

I have found a document on the Internet, that says that the current storage capacity of Loch Mhòr is 10 GWh. That figure, if it is correct, would make the Foyers pumped storage scheme a small amount bigger than Electric Mountain.

The Original Scheme

The original scheme appears to have been a straight hydro-electric scheme with the water running from Loch Mhòr into Loch Ness through turbines. I don’t know how big it was and if anybody does, the figure needs to be inserted in this post. So if you know it, please tell me!

This gazetteer gives the figure at 3750 kW and also this history.

The British Aluminum Company development at Foyers was the first large-scale use of hydropower in Scotland. The scheme was highly influential, proving not only the viability of the technology to produce electricity with water driven turbines, but also that the power could be successfully applied to industrial processes. The British Aluminum Company went on to develop two large smelters in Scotland at Kinlochleven and Lochaber.

The original scheme generated electricity for seventy years.

The Current Scheme

There are effectively two parts of the current scheme, which was created in the early 1970s.

  • The original 3.7 MW turbines have been replaced by a 5 MW turbine in the old power station.
  • A new separate pumped storage power station has been built with two 150 MW pump/turbines.

This paragraph from the leaflet from SSE Renewables, gives brief details of the engineering.

When the station is generating, water flows from Loch Mhor through 2 miles of tunnels and shafts to the power station. When pumping, energy is drawn from the main transmission system at times of low load to drive the two 150 megawatt machines in the reverse direction and pump water from Loch Ness up to Loch Mhor. The existing gravity dam at the outlet of Loch Mhor (231.7m long and 9.14m high) was retained by NOSHEB . Remedial work was carried out on subsidiary earth embankment dams. The waters of the River Fechlin are diverted into Loch Mhor by a tunnel and the channel of the river.

From the complete description in the leaflet, it looks to be sound engineering.

Did Modern Project Management Enable This Scheme?

As someone, who was involved in writing project management software from about 1972, I do wonder if the arrival of ,odern project management around the mid-1960s was one of factors that prompted NOSHEB to carry out this scheme.

Other factors would have been.

  • The original turbines were on their last legs after seventy years of generating electricity.
  • There was a need for more pumped storage.
  • This scheme was feasible.

I would very much like to meet one of the engineers and talk the scheme through.

Conclusion

This power station and its rebuilding as a pumped storage scheme has been carried out to an excellent standard and I wonder if similar techniques can be used to create new pumped storage systems around the world.

February 15, 2022 Posted by | Energy, Energy Storage | , , , , | 7 Comments

A Plea From Michael Portillo

In the latest episode of his Great British Coastal Railways – Helensburgh to Connel, Michael Portillo made a plea to train makers.

Travelling along the scenic West Highland Line, he asked train manufacturers to build a train with a glass roof.

February 15, 2022 Posted by | Design, Transport/Travel | , | 3 Comments

Should The Great Northern And Great Eastern Joint Line Be Electrified?

The Great Northern And Great Eastern Joint Line was created in the Nineteenth Century by the Great Northern Railway and the Great Eastern Railway.

  • The main purpose was to move freight like coal, agricultural products and manufactured goods between Yorkshire and Eastern England.
  • It originally ran between Doncaster and Huntington via Gainsborough, Lincoln, Sleaford, Spalding and March.
  • It had a full length of almost 123 miles.
  • There was a large marshalling yard at Whitemoor near March.

Over the years the line has been pruned a bit and now effectively runs between Doncaster and Peterborough.

  • Trains between Lincoln and March are now routed via Peterborough.
  • It carries upwards of twenty freight trains per day in both directions through Lincoln Central station.
  • Many of the freight trains are going to and from the East Coast ports.
  • The distance between Doncaster and Peterborough is 93.7 miles, as opposed to the 79.6 miles on the East Coast Main Line.
  • The line is not electrified, but it connects to the electrified East Coast Main Line at both ends.

There have been some important developments in recent years.

2015 Freight Upgrade

Wikipedia says this about the major 2015 freight upgrade.

In 2015 a £280 million upgrade of the Joint Line by Network Rail was substantially complete, enabling two freight trains per hour to be diverted from the congested East Coast Main Line; gauge enhancements to enable the passage of 9 ft 6 in (2.90 m) containers were included in the work.

The Sleaford avoiding line had been substantially downgraded since the 1980s and was reinstated to double track as part of the 2015 scheme. Resignalling and modernisation of level crossings was included.

This means that freight trains have an alternative route, that avoids the East Coast Main Line.

Doncaster iPort

Over the last few years the Doncaster iPort has been developed, which is an intermodal rail terminal.

  • It has a size of around 800 acres.
  • The site opened in early 2018.
  • There is a daily train to the Port of Southampton and two daily trains to both Teesport and Felixstowe.
  • The Felixstowe trains would appear to use the Joint Line.

I feel that as the site develops, the Doncaster iPort will generate more traffic on the Joint Line.

This Google Map shows the Doncaster iPort.

There would appear to be plenty of space for expansion.

The Werrington Dive Under

The Werrington Dive Under has been built at a cost of £ 200 million, to remove a bottleneck at the Southern end of the Joint Line, where it connects to the East Coast Main Line.

The Werrington Dive Under was built, so that it could be electrified in the future.

LNER To Lincolnshire

LNER appear to have made a success of a one train per two hours (tp2h) service between London King’s Cross and Lincoln station.

  • LNER have stated, that they want to serve Grimsby and Cleethorpes in the North of the county.
  • North Lincolnshire is becoming important in supporting the wind energy industry in the North Sea.
  • Lincoln is becoming an important university city.
  • Several towns in Lincolnshire probably need a service to Peterborough and London.
  • In 2019, the Port of Grimsby & Immingham was the largest port in the United Kingdom by tonnage.

I can see an expanded Lincolnshire service from LNER.

Full Digital Signalling Of The East Coast Main Line To The South Of Doncaster

This is happening now and it will have a collateral benefits for the Joint Line.

Most passenger and freight trains will also use the East Coast Main Line, if only for a few miles, which will mean they will need to be fitted for the digital signalling.

This could mean that extending full digital signalling to Lincolnshire will not be a challenging project.

Arguments For Electrification

These are possible arguments for electrification.

Electric Freight Trains To And From The North

It would be another stretch of line, that could accommodate electric freight trains.

An Electrified Diversion Route For East Coast Main Line Expresses

Currently, when there is engineering blockades between Doncaster and Peterborough on the East Coast Main Line, the Hitachi Class 800 and Class 802 trains of Hull Trains and LNER are able to divert using their diesel power.

But the electric trains of LNER and Lumo have to be cancelled.

An electrified diversion route would be welcomed by passengers and train companies.

It would also mean that any trains running from King’s Cross to electrified destinations would not to have any diesel engines.

An Electrified Spine Through Lincolnshire

If there was an electrified spine between Doncaster and Peterborough via Gainsborough, Lincoln, Sleaford and Spalding, these stations would be these distances from the spine.

  • Boston – 16.8 miles
  • Cleethorpes – 47.2 miles
  • Grimsby Town – 43.9 miles
  • Market Rasen – 14.8 miles
  • Skegness – 40.7 miles

Note.

  1. These distances are all possible with battery-electric trains.
  2. Charging would be on the electrified spine and at Skegness and Cleethorpes stations.

All of South Lincolnshire and services to Doncaster would use electric trains.

London Services

London services would be via Spalding and join the East Coast Main Line at Werrington.

  • Boston and Skegness would be served from Sleaford, where the train would reverse.
  • Market Rasen, Grimsby Town and Cleethorpes would be served from Lincoln, where the train would reverse.

This would enable Cleethorpes and Skegness to have at least four trains per day to and from London King’s Cross.

North Lincolnshire Services

There are two train services in North Lincolnshire.

Cleethorpes and Barton-on-Humber.

Cleethorpes and Manchester Airport via Grimsby Town, Scunthorpe, Doncaster, Sheffield and Manchester Piccadilly.

Note.

  1. Cleethorpes would need to have a charger or a few miles of electrification, to charge a train from London.
  2. Doncaster, which is fully electrified is 52.1 miles from Cleethorpes.
  3. Barton-on-Humber is 22.8 miles from Cleethorpes.

Battery-electric trains should be able to handle both services.

Arguments Against Electrification

The only possible arguments against electrification are the disruption that the installation might cause and the unsightly nature of overhead gantries.

Conclusion

The Great Northern and Great Eastern Joint Line should be electrified.

 

 

 

 

February 15, 2022 Posted by | Energy, Transport/Travel | , , , , , , , , , , , | 1 Comment

Rolls-Royce And Hydrogen

This page on the Rolls-Royce web site given their view on hydrogen.

This is the first paragraph.

We see an important role for hydrogen in helping to lower emissions; fuelling buses and lorries as well as for energy storage and home heating. Interest in its use in aviation is growing too, especially to power smaller aircraft using fuel cells. Hydrogen has the potential to power larger aircraft as a direct gas turbine engine fuel, and is being investigated with significant technical and operational challenges needing to be overcome.

Good to see the company confirm later in the page, that hydrogen can be used as fuel in a gas-turbine.

February 15, 2022 Posted by | Hydrogen | , , | 2 Comments

National Grid ESO And Reactive Technologies Launch Flagship Inertia System To Measure Grid Stability

The title of this post is the same as that of this article on Current News.

The first three paragraphs explain the project.

National Grid ESO and Reactive Technologies’ flagship grid stability measurement service has launched today, following the construction of the world’s largest continuously operating grid-scale ultracapacitor.

Using Reactive’s GridMetrix technology, the new services will provide instantaneous data to the grid operator, allowing for more efficient management than relying on estimates.

The ultracapacitor – constructed by Spanish technology group Ingeteam – sends pulses through the grid, which act like underwater sound waves used in sonar. These pulses will enable the ESO to measure power system stability.

As a Control and Electrical Engineer, I can just about get my brain around what is happening, but I do feel the explanation could be better.

  • There is no mention of the size of the capacitor.
  • Capacitors are often used to calm voltages in electrical circuits.
  • How does the capacitor send pulses through the grid? It must be some other piece of kit linked to the capacitor.

In the end though, I don’t care, if it works.

 

February 15, 2022 Posted by | Energy, Energy Storage | , , | Leave a comment