The Anonymous Widower

Should The Great Northern And Great Eastern Joint Line Be Electrified?

The Great Northern And Great Eastern Joint Line was created in the Nineteenth Century by the Great Northern Railway and the Great Eastern Railway.

  • The main purpose was to move freight like coal, agricultural products and manufactured goods between Yorkshire and Eastern England.
  • It originally ran between Doncaster and Huntington via Gainsborough, Lincoln, Sleaford, Spalding and March.
  • It had a full length of almost 123 miles.
  • There was a large marshalling yard at Whitemoor near March.

Over the years the line has been pruned a bit and now effectively runs between Doncaster and Peterborough.

  • Trains between Lincoln and March are now routed via Peterborough.
  • It carries upwards of twenty freight trains per day in both directions through Lincoln Central station.
  • Many of the freight trains are going to and from the East Coast ports.
  • The distance between Doncaster and Peterborough is 93.7 miles, as opposed to the 79.6 miles on the East Coast Main Line.
  • The line is not electrified, but it connects to the electrified East Coast Main Line at both ends.

There have been some important developments in recent years.

2015 Freight Upgrade

Wikipedia says this about the major 2015 freight upgrade.

In 2015 a £280 million upgrade of the Joint Line by Network Rail was substantially complete, enabling two freight trains per hour to be diverted from the congested East Coast Main Line; gauge enhancements to enable the passage of 9 ft 6 in (2.90 m) containers were included in the work.

The Sleaford avoiding line had been substantially downgraded since the 1980s and was reinstated to double track as part of the 2015 scheme. Resignalling and modernisation of level crossings was included.

This means that freight trains have an alternative route, that avoids the East Coast Main Line.

Doncaster iPort

Over the last few years the Doncaster iPort has been developed, which is an intermodal rail terminal.

  • It has a size of around 800 acres.
  • The site opened in early 2018.
  • There is a daily train to the Port of Southampton and two daily trains to both Teesport and Felixstowe.
  • The Felixstowe trains would appear to use the Joint Line.

I feel that as the site develops, the Doncaster iPort will generate more traffic on the Joint Line.

This Google Map shows the Doncaster iPort.

There would appear to be plenty of space for expansion.

The Werrington Dive Under

The Werrington Dive Under has been built at a cost of £ 200 million, to remove a bottleneck at the Southern end of the Joint Line, where it connects to the East Coast Main Line.

The Werrington Dive Under was built, so that it could be electrified in the future.

LNER To Lincolnshire

LNER appear to have made a success of a one train per two hours (tp2h) service between London King’s Cross and Lincoln station.

  • LNER have stated, that they want to serve Grimsby and Cleethorpes in the North of the county.
  • North Lincolnshire is becoming important in supporting the wind energy industry in the North Sea.
  • Lincoln is becoming an important university city.
  • Several towns in Lincolnshire probably need a service to Peterborough and London.
  • In 2019, the Port of Grimsby & Immingham was the largest port in the United Kingdom by tonnage.

I can see an expanded Lincolnshire service from LNER.

Full Digital Signalling Of The East Coast Main Line To The South Of Doncaster

This is happening now and it will have a collateral benefits for the Joint Line.

Most passenger and freight trains will also use the East Coast Main Line, if only for a few miles, which will mean they will need to be fitted for the digital signalling.

This could mean that extending full digital signalling to Lincolnshire will not be a challenging project.

Arguments For Electrification

These are possible arguments for electrification.

Electric Freight Trains To And From The North

It would be another stretch of line, that could accommodate electric freight trains.

An Electrified Diversion Route For East Coast Main Line Expresses

Currently, when there is engineering blockades between Doncaster and Peterborough on the East Coast Main Line, the Hitachi Class 800 and Class 802 trains of Hull Trains and LNER are able to divert using their diesel power.

But the electric trains of LNER and Lumo have to be cancelled.

An electrified diversion route would be welcomed by passengers and train companies.

It would also mean that any trains running from King’s Cross to electrified destinations would not to have any diesel engines.

An Electrified Spine Through Lincolnshire

If there was an electrified spine between Doncaster and Peterborough via Gainsborough, Lincoln, Sleaford and Spalding, these stations would be these distances from the spine.

  • Boston – 16.8 miles
  • Cleethorpes – 47.2 miles
  • Grimsby Town – 43.9 miles
  • Market Rasen – 14.8 miles
  • Skegness – 40.7 miles

Note.

  1. These distances are all possible with battery-electric trains.
  2. Charging would be on the electrified spine and at Skegness and Cleethorpes stations.

All of South Lincolnshire and services to Doncaster would use electric trains.

London Services

London services would be via Spalding and join the East Coast Main Line at Werrington.

  • Boston and Skegness would be served from Sleaford, where the train would reverse.
  • Market Rasen, Grimsby Town and Cleethorpes would be served from Lincoln, where the train would reverse.

This would enable Cleethorpes and Skegness to have at least four trains per day to and from London King’s Cross.

North Lincolnshire Services

There are two train services in North Lincolnshire.

Cleethorpes and Barton-on-Humber.

Cleethorpes and Manchester Airport via Grimsby Town, Scunthorpe, Doncaster, Sheffield and Manchester Piccadilly.

Note.

  1. Cleethorpes would need to have a charger or a few miles of electrification, to charge a train from London.
  2. Doncaster, which is fully electrified is 52.1 miles from Cleethorpes.
  3. Barton-on-Humber is 22.8 miles from Cleethorpes.

Battery-electric trains should be able to handle both services.

Arguments Against Electrification

The only possible arguments against electrification are the disruption that the installation might cause and the unsightly nature of overhead gantries.

Conclusion

The Great Northern and Great Eastern Joint Line should be electrified.

 

 

 

 

February 15, 2022 Posted by | Energy, Transport/Travel | , , , , , , , , , , , | 1 Comment

New ‘HS3’ Link To Yorkshire Proposed By Thinktank After Region’s HS2 Axe

The title of this post, is the same as this article in the Yorkshire Post.

This is the introductory paragraph.

A new “HS3” high-speed rail line between Yorkshire and the Nottinghamshire town of Newark could help make up for the loss of the HS2 eastern leg from Yorkshire, a report by transport think-tank; Greengauge 21 has suggested.

There is also this map from Greengauge 21.

I clipped my copy of the map from this report on Greengauge 21, which is entitled East, West, North And South.

Note.

  1. As in the Integrated Plan For The North And Midlands, Derby, Nottingham and Sheffield have direct connections to London via High Speed Two.
  2. The Derby leg is extended to Sheffield via the existing Midland Main Line.
  3. The Nottingham leg is extended to Newark, where it joins the East Coast Main Line.
  4. A new High Speed Line, which is shown in white and labelled HS3 links Newark to the East Coast Main Line and the line between Leeds and York at a new triangular junction South of Colton Junction.
  5. Part of the current route between Doncaster and Colton Junction is the Selby Diversion, which according to Wikipedia was built for speeds upward of 140 mph.
  6. The route splits in the region of Colton Junction with the Western leg going to Leeds and Bradford and he Northern leg going to York and Newcastle.

I feel this is a better plan than the previous one from High Speed Two.

  • It adds Bradford, Derby and Nottingham to the High Speed Two network.
  • There is a connection to Birmingham and possibly the South West and Wales.
  • The East Coast Main Line is effectively four-tracked between Newark North Gate and York.

I have a few thoughts.

Colton Junction

This junction will feature a lot in this post, so I had better explain where it is.

The Selby Diversion was built in the 1980s to create a new route, which avoided the newly-discovered Selby coalfield.

Colton Junction is about six miles South of York and is at the Northern end of the Selby Diversion.

This Google Map shows the junction.

Note.

  1. The East Coast Main Line going between South-West and North-East across the map.
  2. The railway going North-East leads to York.
  3. The village of Colton is at the top of the map.
  4. Colton Junction is South of the village, where the East Coast Main Line splits.
  5. The line going South-West is the route without electrification to Leeds, used by TransPennine Express and others.

The line going South is the Selby Diversion, used by all trains on the East Coast Main Line.

East Midlands Hub Or East Midlands Parkway

Some reports indicate that a new Birmingham and Nottingham High Speed Line will go via East Midland Parkway station.

  • East Midland Parkway is a fully-functioning four-platform station.
  • It is already operating.
  • There will soon be a large brownfield site next door, when the coal-fired Radcliffe-on-Soar power-station is demolished.
  • It has connections to Nottingham and Sheffield via Derby and Chesterfield.
  • Platforms are probably long enough to handle splitting and joining.
  • An advanced passenger shuttle could be built to East Midlands Airport.

This map from High Speed Two shows the route of the Eastern leg of High Speed Two, where it passes East Midland Parkway station and Radcliffe-on-Soar power-station.

Note.

  1. The coloured line is the route of High Speed Two.
  2. Red indicates viaduct
  3. Yellow indicates cutting.
  4. Green indicates green tunnel.
  5. There is a curious clover-leaf shape  to the East of High Speed Two.

This Google Map shows the same area.

Note

  1. The River Soar and Remembrance Way can be picked out on both maps.
  2. The Midland Main Line runs North-South in the Google Map and passes through East Midlands Parkway station.
  3. It is possible to pick out the curious clover leaf shape to the North of the railway station, where the rail line goes into the power station.
  4. Returning to the High Speed Two map it is possible to pick out the railway and power stations.

This map from High Speed Two shows the route of the Eastern leg of High Speed Two, to the South-West of East Midlands Parkway station.

Note.

  1. The coloured line is the route of High Speed Two.
  2. Red indicates viaduct.
  3. East Midlands Parkway station is in the North-East corner of the map.
  4. The Midland Main Line runs North-South down the Eastern side of the map.

Could the route of High Speed Two be adjusted so that it runs through East Midlands Parkway station?

This Google Map shows a similar area as the second High Speed Two map.

With the exception of the village of Radcliffe-on-Soar, there aren’t many, who would get in the way of the development of a connection between High Speed Two and the Midland Main Line to the South of East Midlands Parkway station.

  • High Speed Two crosses Remembrance Way  in the South West corner of the map, where there is a junction with the M1 and runs diagonally across the map.
  • High Speed Two could probably sneak up the North side of Remembrance Way.
  • The station might need to be moved to the North a bit to give space.
  • The map also shows the space to the East, that will be created with the demolishing of the power station.

Developing East Midlands Parkway instead of East Midlands Hub could be the more affordable option.

High Speed Two’s Eastern Leg Services

This graphic shows High Speed Two’s services before the Eastern Leg was deleted.

Note.

  1. Western Leg services are to the left of the vertical black line.
  2. Eastern Leg services are to the right of the vertical black line.
  3. Blue indicates a full-size service.
  4. Yellow indicates a Classic-Compatible service.

Destinations on the former Eastern Leg get the following services.

  • Chesterfield – 1 tph
  • Darlington – 2 tph
  • Durham – 1 tph
  • East Midlands Hub – 7 tph
  • Leeds – 5 tph
  • Newcastle – 3 tph
  • Sheffield – 2 tph
  • York – 6 tph

Note.

  1. Two trains will split and join at East Midlands Hub or East Midlands Parkway. But given what I said earlier, the split will take place at East Midlands Parkway.
  2. Derby, Chesterfield and Sheffield could get two tph.
  3. If the pattern of the currently proposed High Speed Two service is followed, that would mean that 5tph to Leeds and four tph to York and further North would go through Nottingham.

I suspect that there could be a reduction in either High Speed Services on the Eastern Leg or on the East Coast Main Line.

Splitting And Joining At East Midlands Parkway

Consider.

  • All Northbound services on High Speed Two and the Midland Main Line pass through East Midlands Parkway station in the same direction.
  • All Southbound services on High Speed Two and the Midland Main Line pass through East Midlands Parkway station in the same direction.
  • The four platforms at East Midlands Parkway station will give a lot of flexibility.

If trains split and joined at East Midlands Parkway, there would be no need to reverse to serve Derby, Chesterfield and Sheffield. I can’t see how this could be performed at East Midlands Hub without the Sheffield train reversing. This probably explains why in the original plans for High Speed Two, Sheffield and Chesterfield had their own spur and Derby was not served directly by High Speed Two.

The redesign in the Integrated Rail Plan For The North And Midlands, which abandons the Sheffield spur, probably reduces the costs significantly.

Nottingham

Nottingham will be an extremely busy station with these services running through.

  • High Speed Two – 2 tph – Birmingham Curzon Street and Leeds HS2 via Nottingham – Full-Size – 200 metres
  • High Speed Two – 1 tph – Birmingham Curzon Street and Newcastle via Nottingham, York, Darlington and Durham – Classic-Compatible – 200 metres
  • High Speed Two – 1 tph – London and Leeds HS2 via Nottingham – Classic-Compatible – 200 metres
  • High Speed Two – 1 tph – London and Leeds HS2 via Nottingham – Full-Size – 400 metres
  • High Speed Two – 1 tph – London and Leeds HS2 via Birmingham Interchange and Nottingham  – Full-Size – 400 metres
  • High Speed Two – 1 tph – London and York via Nottingham – Classic-Compatible – 200 metres
  • High Speed Two – 1 tph – London and Newcastle via Nottingham and York – Classic-Compatible – 200 metres
  • High Speed Two – 1 tph – London and Newcastle via Nottingham, York and Darlington – Classic-Compatible – 200 metres
  • East Midlands Railway – 1 tph – London St. Pancras and Nottingham via Kettering, Market Harborough and Leicester  – Class 810
  • East Midlands Railway – 1 tph – London St. Pancras and Nottingham via Kettering, Market Harborough, Leicester, Loughborough, East Midlands Parkway and Beeston – Class 810
  • East Midlands Railway – 1 tph – Liverpool Lime Street and Norwich via Chesterfield, Alfreton, Nottingham, Grantham, Peterborough and several other stations – Class 158/170
  • East Midlands Railway – 1 tph – Crewe and Newark Castle via Nottingham and several other stations – Class 158/170
  • East Midlands Railway – 1 tph – Leicester and Lincoln via East Midlands Parkway, Attenborough, Beeston, Nottingham, Carlton and several other stations – Class 158/170
  • CrossCountry – 1 tph – Cardiff Central and Nottingham via Derby, Spondon, Long Eaton, Beeston and several other stations – Class 170
  • CrossCountry – 1 tph – Birmingham New Street and Nottingham via Derby – Class 170
  • Midlands Connect – 1 tph – Leeds and Bedford via Nottingham and Leicester – Classic-Compatible – 200 metres

Note.

  1. With High Speed Two services London means London Euston and Old Oak Common.
  2. Two High Speed Two services do not stop in Nottingham
  3. With several of these routes I have only put in a few intermediate stations to show the routing of the train at Nottingham.

These services total up to  twelve tph going through Nottingham and four tph terminating at Nottingham from London St. Pancras and Birmingham New Street.

Nottingham station would need to be able to handle the following with respect to through trains.

  • A train every five minutes.
  • Some trains would be 400 metres long.

But there is plenty of space in Nottingham station and High Speed Two’s digital signalling will be able to handle 18 tph.

Nottingham And Newark

The Nottingham and Lincoln Line between Nottingham and Newark appears from my helicopter to be fairly straight.

  • The line is double track.
  • There are eight stations between Nottingham and the East Coast Main Line.
  • The maximum speed of the line is 70 mph.
  • It is 18.1 miles between Nottingham and the East Coast Main Line.
  • I suspect that it could be upgraded to a 100 mph between Nottingham and the East Coast Main Line.

Typical services in tph will be the same as at Nottingham, which is 12 tph.  But there are also occasional freight trains and Peak services to and from London St. Pancras.

With digital signalling on this relatively-simple section, if it were to be fitted with High Speed Two digital signalling, that will have to be able to handle 18 tph, what would you do with the other six tph?

  • Some paths would be used to handle the occasional freight trains and Peak services to and from London St. Pancras.
  • Some of the capacity could also be used by the stopping trains.

The amount of traffic would probably be less than on the Great Eastern Main Line, which is capable of 100 mph running.

Newark

Newark has the notorious flat crossing, where the Nottingham and Lincoln Line crosses the East Coast Main Line.

This Google Map shows the track layout at Newark.

Note.

  1. Newark Castle station is on the Nottingham and Lincoln Line and is in the South-West corner of the map.
  2. Newark North Gate station is on the East Coast Main Line and is in the South-East corner of the map.
  3. The two rail lines run diagonally across the map and cross near the top of the map towards the right.
  4. Nottingham lies in a South-Westerly direction from this map.
  5. Lincoln lies in a North-Easterly direction from this map.
  6. Doncaster, Leeds and York lie in a North-Westerly direction from this map.
  7. Grantham, Peterborough and London lie in a South-Easterly direction from this map.

Under the Greengauge 21 plan, trains will need to run in the following directions.

  • In both directions on the East Coast Main Line.
  • In both directions on the Nottingham and Lincoln Line.
  • Coming South on the East Coast Main Line, trains will need to be able to go towards Nottingham on the Notting and Lincoln Line.
  • Coming from Nottingham on the Nottingham and Lincoln Line, trains will need to be able to go Leeds and York on the East Coast Main Line.

It would be a complicated set of junctions and flyovers for a railway, but not impossible to design and build.

Newark North Gate And Colton Junction

I’ll repeat the map I showed earlier, that shows the routes between Newark North Gate and Colton Junction.

Note.

  1. The current East Coast Main Line via Doncaster is shown dotted in black.
  2. The proposed new route, which is called HS3 is shown in white.
  3. Colton Junction is at the Northern end of the new track.

I suspect that the new route would be built to the same operating standards as High Speed Two.

  • Operating speed of 205 mph.
  • High specification electrification.
  • Signalling capable of handling 18 tph.
  • All classic and Classic-Compatible high speed trains would be able to take both routes, but would be limited to 125 mph or 140 mph with in-cab digital signalling on the East Coast Main Line.
  • Trains needing to call at Doncaster and freight trains, would use the East Coast Main Line.
  • Full-Size High Speed Two trains would generally use the new high speed line.

It looks to be a good way to increase capacity between Newark and Leeds and York.

Timings Between Newark North Gate And Colton Junction

Consider.

  • Newark North Gate and Colton Junction are 63 miles apart.
  • Trains take 39 minutes.
  • There is a stop at Doncaster.

This is an average speed of 97 mph.

If trains went non-stop on the new ‘HS3’ route, there would be these timings at different average speeds.

  • 100 mph – 37.8 minutes
  • 125 mph – 30.2 minutes
  • 140 mph – 27 minutes
  • 160 mph – 23.6 minutes
  • 180 mph – 22.2 minutes
  • 200 mph – 18.9 minutes

Note.

  1. I have assumed the distance is the same as via the East Coast Main Line.
  2. I have made no allowance for longer acceleration and deceleration times to and from higher line speeds.
  3. High Speed Two Classic Compatible Trains could handle up to 205 mph if the track could support it.

It does appear that savings of upwards of fifteen minutes could be possible on all services that could use the new route.

Both East Coast Main Line and High Speed Two services would get time savings.

Colton Junction And York

As I saw and wrote about in London To Edinburgh On Lumo, the route between Leeds and York is being fully electrified.

The East Coast Main Line is already fully electrified, so I doubt the connection between ‘HS3’  and York will be difficult.

Trains will just exchange a 205 mph track for the East Coast Main Line’s 125 mph or 140 mph with in-cab digital signalling.

Colton Junction And Leeds

This High Speed Two Map shows the original planned track layout for High Speed Two to the East of Leeds.

Note.

  1. The large blue dot indicates Leeds HS2 station.
  2. The orange lines indicate the new high speed tracks for High Speed Two.
  3. The track going North-East is High Speed Two’s connection to the East Coast Main Line in the area of Colton Junction.
  4. The track going South is the Eastern Leg of High Speed Two to East Midlands Hub station, which has now been deleted.

Would it be possible to modify the route of High Speed Two to create a link between the Norther end of Newark and Colton Junction High Speed Line, which Greengauge 21 called HS3 and the proposed Leeds HS2 station?

This map from High Speed Two shows the area, where the High Speed Two Lines were originally proposed to run.

Note.

  1. The village of Swillington to the East of the proposed route of the Eastern Leg of High Speed Two.
  2. Junction 45 of the M1 in the North-West corner of the map.
  3. The River Aire and the Aire and Calder Navigation Canal on the route of High Speed Two to Leeds HS2 station.

This Google Map shows the same area.

I’m no expert, but I do believe that it would be possible to create a chord to allow trains to access Leeds HS2 station from the York direction.

I would suspect that High Speed Two looked seriously at this chord, as it would enable the proposed Leeds HS2 station to have services to York, Newcastle and Edinburgh using the East Coast Main Line.

But there is one problem with this route – It doesn’t allow and easy solution to serve Bradford.

This map from High Speed Two, shows the Leeds HS2 station and the last bit of the approach from the East.

This article on the Architects Journal is entitled Foster + Partners behind designs for Leeds HS2 Station. The article shows.

  • Leeds HS2 station is being designed as a terminal station.
  • It shares a common concourse with the current Leeds station.

It appears from the pictures in the Architects Journal article, that passengers would have to change trains to get to Bradford.

The alternative would be for trains into Leeds to take the route used by Northern’s service between York and Blackpool North, which goes via Church Fenton, Micklefield, East Garforth, Garforth, Leeds, Bramley, New Pudsey and Bradford Interchange.

But judging by the times of other services, Colton Junction and Leeds would take over twenty minutes and it would be a further twenty minutes to Bradford Interchange.

I can’t think that this is a viable alternative.

Conclusion

I am led to the conclusion, that to get a decent service into Leeds from the East using Greengaige 21’s ‘HS3’ between Newark and Colton junction, would necessitate the building of a new Leeds HS2 station and a new route between the new station and Colton junction.

December 7, 2021 Posted by | Transport/Travel | , , , , , , , , , | 8 Comments

Is There A Case For A Round-The-Wash Service Between Doncaster And Ipswich/Norwich?

I suggested this service in The Integrated Rail Plan For The North And Midlands And The East Coast Main Line.

Effectively, it would join East Midlands Railway’s Doncaster and Peterborough service with Greater Anglia’s Cambridge and Ipswich service.

  • The service could go via Scunthorpe, Grimsby Town, Cleethorpes, Grimsby Town, Market Rasen, Lincoln, Sleaford, Spalding, Peterborough, March, Ely, Cambridge North, Cambridge, Newmarket, Bury St. Edmunds and Stowmarket.
  • There would be reverses at Cleethorpes and Cambridge.
  • There may be extra stops in Lincolnshire and across Suffolk.
  • The service would not use the East Coast Main Line, but would use the new Werrington Dive-Under and the Great Northern and Great Eastern Joint Line to the East of the East Coast Main Line.
  • The frequency would be one train per two hours (1tp2h).
  • Ideal trains could be Class 755 trains, perhaps running on batteries or hydrogen.

It would be paired with a new Doncaster and Norwich service, that could partly replace East Midlands Railway’s Liverpool and Norwich service.

  • The service could go via Scunthorpe, Grimsby Town, Cleethorpes, Grimsby Town, Market Rasen, Lincoln, Sleaford, Spalding, Peterborough, March, Ely, Cambridge North, Cambridge, Cambridge North, Ely, Thetford, Attleborough and Wymondham.
  • There would be reverses at Cleethorpes and Cambridge.
  • There may be extra stops in Lincolnshire and across Norfolk.

As with the Ipswich train it would not use the East Coast Main Line and have a frequency of 1tp2h.

The Objectives Of The Service

I believe this service could have several objectives.

Remove Slower Trains From The East Coast Main Line Between Peterborough And Doncaster

There aren’t many except freight, but this plan could provide a better solution to the Liverpool and Norwich service.

Providing Better Connections To The Biggest Growth Point In The UK – Cambridge

Cambridge needs better connections, so that it can bring in the staff and workers, that the high-tech capital of the UK needs.

Better Connection Of East Anglia And Lincolnshire To Northern England And Scotland

In Peterborough and Doncaster the route has two main interchanges to bring about these connections.

Promoting Tourism

For a start the route has five cathedrals; Bury St. Edmunds, Ely, Lincoln, Norwich and Peterborough and the historic city of Cambridge.

But I do believe that there are numerous places, where tourists might stay on the route and use it to explore the East of the country.

A Few Questions

These are a few questions.

Would The Route Be Electrified?

I don’t believe it will be fully electrified for two reasons.

Freight locomotives will increasingly become hydrogen-powered and also be able to use electrification, where it exists.

Plans by the likes of Hitachi ABB Power Grids and Furrer and Frey are likely to enable discontinuous and battery-electric trains to be able to work the route.

This philosophy would avoid all the disruption and reconstruction of structures of electrification and probably be much more affordable.

Would York Or Leeds Make A Better Northern Terminal For The Route?

Both have possibilities.

  • York would need running on the East Coast Main Line.
  • Leeds would probably need trains capable of 125 mph running.

On the other hand both Leeds and York would have superb connectivity.

Conclusion

I feel this would be a very valuable new service and it could be created without building any new infrastructure other than perhaps some strategic stations.

November 25, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , | 1 Comment

Could We See Between London And Much Of The North By Train In Under Two Hours?

I shall write about each route in order starting from Euston and working East.

Avanti West Coast And Euston

These are services from Euston, that I feel could be under two hours.

London Euston And Liverpool Lime Street

On Thursday, I went to Liverpool by train.

  • My train took two hours and thirteen minutes between London Euston and Liverpool Lime Street stations.
  • There were stops at Stafford, Crewe and Runcorn.
  • The Class 390 train was travelling at 125 mph for a lot of the way.
  • The distance between the two terminals is 193.6 miles.
  • The start to stop average including the stops was 87.3 mph.

So could London Euston and Liverpool Lime Street be achieved in the magic two hours?

A few thoughts.

Average Speed

To do the journey in this time  would need an average speed of 96.8 mph.

Accelerating And Stopping

Ideally, the train will run as fast as it can only changing speed for the station stops.

  • The train will accelerate from stop to cruising speed at Euston, Stafford, Crewe and Runcorn or four times.
  • The train will decelerate from cruising speed to stop at Stafford, Crewe, Runcorn and Liverpool Lime Street or four times.

Effectively, the train goes through four complete station stops, although one will be split between the two ends of the journey.

These figures are from Wikipedia and the Internet

  • The acceleration of the Class 390 train is 1.0 mph/sec which means that it takes 125 seconds to get to 125 mph.
  • The deceleration of a Class 390 train is 2.0 mph/sec, which means that it takes 63 seconds to stop from 125 mph.
  • The acceleration of a Class 801 train is 1.6 mph/sec which means that it takes 78 seconds to get to 125 mph.
  • The deceleration of a Class 801 train is 2.2 mph/sec, which means that it takes 57 seconds to stop from 125 mph.

These figures would appear to show, that a Class 801 train can decelerate and accelerate at a stop in nearly a minute faster than a Class 390 train.

So how can we increase the acceleration and deceleration? The two obvious ways are more power and less weight.

Form the Internet, I estimate that the average car in a Class 390 train is around 52 tonnes, as opposed to 41 tonnes for the Hitachi trains.

So does this weight difference explain some of the difference in acceleration and deceleration times?

Consider.

  • The Class 390 trains have all the extra weight of the tilt mechanism. More weight means slower acceleration.
  • Avanti West Coast’s new Class 807 trains have no diesel engines or batteries. Have the trains been put on a diet?
  • They also have a reprofiled nose. Is it more aerodynamic?

So if these trains can save time on the four accelerate/decelerate cycles compared to the Class 390 trains, they must be getting nearer to the magic two hours.

If two minutes a stop can be saved that would save eight minutes on the journey between London Euston and Liverpool Lime Street.

140 Mph Running

The time to do a mile at various speeds are as follows.

  • 100 mph – 36 seconds
  • 125 mph – 29 seconds
  • 140 mph – 26 seconds

So running at 140 mph, as opposed to the current 125 mph would save three seconds for every mile.

To save five minutes would mean the train would have to run for a hundred miles at 140 mph instead of 125 mph.

As Stafford is 133.5 miles from London, it could be that full digital signalling should be installed on the West Coast Main Line all the way to Stafford or even Crewe, which is 158 miles from London.

This schematic map of the West Coast Main Line was clipped from Wikipedia.

Note.

  1. Trains between London Euston and Liverpool Lime Street take the Trent Valley Line through Nuneaton and Lichfield Trent Valley and stop at Stafford, Crewe and Runcorn.
  2. Trains between London Euston and Manchester take a variety of routes and all go via Stockport.
  3. One train per hour (tph) between London Euston and Glasgow Central takes the Trent Valley Line and goes non-stop between London Euston and Warrington Central.
  4. Norton Bridge Junction just to the North of Stafford has recently been remodelled.

I believe there is potential to enable up to at least a hundred miles of 140 mph running to the South of Crewe. Especially as most of the track South of Crewe is quadruple track.

This should enable the shaving of five or more minutes off the time of any train capable of 140 mph running that uses the Trent Valley Line through Nuneaton, Lichfield Trent Valley and Stafford.

Norton Bridge Junction

Norton Bridge junction, which is five miles North  used to be a bottleneck, but it has now been remodelled.

I wrote about it in The New Norton Bridge Junction In Action.

The new junction has probably been designed so that it can save a few seconds for trains going between Stafford and Crewe, whether or not they stop at either or both stations.

Non-Stop Between London Euston and Runcorn

If you look at the times of a London Euston and Glasgow Central train via the Trent Valley Line , it travels the 174.7 miles between London Euston and Weaver Junction non-stop in one hour and forty minutes. This is an average speed of 104.8 mph.

By comparison, my train on Thursday took one hour and forty-seven minutes with the two stops at Stafford and Crewe.

So there is at least six minutes to be saved by going non-stop.

 

Two Trains Per Hour Between London Euston And Liverpool Lime Street

Wikipedia says this about an additional service.

Subject to approval by the Office of Rail and Road, an additional hourly service will be introduced between London Euston and Liverpool Lime Street with a stop at Liverpool South Parkway from December 2022.

I have a few thoughts and questions on extra services between London Euston and Liverpool Lime Street,

  • In my view the second service is much needed.
  • I also think, that a later train back to London is needed.
  • Does the Wikipedia statement mean that only one train will stop at Liverpool South Parkway?
  • Does Runcorn need two tph to and from London?
  • Would the platforms at Liverpool South Parkway be lengthened to accept eleven-car Class 390 trains?

I feel that if a train stopped at both Liverpool South Parkway and Runcorn, this would make a two-hour journey more difficult to achieve.

London Euston And Liverpool Lime Street In Two Hours

The new Class 807 trains will be delivered by 2022. Because of the pandemic, I’ll assume that of the ten trains on order, some, but not all, will be available by the December 2022 timetable change.

The time savings needed for a two-hour journey will come from four improvements.

  1. The increased performance of the Class 807 trains.
  2. Full digital signalling South of Crewe.
  3. The track improvements already completed like Norton Bridge Junction.
  4. Cutting out stop on the second service.

There may also be time savings to be obtained at the intermediate stops, by better working practices.

I doubt that the full digital signalling will have been installed, but all trains will be capable of 125 mph running.

Avanti West Coast probably have a good idea of the time they could achieve without digital signalling and I feel that they could be about five minutes over two hours with the Class 807 trains.

As the eleven-car Class 390 trains are too long for Liverpool South Parkway station, could we see the following service?

  • 1 tph – Class 390 train – London Euston And Liverpool Lime Street via Runcorn, Crewe and Stafford.
  • 1 tph – Class 807 train – London Euston And Liverpool Lime Street via Liverpool South Parkway.

Note.

  1. The Class 390 train would run the existing timetable in two hours and thirteen minutes.
  2. The Class 807 train would be a two-hour express service if possible.
  3. Going from three stops to one could save the express at least seven minutes, as I showed earlier by looking at train timings South of Weaver Junction.
  4. There would be time savings of at least two minutes on the express service due to the better performance of the Class 807 train.

To save the final four minutes, there would need to be at least eighty miles of 140 mph running, as each mile saves three seconds.

I am fairly certain, that London Euston and Liverpool Lime Street can be regularly achieved in two hours.

London Euston And Warrington Bank Quay

The hourly London Euston and Glasgow Central expresses seem to take one hour and forty-five minutes for the non-stop trip of 182.1 miles, which is an average speed of 104 mph.

As this service is non-stop, I believe that this service would get the maximum benefit from digital signalling and this service will only get faster, as more and more of the route allowed 140 mph-running.

I wouldn’t be surprised to see almost ten minutes lopped off this service by signalling and other improvements.

I am fairly certain, that London Euston and Warrington Bank Quay can be regularly achieved in well under two hours, by a Class 390 train.

London Euston And Wigan North Western

The hourly London Euston and Glasgow Central expresses seem to take one hour and fifty-six minutes for the single-stop trip of 193.9 miles, which is an average speed of 100.3 mph.

As this service just a single stop at Warrington Bank Quay, I believe that this service would get the maximum benefit from digital signalling and this service will only get faster, as more and more of the route allowed 140 mph-running.

As with Warrington Bank Quay, I wouldn’t be surprised to see almost ten minutes lopped off this service by signalling and other improvements.

I am fairly certain, that London Euston and Wigan North Western can be regularly achieved in comfortably under two hours, by a Class 390 train.

London Euston And Preston

The hourly London Euston and Glasgow Central expresses seem to take two hours and eleven minutes for the two -stop trip of 209 miles, which is an average speed of 95.7 mph.

As this service just stops at Warrington Bank Quay and Wigan North Western, I believe that this service would get the maximum benefit from digital signalling and this service will only get faster, as more and more of the route allowed 140 mph-running.

As with Warrington Bank Quay and Wigan North Western, I wouldn’t be surprised to see almost ten minutes lopped off this service by signalling and other improvements.

I am fairly certain, that London Euston and Preston can be regularly achieved in just under two hours, by a Class 390 train.

London Euston And Blackpool North

Avanti West Coast have indicated that their new Class 807 trains will run between London Euston and Blackpool North.

Consider.

  • I am fairly certain that a Class 390 train will be able to run between London Euston and Preston in under two hours, once digital signalling is installed South of Crewe.
  • Currently, Class 390 trains take twenty minutes between Preston and Blackpool North stations.
  • The Class 807 trains have better acceleration and deceleration and should be able to execute faster stops than the Class 390 trains.

I wonder if Avanti West Coast, Hitachi, Network Rail and Rock Rail have thought up a cunning plan to run Class 807  trains between  London Euston And Blackpool North, in under two hours.

Trains would go via the Trent Valley.

Trains might only stop at perhaps Milton Keynes Central, Warrington Bank Quay, Wigan North Western and Preston.

Trains would run at up to 140 mph using digital signalling, in as many places as possible.

Is the performance of the Class 807 trains sufficient to achieve London Euston and Blackpool North in under two hours via the Trent Valley?

London Euston And Manchester Piccadilly via Wilmslow

Consider.

  • Most trains between London Euston and Manchester Piccadilly via Wilmslow seem to take around six or seven minutes over two hours.
  • I believe that if the 158 miles between London Euston and Crewe were to be digitally signalled, then this could save up to eight minutes by allowing trains to run at 140 mph rather than the current 125 mph.

This could be enough to bring the London Euston and Manchester Piccadilly via Wilmslow below two hours.

I am not surprised at this, as the trains were built for 140 mph and because there is no digital signalling, they are limited to 125 mph, which slows the trains by six or seven minutes.

London Euston And Manchester Piccadilly via Stoke-on-Trent

Everything I said about trains between London Euston and Manchester Piccadilly via Wilmslow probably apply, except that the services via Stoke-on-Trent are a few minutes slower.

But I do feel, that this could be enough to bring the London Euston and Manchester Piccadilly via Stoke-on-Trent below two hours.

East Midlands Railway And St. Pancras

These is only one service from St. Pancras, that is not comfortably under two hours.

London St. Pancras And Sheffield

A typical service between London St. Pancras And Sheffield takes a few minutes over two hours..

  • There are two tph
  • There are stops at Leicester, Loughborough, East Midlands Parkway, Long Eaton, Derby or Chesterfield depending on the service.
  • The Class 222 trains travel at 125 mph for most of the way.
  • The distance between the two terminals is 164.7 miles.
  • The start to stop average including the stops is 81 mph.

I would suspect that East Midlands Railway’s new bi-mode Class 810 trains will be able to easily break the two-hour barrier.

  • They have four diesel engines so they can cruise at 125 mph on diesel.
  • They have electric power for South of Market Harborough.
  • Some diesel engines will be changed for batteries.

As electrification increases on the Midland Main Line, these trains will use less and less diesel.

I also suspect that digital signalling will start to creep into the route, starting from Bedford, where it is used on Thameslink.

LNER And King’s Cross

These are services from King’s Cross, that are or I feel will be under two hours.

London King’s Cross And Doncaster

A typical service between London King’s Cross And Doncaster takes around one hour and thirty-seven minutes.

  • There are four tph
  • There are stops at Stevenage, Peterborough, Grantham, Newark and Retford depending on the service.
  • The Class 80x trains travel at 125 mph for most of the way.
  • The distance between the two stations is 156 miles.
  • The start to stop average including the stops is 96.5 mph.

Digital signaling is being installed on this section of the East Coast Main Line and I suspect that this will reduce timings between London King’s Cross And Doncaster.

A simple estimate based on the maximum operating speed, indicates a time of one hour and twenty-six minutes should be possible.

But as a Control Engineer, I believe that digital signalling will lead to faster running over the Digswell Viaduct and through the flat crossing at Newark.

The timing will certainly be under one hour and thirty minutes between London King’s Cross And Doncaster.

London King’s Cross And York

A typical service between London King’s Cross And York takes around one hour and forty-eight minutes.

  • There are two tph
  • There are stops at Stevenage, Peterborough, Grantham, Newark, Retford and Doncaster depending on the service.
  • The Class 80x trains travel at 125 mph for most of the way.
  • The distance between the two stations is 188.5 miles.
  • A non-stop service takes one hour and fifty-two minutes, which is a start to stop average including the stops is 101 mph.

If my crude estimate of time savings because of digital signalling South of Doncaster can be applied, this would imply a reduction in journey time of at least eleven minutes.

London King’s Cross And Leeds

A typical service between London King’s Cross And Leeds takes around two hours and thirteen minutes.

  • There are three tph
  • There are stops at Stevenage, Peterborough, Grantham, Newark, Doncaster and Wakefield Westgate depending on the service.
  • The Class 80x trains travel at 125 mph for most of the way.
  • The distance between the two terminals is 185.9 miles.
  • This is a start to stop average including the stops is 83.9 mph.

If my crude estimate of time savings because of digital signalling South of Doncaster can be applied, this would imply a reduction in journey time of at least eleven minutes, which would put a time between London King’s Cross and Leeds of around two hours.

London King’s Cross And Bradford Forster Square

LNER run some services on this route

  • The services take thirty minutes between Leeds and Bradford Forster Square stations.
  • The services do not reverse at Leeds.

Given that two hours should be possible between London Kings Cross and Leeds, it would appear that two hours and thirty minutes should be possible between Leeds and Bradford Forster Square stations.

London King’s Cross And Bradford Interchange

Grand Central run some services on this route

  • The services call at Doncaster, Wakefield Kirkgate, Mirfield, Brighouse and Low Moor
  • The services take two hours and fifty-four minutes between London King’s Cross and Bradford Interchange stations.
  • The services take one hour and seventeen minutes between Doncaster and Bradford Interchange stations.

The services are run by Class 180 diesel trains, which will have to be replaced to decarbonise the route.

I suspect that Hitachi will have a train for this route, that could use diesel or batteries to the North of Doncaster.

  • My estimate for the best time between King’s Cross and Doncaster is one hour and twenty-six minutes.
  • The current time between Doncaster and Bradford Interchange stations is one hour and seventeen minutes.

This gives a best time of perhaps two hours and forty-three minutes between Doncaster and Bradford Interchange stations.

The route to Bradford via Leeds is perhaps fifteen minutes faster, but it serves different stations.

London King’s Cross And Harrogate

LNER has been running to Harrogate for some time.

  • There is one train per two hours (tp2h)
  • The service calls at Stevenage, Grantham, Doncaster, Wakefield Westgate and Leeds.
  • some services reverse at Leeds.
  • The service takes two hours and fifty-five minutes between London King’s Cross and Harrogate stations.
  • The service takes thirty minutes between Leeds and Harrogate stations.

Given that two hours should be possible between London Kings Cross and Leeds, it would appear that two hours and thirty minutes could be possible between London King’s Cross and Harrogate stations.

London King’s Cross And Huddersfield

In LNER Expands To Huddersfield, I described LNER’s new service to Huddersfield.

  • There will be one train per day (tpd)
  • The service will call at Peterborough, Newark North Gate, Doncaster, Wakefield Westgate, Leeds and Dewsbury.
  • The service will split and join with the London King’s Cross and Skipton service at Leeds.
  • The service will reverse at Leeds.
  • The service take two hours and fifty-five minutes between London King’s Cross and Huddersfield stations.
  • The service will take twenty-five minutes between Leeds and Huddersfield stations.
  • Improvements are planned, which include electrification, between Dewsbury and Huddersfield

Given that two hours should be possible between London Kings Cross and Leeds, it would appear that two hours and thirty minutes could be possible between London King’s Cross and Huddersfield stations.

London King’s Cross And Hull

The fastest Hull Trains service between London King’s Cross And Hull takes around two hours and thirty minutes.

  • There are seven tpd
  • There are stops at Stevenage, Grantham, Retford, Doncaster, Selby, Howden and Brough depending on the service.
  • The Class 80x trains travel at 125 mph for most of the way.
  • The distance between the two terminals is 205.3 miles.
  • This is a start to stop average including the stops is 82.1 mph.

If my crude estimate of time savings because of digital signalling South of Doncaster can be applied, this would imply a reduction in journey time of at least eleven minutes, which would put a time between London King’s Cross and Hull of around two hours and twenty minutes.

London King’s Cross And Middlesbrough

LNER have announced a Middlesbrough service, which I wrote about in LNER’s Middlesbrough And London Service. Starts On December 13th.

  • There will be one tpd in both directions
  • Intermediate stops will be at Thornaby and York.
  • The Middlesbrough and London service will leave Middlesbrough from Platform 1 at 07:08 and arrive in King’s Cross at 10:22.
  • The London and Middlesbrough service will leave King’s Cross at 15:25 and arrive in Middlesbrough in Platform 2 at 18:18.

There appear to be some curiosities in the timetabling of these trains, which I may explore later.

I would assume that is because LNER want a competitive time of three hours between King’s Cross and Middlesbrough.

These are Southbound times between Eaglescliffe and King’s Cross in the morning.

  • Grand Central –  Two hours and thirty-nine minutes
  • LNER – Three hours and two minutes

Is this because the Class 180 train is a genuine 125 mph train on diesel and the Class 800 train is not?

If my crude estimate of time savings because of digital signalling South of Doncaster can be applied, this would imply a reduction in journey time of at least eleven minutes, which would put a time between London King’s Cross and Middlesbrough of around three hours.

Conclusion

Of the cities and towns in the North, that I have discussed only Bradford, Harrogate, Huddersfield, Hull and Middlesbrough, are ones that will be difficult to be provided with a two-hour journey time to and from London. But all should be possible in close to or under two hours and thirty minutes.

 

 

October 17, 2021 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , , , , , , | 7 Comments

Cleethorpes Station – 16th September 2020

On Wednesday, I took a trip on the South Humberside Main Line from Doncaster to Cleethorpes and back.

Cleethorpes station is a terminal station on the beach, with cafes not far away.

This Google Map shows the station and its position on the sea-front and the beach.

The station organisation was a bit shambolic at present, probably more to do with COVID-19 than anything else, but the station and the train services could be developed into something much better, when the good times return, as they surely will.

Improving The Station Facilities

The original station building is Grade II Listed and although it is only only a three-platform station, there used to be more platforms.

Five platforms or even six would be possible, if there were to be a need.

But as the station has wide platforms, is fully step-free and has most facilities passengers need, most of the improvements would involve restoring the original station building for a productive use.

The Current Train Service

The main train service is an hourly TransPennine Express service between Cleethorpes and Manchester Airport stations via Grimsby Town, Scunthorpe, Doncaster, Sheffield and Manchester Piccadilly.

The trains are Class 185 trains, which are modern diesel multiple units, which entered service in 2006.

There is also a two-hourly service along the Barton Line to Barton-upon-Humber station.

It should be noted that all services to and from Cleethorpes, call at Grimsby Town station.

Could The TransPennine Service Be Run By Battery Electric Trains?

The route between Cleethorpes and Manchester Airport can be split into the following legs.

  • Cleethorpes and Grimsby Town – Not Electrified – 3,25 miles – 8 minutes
  • Grimsby Town and Habrough – Not Electrified – 8 miles – 12 minutes
  • Habrough and Doncaster – Not Electrified – 41 miles – 56 minutes
  • Doncaster and Sheffield – Not Electrified – 19 miles – 29 minutes
  • Sheffield and Stockport – Not Electrified – 37 miles – 41 minutes
  • Stockport and Manchester Piccadilly – Electrified – 6 miles – 10 minutes
  • Manchester Piccadilly and Manchester Airport – Electrified – 11 miles – 12 minutes

Note.

  1. At the Manchester end of the route, trains are connected to the electrification for at least 44 minutes.
  2. The longest non-electrified leg is the 52 miles between Cleethorpes and Doncaster stations.
  3. Doncaster is a fully-electrified station.

This infographic shows the specification of a Hitachi Regional Battery Train.

TransPennine Express has a fleet of nineteen Class 802 trains, which can have their diesel engines replaced with battery packs to have a train with the following performance.

  • 125 mph operating speed, where electrification exists.
  • 56 mile range at up to 100 mph on battery power.
  • 15 minute battery charge time.
  • Regenerative braking to battery.
  • They are a true zero-carbon train.

What infrastructure would be needed, so they could travel between Cleethorpes and Manchester Airport stations?

  • If between Cleethorpes and Habrough stations were to be electrified, this would give at least 20 minutes of charging time, plus the time taken to turn the train at Cleethorpes. This would surely mean that a train would leave for Manchester, with a full load of electricity on board and sufficient range to get to Doncaster and full electrification.
  • If between Doncaster and Sheffield were to be electrified, this would give at least 25 minutes of charging time, which would be enough time to fully-charge the batteries, so that Grimsby Town in the East or Stockport in the West could be reached.

I suspect that Doncaster and Sheffield could be an early candidate for electrification for other reasons, like the extension of the Sheffield tram-train from Rotherham to Doncaster.

Could The Cleethorpes And Barton-on-Humber Service Be Run By Battery Electric Trains?

Cleethorpes And Barton-on-Humber stations are just 23 miles apart.

This is probably a short enough route to be handled on and out and back basis, with charging at one end by a battery electric train. Vivarail are claiming a sixty mile range for their battery electric Class 230 trains on this page of their web site.

If between Cleethorpes and Grimsby Town stations were to be electrified, this would mean that a range of only forty miles would be needed and the batteries would be charged by the electrification.

A full hourly service, which is surely needed, would need just two trains for the service and probably a spare.

Cleethorpes And London King’s Cross Via Grimsby Town, Market Rasen, Lincoln Central And Newark North Gate

The Wikipedia entry for Cleethorpes station has references to this service.

This is the historical perspective.

In the 1970s Cleethorpes had a twice daily return service to London King’s Cross, typically hauled by a Class 55 Deltic.

That must have been an impressive sight.

And this was National Express East Coast’s plan.

In August 2007, after National Express East Coast was awarded the InterCity East Coast franchise, it proposed to start services between Lincoln and London King’s Cross from December 2010 with one morning service and one evening service extending from Lincoln to Cleethorpes giving Cleethorpes a link to London and calling at Grimsby Town and Market Rasen. These services were to be operated using the Class 180s but was never introduced. These services were scrapped when East Coast took over the franchise.

It came to nothing, but LNER have been running up to five trains per day (tpd) between London King’s Cross and Lincoln.

I will split the route into legs.

  • London King’s Cross and Newark North Gate- Electrified – 120 miles
  • Newark North Gate and Lincoln Central – Not Electrified – 16,5 miles
  • Lincoln Central and Market Rasen – Not Electrified – 15 miles
  • Market Rasen and Habrough – Not Electrified – 21 miles
  • Habrough and Grimsby Town – Not Electrified – 8 miles
  • Grimsby Town and Cleethorpes – Not Electrified – 3.25 miles

Note that a  round trip between Newark North Gate and Lincoln Central is thirty-three miles.

This means it would be possible for one of LNER’s Class 800 trains, that had been fitted with a battery pack and converted into one of Hitachi’s Regional Battery trains, would be able to run a London King’s Cross and Lincoln Central service without using a drop of diesel or needing a charge at Lincoln Central station.

Would it be possible to extend this service to Grimsby Town on battery power?

I suggested earlier that between Cleethorpes and Habrough should be electrified.

As Newark North Gate and Habrough stations are 52.5 miles apart, it would be rather tight for a battery electric train to cover the whole route without an extra charge somewhere.

Possible solutions could be.

  • Fit a bigger battery in the trains.
  • Extend the electrification at Newark North Gate station.
  • Extend the electrification at Habrough station.

I;m sure that there is a solution, that is easy to install.

Conclusion

If between Habrough and Cleethorpes station were to be electrified, these services could be run by battery electric trains.

  • Cleethorpes and Manchester Piccadilly
  • Cleethorpes and Barton-on-Humber
  • Cleethorpes and London King’s Cross

Note.

  1. The Manchester and London services would be run by Hitachi Regional Battery Trains converted from Class 800 and Class 802 trains.
  2. The Barton service could be run by a Vivarail Class 230 train or similar.

The first two services would be hourly, with the London service perhaps 1 or 2 tpd.

Cleethorpes would be well and truly on the rail network.

September 18, 2020 Posted by | Health, Transport/Travel | , , , , , , , , , , , | 1 Comment

Thoughts On Digital Signalling On The East Coast Main Line

I came up to Doncaster yesterday on a new Hull Trains Class 802 train.

According to my pocket dynamometer car, the train seemed to be at or nearly at 125 mph, most of the time I looked from possibly around Stevenage to just South of Doncaster.

I came back today on an LNER Class 801 train and the train’s performance seemed very similar.

I also noted the following.

  • The two stops at Newark and Peterborough, took seven and nine minutes respectively from the start of slowing for the station until back up to speed.
  • Between Peterborough and Stevenage the train kept below a maximum of 110 mph.
  • The train went through the two tunnels before Welwyn North station and the station itself at 75 mph.
  • I timed the train at 100 mph over the Digswell Viaduct, when it reached the South side after accelerating on the viaduct.
  • 90 mph was maintained between Potters Bar and New Southgate stations.
  • Speed gradually reduced from New Southgate into Kings Cross.

Note.

  1. 125 mph is the maximum allowable speed of the train.
  2. The 110 mph running was probably to be compatible with the Class 387 trains.
  3. I will do the trip again and get some accurate figures.

It appears to me, that the driver was obeying a simple but fast plan.

The Wikipedia entry for the East Coast Main Line, says this about the opiating speed of the line, with the new trains.

Increasing maximum speeds on the fast lines between Woolmer Green and Dalton-on-Tees up to 140 mph (225 km/h) in conjunction with the introduction of the Intercity Express Programme, level crossing closures, ETRMS fitments, OLE rewiring and the OLE PSU – est. to cost £1.3 billion (2014). This project is referred to as “L2E4” or London to Edinburgh (in) 4 Hours. L2E4 examined the operation of the IEP at 140 mph on the ECML and the sections of track which can be upgraded to permit this, together with the engineering and operational costs

It also says this about the implementation of digital signalling.

A new Rail operating centre (ROC), with training facilities, opened in early 2014 at the “Engineer’s Triangle” in York. The ROC will enable signalling and day-to-day operations of the route to be undertaken in a single location. Signalling control/traffic management using ERTMS is scheduled to be introduced from 2020 on the ECML between London King’s Cross and Doncaster – managed from the York ROC.

The signalling could probably work in one of two ways.

  • The signalling tells the driver the required speed and they drive the train accordingly.
  • The signalling drives the train and the driver monitors what is happening.

Both methods are used in the UK.

A Possible London Kings Cross and Leeds Service

The combined affect of both track and signalling improvements is illustrated by this simple calculation.

  • As Dalton-on-Tees is North of Doncaster, the route between Woolmer Green and Doncaster should be possible to be run at 140 mph
  • Woolmer Green and Doncaster stations are 132.1 miles apart.
  • Non-stop York and London Kings Cross trains are currently timed at 70 minutes between Doncaster and Woolmer Green stations.
  • This is an average speed of 113.2 mph.

If 140 mph could be maintained between Doncaster and Woolmer Green, the section of the journey would take 56.6 minutes, which is a saving of 13.4 minutes.

Consider.

  • The fastest current trains between London Kings Cross and Leeds take between two hours and twelve minutes and two hours and fifteen minutes.
  • I suspect that the extra tracks into Kings Cross, that are currently being built will save a few minutes.
  • There must be some savings to be made between Doncaster and Leeds
  • There must be some savings to be made between London Kings Cross and Woolmer Green.
  • There could be a rearrangement of stops.

I think it is highly likely that in the future, there will be at least one train per hour (tph) between London Kings Cross and Leeds, that does the trip in two hours.

  • There is no reason why all London Kings Cross and Leeds trains could not take two hours.
  • London Kings Cross and Doncaster could be several minutes under an-hour-and-a-half.
  • High Speed Two is predicting one hour and twenty-one minutes for their future service  between London Euston and Leeds, which is a saving of 38 minutes.
  • London and Leeds in two hours will attract passengers.

There will be serious competition between London and Leeds.

Other Timing Improvements

I also think these times would be possible

  • London Kings Cross and Bradford Forster Square – two hours and thirty minutes
  • London Kings Cross and Harrogate – two hours and thirty minutes
  • London Kings Cross and Huddersfield – two hours and twenty minutes
  • London Kings Cross and Hull – two hours and thirty minutes
  • London Kings Cross and Middlesbrough – two hours and thirty minutes
  • London Kings Cross and Scarborough – two hours and thirty minutes
  • London Kings Cross and Sheffield – two hours
  • London Kings Cross and Skipton – two hours and thirty minutes
  • London Kings Cross and York – two hours

I would be fairly certain that London Kings Cross and Huddersfield could be slowed by ten minutes, which would give the London Kings Cross and Yorkshire a certain symmetry.

  • London Kings Cross and Leeds and York would take two hours.
  • London Kings Cross and all the others would take two hours and thirty minutes.

It would probably make arrangement of a fast timetable easier.

 

 

September 15, 2020 Posted by | Transport/Travel | , , , , , , , , , , | 5 Comments