The Anonymous Widower

South Western Railway Completes Trial Of Class 159 Emission Reducing Technology

The title of this post, is the same as that of this article  on Rail Advent.

This is Project 4 called Green Rail Exhaust After Treatment, that I wrote about in Grants To Support Low-Carbon Technology Demonstrators.

I also wrote about the project in SWR And Porterbrook Trial New Emission-Slashing Rail Technology.

This paragraph from the Rail Advent article sums up the results.

In partnership with Porterbrook and Eminox, South Western Railway has trialled a new system that has real-world reductions in pollution from nitrous oxides (NOx) by over 80% and hydrocarbons, carbon monoxide and particulate matter (PM) by over 90%.

The technology appears to have performed well in a six-month trial.

As the proof of the pudding is always in the eating, it will be interesting to see how many systems are installed on the two hundred trains in the closely-related Class 158 and Class 159 train fleets.

June 30, 2020 Posted by | Transport | , , , | Leave a comment

Bucks Council Supports New Internet Lines

The title of this post, is the same as that of this article on Mix96.

Buckinghamshire County Council are proposing to use the construction of the new East West Railway, as a route for extra Internet connectivity.

How sensible!

Are East West Railway and Buckinghamshire County Council talking to Hive Composites, about their next generation composite poles for a 5G-enabled railway, that won funding in the latest round of first-of-a-kind funding from Innovate UK?

Will other councils and companies be using other rail construction to advantage?

June 28, 2020 Posted by | Computing, Transport | , , , | Leave a comment

Solar Firm To Develop Novel Electronics For Rail Renewables

The title of this post is the same as that of this article on Engineering and Technology.

This is the introductory paragraph.

Solar energy company Riding Sunbeams has won funding to develop power electronics technology that will enable it to feed renewable electricity directly into railway overhead wires.

Because solar panels and lithium-ion batteries work in DC and overhead electrification works in AC, this sentence describes the main objective of the project.

The Daybreak demonstrator will repurpose existing technology already being used on UK rail networks for other purposes to create a new device that will provide the required power conversion.

Existing technology and equipment will be used to save time and costs and because it is already rail-certified.

The rest of the article fleshes out a few details.

The test system will be installed at Quinton Rail Technology Centre at Long Marston.

This is the closing paragraph.

In particular, Riding Sunbeams hopes its technology will be able to play a part in delivering 70MW of direct-wire renewable generation to help power the soon-to-be-electrified Core Valley Lines in South Wales through a mixture of solar, wind and energy storage.

As electrification in the Core Valley Lines will be discontinuous, it could appear that the technology developed in this project could help connect and reduce costs.

June 20, 2020 Posted by | Transport | , , , | 3 Comments

Heated Railway Platforms Tested To Avoid Ice Accidents

The title of this post is the same as the first part of the title on this article on Engineering and Technology.

The platforms have been developed by researchers at Sheffield Hallam University and have received a share of the Government funding, I wrote about in First Of A Kind Funding Awarded For 25 Rail Innovation Projects, where it is Project 4.

These paragraphs describe the project.

The concrete slabs come with a built-in heating system that activates in freezing conditions to prevent dangerous icy conditions for passengers.

Rail Safety and Standards Board figures show that 19 people were killed and more than 7,000 were injured in accidents around platform edges on Britain’s railways in a recent five-year period.

It looks like there’s scope for this simple idea to save a few lives.

COVID-19 Reconstruction Projects

If the trial installation or installations, that will be paid for by the Government grant is or are a success, I can see large numbers of the UK’s three thousand or so stations being fitted with these platforms.

This is surely the sort of project, that could be rolled out on lots of sites across the UK to get the constriction industry working again, after COVID-19!

 

June 20, 2020 Posted by | Health | , , , , , | 1 Comment

The World’s First Bi-Mode Hydrogen-Electric Train

This news page on the University of Birmingham web site is entitled HydroFLEX Secures Funding For Hydrogen-Powered Train Design.

The page is mainly about the new funding from Innovate UK, that I wrote about in First Of A Kind Funding Awarded For 25 Rail Innovation Projects, but it also includes this significant paragraph.

As well as being the UK’s first hydrogen-powered train, HydroFLEX is also the world’s first bi-mode electric hydrogen train. It will be undergoing mainline testing on the UK railway in the next few weeks.

One of my disappointments in the design of the Alstom Coradia iLint, is that, it is designed as a hydrogen-power only train, where it could surely have had a pantograph fitted, for more efficient working.

Consider.

  • I suspect many hydrogen-powered trains will only be doing short distances, where electrification is not available, so daily distances under hydrogen power could be quite short.
  • In the UK, a smaller hydrogen tank would certainly ease the design problems caused by a large fuel tank.
  • There have been improvements in hydrogen storage in recent years.

The funding award to the project talks about raft production, so are the engineers, aiming to design a hydrogen power-pack on rafts, that could be fitted underneath the large fleets of retired electric multiple units, that are owned by Porterbrook.

Now that would be a game changer.

  • Porterbrook have thirty-seven Class 350 trains, that will be replaced in the next few years by new trains. The electric trains are less than a dozen years old and Porterbrook have been talking about fitting batteries to these trains and creating a battery/FLEX train. Would making these trains bi-mode hydrogen-electric trains be better?
  • Birmingham wants to open up new rail routes in the city on lines without electrification. What would be better than a hydrogen powered train, designed in the city’s premier university?
  • Routes from Birmingham to Burton-on-Trent, Hereford, Leicester, Shrewsbury, Stratford-on-Avon and Worcester would be prime candidates for the deployment of a fleet of bi-mode hydrogen-electric trains.
  • Birmingham have already asked ITM Power to build a hydrogen filling station in the city for hydrogen buses.

 

June 18, 2020 Posted by | Transport | , , , , , , , , , , | 3 Comments

First Of A Kind Funding Awarded For 25 Rail Innovation Projects

The title of this post, is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

The Department for Transport and Innovate UK have announced the 25 projects which are to share £9·4m of funding under the 2020 round of the First of a Kind rail industry innovation programme.

It appears to be a longer list, than I’ve seen previously awarded.

Project 1 Train Swap From Seatfrog Ops

Seatfrog is an app, that enables passengers to quickly and remotely update their seat reservation to a different service.

It already appears to be in use with Avanti West Coast, CrossCountry, GWR and LNER.

This application could have legs, as it looks a bit like eBay for First Class seats.

Project 2 Dynamic Capacity Management From Esoterix Systems Ltd

It is described as follows.

Ticketing that adjusts to travel patterns and rewards particular choices, using a monthly subscription that will help customers to save money on a large upfront fee.

Their web site doesn’t give much specific detail, as I write this.

Project 3 Next Generation Composite Poles For A 5G Enabled Railway From Hive Composites

It is descrtibed as follows.

Installation of lightweight composite poles along railways to improve wi-fi speed, consistency and connectivity.

Their web site doesn’t give more specific detail, as I write this.

Project 4 Illumin Heated Concrete Platform Coper Slabs From Sheffield Hallam University

It is described as follows.

Illuminated and heated low-energy concrete slabs for station platforms, which automatically switch on in freezing conditions to help prevent passengers from slipping on ice.

The Sheffield Hallam University doesn’t give more specific detail, as I write this.

Project 5 LAMINAR From iProov

It is described as follows.

iProov, WorldReach Software and Eurostar are to establish a walk-through ’facial biometric corridor’ at London St Pancras International to allow passengers to complete ticket checks and border exit processes without needing to come into contact with people or hardware.

There is more on the iProov web site.

I think, this could be the way to ensure safe train travel in these pandemic times.

It would certainly cut queues.

Project 6 Track-To-Train Communications To Transport for Wales From Ingram Networks

It is described as follows.

Lab-based study into cost-effective 10 Gbps+ trackside to train communications infrastructure, to be tested on an 8 km heritage railway in Leicestershire.

Their web site doesn’t give more specific detail, as I write this.

Project 7 Prototype Zero Emissions Trac Rail Transposer (TRT-e) From Unipart Rail

This is described as follows.

A zero-emissions machine which removes and replaces rails.

The Unipart Rail web site, doesn’t give more specific details as I write this

Will it be battery or hydrogen-powered?

Project 8 LoCe: Less Oil, Cleaner Exhaust From Porterbrook Leasing

This is described as follows.

£400 000 to support Porterbook, Eminox, Bosch Rexroth and DG8 in retrofitting a Bombardier Class 170 Turbostar DMUs leased to East Midlands Railway with with Eminox SCRT technology to evaluate whether this can reduce CO, particulate, hydrocarbon and NOx emissions to make mid-life diesel engines more environmentally sustainable.

There is more on Porterbrook’s web site.

Project 9 Zero Emission Rail Freight Power From Steamology Motion

This is described as follows.

Hydrogen-based steam turbine system to provide zero emission power for existing freight locomotives.

In Steam, But Not As You Know It…, I give more details of their technology.

Could Steamology Motion really be on the verge of reengining a Class 66 locomotive with a zero-carbon steam technology that uses hydrogen and oxygen as a fuel?

Project 10 Daybreak From Riding Sunbeams

This is described as follows.

A direct connection between renewable energy generation and overhead electrifcation systems.

There is more on this page on the Riding Sunbeams web site.

Project 11 Resi-Glaze From FAR-UK

This is described as follows.

Resilient glazing solution to ensure passenger safety on trains and a potential CO2 emissions saving.

I can’t find anything more about this.

Project 12 HydroFLEX Raft Production From BCRRE

This is described as follows.

£400 000 grant to support final production design and testing  by the University of Birmingham and Porterbrook of a hydrogen power pack intended to minimise the loss of passenger saloon space.

Just reading the extract, it seems that the University of Birmingham have found a solution to the big problem of hydrogen-powered trains in the UK; the small loading gauge.

Project 13 Low Environmental Impact Composite  Footbridge From Associated Utility Supplies

This is described as follows.

A footbridge made entirely from fibre reinforced polymer, which is designed to be significantly easier to install than an equivalent steel bridge to help reduce network disruption and local environmental damage.

Could their share of the £9.4 million, almost build the first footbridge?

Looking at the Associated Utility Supplies web site, amongst the wide range of equipment, that they source for various industries, where danger is ever present, there are no footbridges.

So did their expertise and that of some Network Rail engineers, all come together in a convivial meeting to produce an innovative design of footbridge?

Project 14 Integrated Optical Fibre Sensing (OptRail-PRO) From rcm2

This is described as follows.

Optic fibre sensors to monitor the condition of switches and crossings.

The rcm2 web site doesn’t give more specific details, as I write this.

Project 15 Train Axle Crack Monitoring From TAMON – Perpetuum

This is described as follows.

Using sensors and pattern-recognition technologies to identify cracks in axles, helping to reduce returns to depot.

Perpetuum seem a very capable company.

Project 16 High Speed Cryogenic Blasting For Rail Cleaning To Alleviate Low Adhesion From Sheffield University

This is described as follows.

High speed cryogenic cleaning system for tracks to prevent low adhesion and slow running of trains.

This article on the BBC, which is entitled Dry ice ‘could stop leaves on line rail delays’, explains the technology.

Dry Ice Blasting is also explained on this page on the IceTech Technologies web site.

As the dry ice is carbon dioxide, will the Green Movement object?

The Wikipedia entry for dry ice blasting says this about its environmental effects.

Dry ice blasting is an environmentally responsible cleaning method. Dry ice is made of reclaimed carbon dioxide that is produced from other industrial processes, and is an approved media by the EPA, FDA and USDA. It also reduces or eliminates employee exposure to the use of chemical cleaning agents.

Compared to other media blasting methods, dry ice blasting does not create secondary waste or chemical residues as dry ice sublimates, or converts back to a gaseous state, when it hits the surface that is being cleaned. Dry ice blasting does not require clean-up of a blasting medium. The waste products, which includes just the dislodged media, can be swept up, vacuumed or washed away depending on the containment.

It appears it could be one of those processes, that when it replaces a traditional method, has more benefits than disadvantages.

Project 17 InnoTamp From Fugro

This is described as follows.

Data gathering to ensure the maintenance of optimum rail alignment.

The project is described on this page of the  Fugro web site.

Prokject 18 Thermal Radiometry For The Remote Condition Monitoring Of Railway Vehicles From Rail Innovations

This is described as follows.

Using thermal radiometry camera technology to measure temperatures of mechanical systems on moving trains, sending automatic alarms in the event of over heating.

I can’t find any more information on this project.

Project 19 Minimising Disruption Of Overhead Line Renewals Via Novel Headspan Assemblies From Associated Utility Supplies

This is described as follows.

Span wire clamping system to enable rapid, low-cost overhead line equipment headspan renewals with minimum network disruption.

This is a second project from the same company.

Project 20 Trainserv Software User Trial And Preparation For Commercialisation From Cogitaire

This is described as follows.

Integrating multiple sources of real-time data for use by rail workers to help them improve services and respond to incidents.

Cogitare seem a very capable company.

Project 21 Cleartrak On-Train Testing From Garrandale

This is described as follows.

Innovative and efficient system for processing toilet waste, reducing cost and maintenance requirements.

Ptoject 22 IRIS: Information System For Railway Station Staff From Liverpool John Moores University

This is described as follows.

An information system for frontline station staff to enhance communication and enable them to help passengers in making travel decisions and planning more effectively.

Another project from a University.

Project 23 Railway Optical Detection & Obstructions – Tunnel & Station Monitoring From Vortex IoT

This is described as follows.

Sensors and data analysis tools to detect and identify intrusion and obstructions on the track, and send real-time situational alerts to the rail control centre to prompt further investigation. 

This page on the Vortex IoT web site shows some of the technology they will use.

Project 24 Improving Resilience Through A Surface Water Flooding Decision Support System from IBA Consulting

This is described as follows.

This project seeks to develop a first of a kind surface water flood forecasting and early warning system for Network Rail using technology and data to map the surface water flood likelihood in real time, ahead of the event and forecast rainfall intensity.

I can’t find the company or this project.

Project 25 Improved Railway Operations Through Train-Mounted Water Addition From CoCatalyst

This is described as follows.

Spraying a small amount of water from the train when slippery rails are detected to improve traction and braking, and prevent subsequent services from being affected.

There’s a detailed description on this page on the Water=Trak web site.

This looks to be a simple idea, that may be significant, to stop wheel slippage.

Conclusion

The ideas are more numerous than usual and they are a very wide-ranging bunch.

In Grants To Support Low-Carbon Technology Demonstrators, which were a similar group in 2019, that were also funded by Innovate UK, there were only five projects.

I also feel, some could have significant export opportunities.

 

 

June 18, 2020 Posted by | Transport | , , , , , | 11 Comments

Rail Research At Birmingham University

In Issue 898 of Rail Magazine, there is an article entitled Full Steam Ahead, which discusses the the work at the Birmingham Centre for Railway Research an Education (BCRRE).

Amongst many subjects three are mentioned where I have a big interest.

Aerodynamics

The article says this.

Aerodynamics is also an important area for research, as any reduction in drag and air resistance due to structures will improve the energy efficiency of rail vehicles.

I very much agree with this approach.

I also feel that due to their low noise profiles as they pass by, that Bombardier have applied aerodynamic knowledge, perhaps from their aircraft engineers, to the design of the new Aventra.

Hydrogen Supplies For Hydrogen-Powered Trains

The article says this.

Funding has also been secured from Innovate UK to create a company that can provide the necessary infrastructure needed to support hydrogen trains, including fuelling stations and hydrogen generation facilities.

This sounds very similar to the systems that ITM Power ae deploying for Shell to fuel hydrogen buses, cars and other vehicles.

I hope that there is not too much duplication going on.

Working With Michigan State University And Stadler To Bring Hydrogen Trains To California

Co-operation is always good and especially in rail projects, where the number of trains involved is fairly small.

A Quote From Dr. Stuart Hillmansen of BCRRE

This quote is in the article.

Is is possible to completely decarbonise, by using electrolysis that is powered using renewable energy to create the fuel.

I completely agree with that!

Conclusion

I would hope that the BCRRE develops into a one step shop for the solution of rail related problems.

It does seem that by putting various areas of expertise together, they could be a go-to institution for those that want to built a hydrogen-powered rail service.

February 16, 2020 Posted by | Transport | , , , , , , , | Leave a comment

Engie Partners Innovate UK For £4 Million Energy Transition Competition

The title of this post is the same as this article on Current News.

  • This is an interesting link-up between the UK Government Agency; Innovate UK and the French energy giant; Engie.
  • Wikipedia defines energy transition as a long-term structural change in energy systems.
  • It is the first time Innovate UK has secured overseas private funding.
  • It aims to fund the very best of \british innovation in clean growth innovation.
  • Grants of between £100,000 and £1.2 million will be awarded.
  • There appears to be no mention of Brexit!

It looks to me, like a very strong endorsement of British innovation and the British energy industry by the French.

I also think, that if there is one industry where the British and the French should be linked, it is energy.

The UK has the following energy sources and resources.

  • Offshore and onshore oil and gas.
  • Redundant gas fields for carbon capture and storage.
  • Offshore and onshore wind.
  • Large areas of sea for offshore wind.
  • We have 8,183 MW of installed offshore wind capacity, which is the largest in the world.
  • The possibilities of tidal and wave power from a long Western coast.
  • Vast experience in building off-shore structures in some of the worst weather on the planet.
  • Interconnectors to Norway and Iceland to import their surplus geothermal and hydroelectric energy.

Could we become a renewable-energy powerhouse?

The French have the following.

  • Nuclear power, some of which will need replacing.
  • Only 500 MW of offshore wind.
  • More solar power than we have.
  • Easy connection to North Africa for solar power.

But in some ways, most important is the several interconnectors between the UK and France, with more planned.

Conclusion

Between the UK and France, with help from Ireland, Spain and Portugal, can develop a massive Western European renewable energy powerhouse, backed  by the following, non-renewable or external sources.

  • French nuclear power.
  • North African solar.
  • Icelandic geothermal power
  • Icelandic hydro-electric power
  • Norwegian hydro-electric power

It should be noted that in a few years, the UK will have joined Iceland, Norway and North Africa outside of the European Union.

I believe that Sovereign Wealth Funds, Hedge Funds, Pension Funds, Insurance Companies and other individuals, groups and organisations will increasingly see renewable energy as good places for long-term investment of their funds.

The two big problems are as follows.

  • What happens when all these renewable energy sources are producing more energy than we can use?
  • What happens when there is an energy deficit?

Energy storage is the solution, but the amount needed is massive.

In Airport Plans World’s Biggest Car Parks For 50,000 Cars, I looked at the mathematics in using car parks for electric cars for energy storage.

These are a few figures.

  • Electric Mountain is the UK’s largest electricity storage scheme with a capacity of 9.1 GWh.
  • The largest battery in the world is the Bath County Pumped Storage Station with a capacity of 24 GWh, which works on similar principles to Electric Mountain.
  • Building another Electric Mountain would cost £1350 million, if we could find somewhere to put it.

But supposing half the 35.5 million cars and light goods vehicles in the UK were replaced by new electric vehicles containing a battery of around 20 kWh, that would be a total storage of 355 GWh or nearly forty Electric Mountains.

Conclusion

Harnessing all of these batteries will be an enormous challenge, but it will be ideas like this, that will enable the world to go carbon neutral by 2050.

But I don’t think we’ll ever see Trump or Xi Jinping in an electric limousine..

 

June 21, 2019 Posted by | World | , , , , , , , , , , , , | Leave a comment

Grants To Support Low-Carbon Technology Demonstrators

The title of this post is the same as that of this article on Railway Gazette.

This is the two introductory paragraphs.

The Department for Transport has awarded grants of around £350 000 to each of five projects which aim to develop technology to reduce the rail network’s carbon footprint.

The projects were selected under the second round of the DfT’s First of a Kind competition, run by Innovate UK as part of the DfT’s wider Accelerating Innovation in Rail programme.

These are the winners.

Project 1 Riding Sunbeams

I wrote about this technology in Solar Power Could Make Up “Significant Share” Of Railway’s Energy Demand.

Project 2 Diesel Freight Carbon Reduction Technology

We all hate Class 66 locomotives, with their noise, vibration and pollution.

But an Essex company called Vortex Exhaust Technology has been awarded a grant to see if their free-flowing exhausts can tame, these most unfriendly of beasts.

They make this claim on their web site.

Vortex is the ONLY exhaust technology available that effectively eliminates back pressure, improving engine efficiency, boosting power and cutting emissions.

A Class 66 locomotive will be a tough challenge.

To see what the company can do for road vehicles, there is a case study at the bottom of this page.

But then they are Essex Boys! Performance is in the genes!

Project 3 CODD-P Hydraulic Pump

This is said in the Railway Gazette article.

Unipart Rail will undertake in-service testing of a commercial version of a digital displacement pump and electronic controller in place of a traditional hydraulic pump with swashplate design. This is expected to provide a significant reduction in fuel consumption.

It sounds like an idea from Artemis Intelligent Power in Edinburgh.

Project 4 Green Rail Exhaust After Treatment

This is said in the Railway Gazette article.

Leasing company Porterbrook will collaborate with Eminox to transfer an on-road exhaust after-treatment system widely fitted to heavy-duty vehicles to the railway environment, equipping a South Western Railway Class 158 DMU for in-service trials. This will enable the technical and commercial viability to be established, so it can be offered for widespread fitment.

There are currently 170 Class 158 trains and 30 of the closely-related Class 159 trains in service, so if this is successful, there won’t be a shortage of installations.

The picture shows one of East Midlands Trains, Class 158 trains.

 

It should also be said, that most Class 158 trains are in excellent condition, despite being nearly thirty years old.

Note that Porterbrook are involved. Train leasing companies seem to be getting increasingly involved with innovation.

Project 5 W2W Zero Emissions Power System

This is said in the Railway Gazette article.

Steamology’s Water 2 Water concept will use compressed hydrogen and oxygen gas in a ‘compact energy-dense steam generator’ to produce high pressure superheated steam to drive a turbine, which will generate electricity to charge the batteries as a ‘range extender’ for a Vivarail Class 230 multiple-unit produced from former London Underground vehicles.

It sounds to me, that the tabloids will say that this is the return of the steam train.

Conclusion

They are a broad spread of technology and I have this feeling, that the Department for Transport will get a sensible return for an outlay of around two million pounds.

But I suspect that the best and most profitable idea, will come, after a meeting between two or more of the award winners and their backers.

 

 

February 5, 2019 Posted by | Transport | , , , , , , , | 4 Comments

Funding Gives Weight To Idea For Storing Electricity

The title of this post, is the same as that of an article on Page 45 of today’s copy of The Times.

It talks of a company called Gravitricity, which has used the same principle as every weight-operated clock to store energy and especially energy generaed from intermittent sources like wind and solar power.

The company has just secured a £650,000 grant from Innovate UK.

In Solar Power Could Make Up “Significant Share” Of Railway’s Energy Demand, I looked at how solar farms and batteries could be used to power third-rail railway electrification.

Because of energy losses, third-rail electrification needs to be fed with power every three miles or so. This gives a problem, as connection of all these feeder points to the National Grid can be an expensive business.

A series of solar farms, wind turbines and batteries, controlled  by an intelligent control system, is an alternative way of providing the power.

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

If I assume that trains are five cars and will be efficient enough to need only 3 kWh per vehicle mile, then to power a train along a ten mile section of track will take 150 kWh.

As the control system, only powers the track, when a train needs it, the whole system can be very efficient.

So why will Gravitricity battery ideas be ideal in this application?

Appropriate Size

By choosing the right weight and depth for the Gravitricity battery , appropriate energy storage can be provided at different points on a line.

Some parts of a journey, like accelerating away from stations will need more electricity than others, where trains are cruising along level ground.

Supposing my five-car example train is travelling at 60 mph, then to cover ten miles will take 10 minutes, with 15 kW being supplied in every minute.

If the train weighs 200 tonnes, then accelerating the train to 60 mph will need about 20 kWh.

I’m sure that a Gravitricity battery could handle this.

I would suspect that batteries of the order of 100 kWh would store enough power for the average third-rail electrified line.

A proper dynamic simulation would need to be done. I could have done this calculation in the 1960s, but I don’t have the software now!

Response Time

For safety and energy-efficiency reasons, you don’t want lines to be switched on, when there is no train present.

I suspect that if there is energy in the battery, response would be fast enough.

Energy Efficiency

The system should have a high efficiency.

How Big Would A 100 kWh Gravitricity Battery Be?

A quick calculation shows the weight would be 400 tonnes and the depth would be 100 metres.

Installing the batteries

Each battery will need a 100 metre deep hole of an appropriate diameter.

This sequence of operations would be performed.

  • A rail-mounted drilling rig would drill the hole.
  • The heavy weight of the battery would arrive by train and would be lifted into position using a rail-mounted crane.

As the equipment will generally be heavy, doing all operations from the railway will be a great help.

 

 

 

February 9, 2018 Posted by | Energy, Energy Storage, Transport | , , , | 1 Comment