The Anonymous Widower

Cambridgeshire Company’s Self-Charging Trains Project Wins Government Funds

The title of this post, is the same as that of this article on the BBC.

These four paragraphs outline what the company is developing and how they received government funding.

Echion Technologies, based in Sawston near Cambridge, is creating train batteries that can charge from overheard wires, the Department for Transport said.

The trains would be able to use the batteries on unelectrified track.

The project was among the winners of the government’s First of a Kind competition.

The competition aims to award funding to projects that could transform the future of transport.

I have a few thoughts.

The Description In The First Of A Kind 2022 Winners Document

In this document, this is said.

Project No: 10039100

Project title: UBER – Ultra-high power Battery for low Emission Rail
Lead organisation: ECHION TECHNOLOGIES LTD
Project grant: £59,917

Public description: Project UBER (Ultra-high power Battery for low Emission Rail), aims to demonstrate for the first time, Echion’s XNO(tm) battery chemistry as the preferred battery technology for certain classes of battery electric trains. It targets Theme 1 of this competition.

Specifically, UBER aims to demonstrate the suitability of XNO(tm) for passenger trains that can be powered by the AC overhead electrification and charge a battery from the overhead wire (or another form of ‘standard’ trackside power — e.g. 3rd rail), to then run in battery-only mode on unelectrified section of a route. An example of such a train is the Revolution Very Light Rail (Revolution VLR) developed by Transport Design International (TDI), who is a partner in UBER.

Applying The Echion Technologies Batteries To Electric Trains

Consider.

  • The BBC article is accompanied by a picture of a Class 717 train, which like the Class 700 train is dual voltage.
  • Southeastern have thirty similar Class 707 trains, which are third-rail, although according to Wikipedia, were tested as dual-voltage trains.
  • Most modern trains, like these Desiro City units made by Siemens, have a mix of motored and trailer cars, with one or more pantograph cars  between the two driver cars.
  • Because power is needed in all cars, there will be an electrical bus from one end of the train to distribute power.
  • All trains in the family appear to have at least one trailer car, which will also be connected to the electrical bus.

With a family of trains like the Desiro City, Alstom’s Aventra, CAF’s Civity, Hitachi’s AT-200 or AT-300 or Stadler’s FLIRTs, train manufacturers assemble various cars, interiors and electrical gubbins together, to get the train performance and capability.

I would expect that the battery would be placed, where there is space and the most likely place is under the trailer car.

In some ways, it would work like the battery in a laptop computer, where operation is as follows.

  • If there is external power, the computer runs on that power and the battery is also charged, if it is not fully-charged.
  • If there is no external power, the computer runs on battery power, until the battery goes flat.

With a battery-electric train, operation is similar, with an important addition.

  • If there is external power, the train runs on that power and the battery is also charged, if it is not fully-charged.
  • If there is no external power, the train runs on battery power, until the battery goes flat.
  • Desiro City and many other electric trains have regenerative braking and under braking, the electricity generated is is stored in the battery, if it is not fully-charged.

It could be considered by some, that regenerative braking is self-charging. But unfortunately, regenerative braking doesn’t recover all energy during braking. But it can be up to 70-80 % efficient.

Connecting The Echion Technologies Battery To The Train

The battery will have to be connected to the electrical bus, that runs the full length of the train.

As a Control Engineer, I suspect there will be a sophisticated control system, that will switch the battery between various modes and control the pantograph and third-rail shoes.

Perhaps, Echion Technologies have developed an all-purpose controller that could fit all trains?

 

November 16, 2022 Posted by | Energy, Transport/Travel | , , , , , , , , , , , | 5 Comments

Battery EMUs Envisaged In Southeastern Fleet Procurement

The title of this post, is the same as that of this article on Railway Gazette.

This is the first paragraph.

Southeastern has invited expressions of interest for the supply of new electric multiple-units with an optional battery capability for operation away from the 750 V DC third-rail network.

This article on bidstats is entitled Supply Of And Maintenance Support For New Rolling Stock For Southeastern, and gives more details.

These are my thoughts.

Southeastern HighSpeed Services

There would appear to be no changes in this contract to the Class 395 trains, that work on High Speed One, as this is said in the bidstats article.

Full compatibility with Southeastern infrastructure (excluding High Speed 1 infrastructure)

which appears to rule out running on High Speed One.

In addition, this article on Rail Magazine is entitled Southeastern’s Class 395 Javelin Train Sets Are To Receive A £27 million Facelift.

Southeastern Have Both 75 and 100 mph Trains

In addition to their Class 395 trains, Southeastern have the following trains in their fleet.

Note.

  1. Running a mixed fleet of 75 and 100 mph trains can’t be very efficient.
  2. The Class 465 and 466 trains are the oldest trains and date from 1991-1994.
  3. They are often to be seen in ten-car formations of 2 x 465 trains and a Class 466 train.
  4. Another twelve Class 707 trains are planned to join Southeastern.

I would expect the Class 465 and Class 466 trains to be replaced first.

What Length Will The New Trains Be?

If you look at the new suburban electric trains, they have the following lengths.

Note.

  1. Southeastern already run five-car trains as pairs.
  2. A significant proportion of existing suburban trains are five-car trains.
  3. Great Western, Hull Trains, LNER, Lumo and TransPennine Express run five-car Hitachi trains, with more companies  to follow.
  4. A pair of five-car trains make a pair of a convenient length for most platforms.

I would be fairly confident, that the new trains will be five-car trains, with the ability to run as pairs.

What Will Be The Operating Speed Of The New Trains?

To match the speed of the Class 375 and Class 707 trains, I would expect them to be 100 mph trains.

The Quietness Of Battery-Electric Trains

All of the battery-electric trains I have ridden, have been mouse-quiet, with none of the clunking you get for a lot of electric trains.

This is said in the bidstats article says this about the interiors

Interiors suitable for metro & mainline operation.

I wouldn’t be surprised to see a lot of these trains on commuter routes to attract passengers.

Battery Power

This is said in the bidstats article about battery power.

Inclusion of options for traction batteries with capability for operation in depots and sidings without the need for external power supply, and with the capability to operate on the main line where power supply is not available due to isolations or incidents, or for non-electrified line sections of up to 20 miles.

Although Merseyrail’s new Class 777 trains are not in service yet, I find it interesting that the proposed Southeastern trains will be similarly-fitted with a small battery for depot and siding operation.

The twenty mile battery range is specific and I wonder if it will be used innovatively. I suspect it could be a bit longer in the future, as battery technology improves.

Possible Electrified Routes Using Battery Power

These are a few possibilities.

The Hoo Branch

In Effort To Contain Costs For Hoo Reopening, I discussed running electric trains to a proposed Hoo station.

I made these two points.

  • Hoo junction to Hoo station is no more than five or six miles.
  • There are also half-a-dozen level crossings on the route, which I doubt the anti-third rail brigade would not want to be electrified.

It would appear that a battery-electric train with a range of twenty miles would handle this route easily.

  • Charging would be on the nearly thirty miles between Hoo junction and Charing Cross station.
  • No charging would be needed at Hoo station.

There may be other possibilities for new routes locally to open up new housing developments.

The Sheerness Line

The Sheerness Line has the following characteristics.

  • It is double-track
  • It is electrified
  • It is less than eight miles long.
  • For most of the day, the service is one train per hour (tph)
  • There are two tph in the Peak.
  • Would two tph attract more passengers to the line?
  • Does the power supply on the Sheerness Line limit the size and power of trains that can be run on the line?
  • Is there a need for one train per day to London in the morning and a return in the evening?
  • Could the Sheerness Line be run more economically with battery trains. providing a two tph service all day?

The Isle of Sheppey needs levelling up, perhaps 100 mph trains to London using battery power on the Sheerness Line, might just make a difference.

The Medway Valley Line

The Medway Valley Line has the following characteristics.

  • It is double-track
  • It is electrified
  • It is less than twenty-six and a half miles long.
  • For most of the day, the service is two tph.
  • In the Peak there are HighSpeed services between Maidstone West and St.Pancras International stations.

If electrification was removed between Paddock Wood and Maidstone West stations, the HighSpeed services could still be run and battery-electric trains with a twenty mile range could still run the Tonbridge and Strood service.

The Marshlink Line

The Marshlink Line has the following characteristics.

  • It is mainly single-track with a passing loop at Rye station.
  • It is not electrified
  • It is 25.4 miles between the electrified Ashford International and Ore stations.
  • Services are irregular and less than one tph.

If the proposed battery-electric train had a range of thirty miles, it should be able to handle the Marshlink Line.

The service between Eastbourne and Ashford International stations would need to be moved between the Southern and Southeastern operations.

The Uckfield Branch

The Uckfield Branch has the following characteristics.

  • It is a mixture of single- and double-track.
  • It is not electrified South of Hurst Green Junction.
  • It is 24.7 miles between the electrified Hurst Green Junction and Uckfield station
  • Services are one tph.

If the proposed battery-electric train had a range of thirty-miles, it should be able to handle the Uckfield Branch, with a charging system at Uckfield station.

Will Battery-Electric Trains Allow Some Lines To Have Their Electrification Removed?

There are several reasons, why electrification might be removed.

  1. It is on a line, where the electrification needs upgrading.
  2. It is on a line, where there are lots of trespassers.
  3. Possibly at a level-crossing or a stretch of track with several.
  4. Possibly in a tunnel, with a large inflow if water.
  5. It is a depot or siding, where safety is important to protect the workforce.

Obviously, the electrification would not be removed unless  battery-electric trains can handle all possible services.

These are surely some possibilities for electrification removal.

The Hayes Line

The Hayes Line has the following characteristics.

  • It is double-track
  • It is electrified
  • It is less than eight miles to Ladywell Junction, where the branch joins the main line at Lewisham.
  • It is currently run by Class 465 and Class 466 trains, which will likely be changed for the new trains with a battery capability.
  • Services are four tph.

If the proposed battery-electric train had a range of twenty-miles, it would be able to handle the route between Ladywell junction and Hayes station.

Erith Loop, Crayford Spur and Slade Green Depot

This map from Cartometro.com shows the Erith Loop, the Crayford Spur and the Slade Green Depot.

Note.

 

Not many trains take the Erith Loop or the Crayford Spur.

  • The distance between Slade Green and Barnehurst is less than a mile-and-a-half.
  • Dartford station is off the South-East corner of the map.
  • The distance between Barnehurst and Dartford is less than three miles.
  • The distance between Slade Green and Crayford is less than two miles-and-a-half.
  • The distance between Crayford and Dartford is less than two miles.
  • The main line through Slade Green would need to remain electrified, as electric freight trains use the line.

I suspect, that quite a lot of electrification could be removed here, much to the disgust of the copper thieves.

It might even be possible to build on top of the depot.

 

 

November 14, 2022 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , , | 10 Comments

Uckfield Third Rail Is NR Priority

The title of this post, is the same as that of an article in the April 2022 Edition of Modern Railways.

This is the first two paragraphs.

Electrification of the line between Hurst Green and Uckfield in East Sussex and the remodelling of East Croydon are the top Network Rail investment priorities south of the river, according to Southern Region Managing Director John Halsall. He told Modern Railways that third rail is now the preferred option for the Uckfield Line, as it would allow the route to use the pool of third-rail EMUs in the area. This is in preference to the plan involving overhead electrification and use of dual-voltage units put forward by then-Network Rail director Chris Gibb in his 2017 report (p66, September 2017 issue).

NR has put forward options for mitigating the safety risk involved with the third-rail system, including switching off the power in station areas when no trains are present and section isolation systems to protect track workers.

The Office of Road and Rail hasn’t given Network Rail’s scheme the OK yet, but as an Electrical Engineer, I believe that a safe system is possible.

Making Charging Safe At Greenford

This article on Ian Visits is entitled Ex-London Underground Trains To Be Tested On The Greenford Branch Line.

The article describes how despite using London Underground’s four-rail electrification, it will be possible with the right interlocks and systems to make such a system safe.

As Vivarail’s system is to be installed, it must already agree with all the Health and Safety rules.

A Safe System On The Uckfield Branch

Consider.

  • The unelectrified section of the Uckfield Branch is twenty-five miles long.
  • There are seven intermediate stations, with the longest section between any two stations under five miles.
  • Trains stop in each station on the route.
  • Trains appear to have a dwell time of about a minute in each station.
  • A ten-car pair of Class 707 trains would be 203.2 metres long.
  • All platforms have been lengthened for ten-car trains.
  • A battery-electric train running along unelectrified track, is no more dangerous than a diesel train.

This picture shows some typical third-rail electrification at Kidbrooke station in South East London.

Electrification At Kidbrooke Station

Note.

  1. The electrified rails are between the tracks.
  2. Gaps are possible to isolate sections of tracks.
  3. The third-rail is tapered, so that the third-rail shoes on the train can connect and disconnect easily.

Suppose you have a third-rail electric train with a range of say seven or eight miles on batteries.

Would it be possible to devise a safe electrified railway using this train and standard third-rail electrification with some safety modifications?

  • The track in each station would be electrified in the normal way with the third-rail away from the platform.
  • The length of electrification in each station would be  a few metres shorter than the length of the ten-car pair of Class 707 trains.
  • This would mean that the train would completely cover the electrification, when it stopped in the station.
  • The third-rail electrification would only be switched on, when a train is stopped in the station and the right interlocks are engaged.
  • Even if a passenger fell onto the tracks, they would probably be safe, unless they crawled through the wheels to the centre of the tracks.
  • There would be no electrification between the stations, which would protect track workers and trespassers.

I believe that a safe system can be devised.

A train going through a station would do the following.

  • Slowing down, the train would use regenerative braking, that helped to charge the batteries
  • The train would stop in a station, so that it connected with and covered the third-rail.
  • When the charging system recognised that a train was connected, it would start to charge the batteries.
  • When all passengers had unloaded and loaded and the train was ready, the driver would stop the charging process.
  • The train would move to the next station on battery power.
  • Safety interlocks would stop the charging under various unsafe circumstances.

I believe that Siemens could have developed a charging system like this for their Class 707 trains, as some of their other trains of a similar vintage to the Class 707 trains already offer battery options.

A Stepping Stone Approach

On the unelectrified section between Hurst Green Junction and Uckfield, there are the following stations.

  • Edenbridge Town – two platforms
  • Hever – two platforms
  • Cowden – single bi-directional platform – 7.9 miles South of Hurst Green Junction.
  • Ashurst – two platforms
  • Eridge – single bi-directional platform – 6.3 miles South of Cowden
  • Crowborough – two platforms
  • Buxted – single bi-directional platform – 4.7 miles South of Eridge
  • Uckfield – single platform – 2.3 miles South of Buxted

Suppose the following were to be done.

  • Do nothing at the two platform stations.
  • Fit an intelligent fast charging system at Cowden, Eridge, Buxted and Uckfield.
  • If it was felt to be needed to ensure reliable operation, the power supply to the Southbound platform could be boosted at Hurst Green station.
  • Procure some ten-car battery-electric trains, which have regenerative braking and a range of perhaps ten-twelve miles on battery power.

Note.

  1. A pair of five-car trains could be used instead of ten-car trains.
  2. Some five-car Class 377 trains fitted with batteries might be ideal.
  3. This would mean only four platforms would need to be electrified with fast charging systems.

I am sure that Vivarail Fast Charge systems could be used, if they were modified to work with standard third-rail systems and for bi-directional use.

What size of battery would be needed for this approach?

In an article in the October 2017 Edition of Modern Railways, which is entitled Celling England By The Pound, Ian Walmsley says this in relation to trains running on the Uckfield Branch, which is not very challenging.

A modern EMU needs between 3 and 5 kWh per vehicle mile for this sort of service.

So for a ten-car train running for twelve miles, the train would need a battery capacity of between 360 and 600 kWh.

Or if it was two five-car trains between 180 and 300 kWh in each train.

Note that Vivarail find space for 424 kWh in the two-car Class 230 train, I wrote about in Battery Class 230 Train Demonstration At Bo’ness And Kinneil Railway.

I believe that a five-car Class 377 or 707 train could be fitted with a 300 kWh battery and this would give the train a range of 12 miles, which would enable it to provide a battery-electric service on the Uckfield Branch.

May 2, 2022 Posted by | Transport/Travel | , , , , , | 10 Comments

Effort To Contain Costs For Hoo Reopening

The title of this post, is the same as that of an article in the April 2022 Edition of Modern Railways.

This is the first paragraph.

Medway Council is working with Network Rail and other industry players in an effort to make restoration of a passenger service to Hoo on the Isle of Grain branch feasible. The Council was awarded £170 million from the Housing Infrastructure Fund in 2020 to support schemes to facilitate building of 12,000 new houses in the area, with £63 million of the HIF money for reinstatement of services on the Hoo Branch.

The article mentions, this new infrastructure.

  • A new station South of the former Sharnal Street station.
  • Works to level crossings, of which there are six between Gravesend station and proposed site of the new Hoo station.
  • A passing place at Hoo Junction, where the branch joins the North Kent Line.
  • A passing place at Cooling Street.

Note.

  1. The single-platform Bow Street station cost £8 million.
  2. The single-platform Soham station cost nearly £22 million, but it has a bridge.
  3. Reopening the Okehampton branch and refurbishing Okehampton station cost £40 million.

I think costs will be very tight.

Possible Train Services

This is said in the article about the train service on the branch.

While third rail electrification was originally proposed, this idea has been discarded in favour of self-powered trains on the branch, such as battery-operated trains. Possible destinations include Gravesend, Northfleet or Ebbsfleet for interchange with trains going to London, or extension of London to Dartford or Gravesend services over the branch, using hybrid third-rail/battery trains.

Consider.

  • Merseyrail will be using battery-electric trains to provide services to the new Headbolt Lane station, as permission was not available for extending the existing third-rail track.
  • Electrification would probably cost more than providing a charging system at Hoo station.
  • Turning the trains at Gravesend, Northfleet or Ebbsfleet could be difficult and a new bay platform would probably break the budget.
  • Both Dartford and Gravesend have two trains per hour (tph), that could be extended to the new Hoo station.
  • Hoo junction to Hoo station is no more than five or six miles.
  • There are also half-a-dozen level crossings on the route, which I doubt the anti-thord rail brigade would not want to be electrified.
  • The Dartford services have a possible advantage in that they stop at Abbey Wood station for Crossrail.
  • It may be easier to run services through Gravesend station, if the terminating service from Charing Cross were to be extended to Hoo station.
  • A two tph service between London Charing Cross and Hoo stations, with intermediate stops at at least London Bridge, Lewisham, Abbey Wood and Dartford would probably be desirable.

I feel that the most affordable way to run trains to Hoo station will probably be to use battery-electric trains, which are extended from Gravesend.

It may even be possible to run trains to Hoo station without the need of a charging system at the station, which would further reduce the cost of infrastructure.

Possible Trains

Consider.

  • According to Wikipedia, stopping Gravesend services are now run by Class 376, Class 465, Class 466 and Class 707 trains.
  • Real Time Trains indicate that Gravesend services are run by pathed for 90 mph trains.
  • Class 376, Class 465 and Class 466 trains are only 75 mph trains.
  • Class 707 trains are 100 mph trains and only entered service in 2017.

I wonder, if Siemens designed these trains to be able to run on battery power, as several of their other trains can use batteries, as can their New Tube for London.

In Thoughts On The Power System For The New Tube for London, I said this.

This article on Rail Engineer is entitled London Underground Deep Tube Upgrade.

This is an extract.

More speculatively, there might be a means to independently power a train to the next station, possibly using the auxiliary battery, in the event of traction power loss.

Batteries in the New Tube for London would have other applications.

  • Handling regenerative braking.
  • Moving trains in sidings and depots with no electrification.

It should be born in mind, that battery capacity for a given weight of battery will increase before the first New Tube for London runs on the Piccadilly line around 2023.

A battery-electric train with a range of fifteen miles and regenerative braking to battery would probably be able to handle a return trip to Hoo station.

An Update In The July 2022 Edition Of Modern Railways

This is said on page 75.

More positive is the outlook for restoration of passenger services on the Hoo branch, where 12,000 new houses are proposed and Medway Council is looking to build a new station halfway down the branch to serve them. As the branch is unelectrified, one idea that has been looked at is a shuttle with a Vivarail battery train or similar, turning round at Gravesend or another station on the main line.

Steve White worries that this could mean spending a lot of money on infrastructure work and ending up with what would be a sub-optimal solution. ‘Do people really want to sit on a train for 10 minutes before having to get out and change onto another train? I don’t think so. Ideally what you want is through trains to London, by extending the Gravesend terminators to Hoo.’

That would require a battery/third rail hybrid unit, but Mr. White thinks that is far from an outlandish proposal; with Networker replacement on the horizon, a small bi-mode sub-fleet could dovetail neatly with a stock renewal programme. Medway Council and rail industry representatives are working on coming up with a solution for Hoo that could do what it does best; facilitating economic regeneration in a local area.

Note that Steve White is Managing Director of Southeastern.

I’ll go along with what he says!

Conclusion

I believe that a well-designed simple station and branch line could be possible within the budget.

A battery-electric upgrade to Class 707 trains could be a solution.

But the trains could be very similar to those needed for Uckfield and to extend electric services in Scotland.

May 2, 2022 Posted by | Design, Transport/Travel | , , , , , , , , , , , , , , , , , , | 6 Comments

Southeastern’s Class 707 Trains

A few days ago, I had my first ride in one of Southeastern‘s Class 707 trains.

Other than a change of colour, they seemed little different to when they were working for South Western Railway.

Note that the orange grab-handles have been retained.

November 29, 2021 Posted by | Design, Transport/Travel | , , | 4 Comments

A Class 707 Train In Southeastern Livery

The Class 707 trains started running for Southeastern today and I photographed this example at Cannon Street station.

The trains have been branded as City Beam. I’m not sure I like it.

September 28, 2021 Posted by | Transport/Travel | , , | Leave a comment

Southeastern Signs Deal To Lease Unwanted Class 707s

The title of this post is the same as that of this article on Rail Magazine.

This is the introductory paragraph.

New trains made redundant before they even entered traffic are set for a new home, with Southeastern signing a deal to lease the 30 five-car Class 707s.

These pictures show Class 707 trains.

Having ridden in the trains many times, the trains don’t seem to have a major problem, except for the high step, which isn’t very wheel-chair friendly.

I can summarise the Class 707 fleet as follows.

  • Thirty trains of five cars.
  • 100 mph operating speed.
  • Metro interior with lots of space, as I wrote about in The Space In A Class 707 Train.
  • Air-conditioing
  • 275 seats
  • Built in 2014.
  • Wi-fi

Looking at Southeastern fleet, they have a fleet of Class 376 trains.

  • Thirty-six trains of five cars.
  • 75 mph operating speed.
  • Metro interior.
  • 228 seats
  • Built in 2004

Could it be that the Class 707 trains will replace these?

  • They are ten years younger
  • They have more seats.
  • They are 25 mph faster and probably have better acceleration.

The Class 707 have better passenger features like air-conditioning, power sockets and wi-fi. They may also have shorter dwell times in stations, just because they are newer trains.

On the other hand, the fleet is six trains smaller.

I do wonder though, if the Class 707 trains are faster over a metro route, than the Class 376 trains, because of better performance, does this mean that fewer trains can work Southeastern’s metro routes?

Kent On The Cusp Of Change

The Kent On The Cusp Of Change article in the July 2017 Edition of Modern Railways discusses the improvements that may be made by the new franchisee of the Southeastern franchise.

In Kent On The Cusp Of Change – Elimination Of Slow Trains, I outlined the reasons for replacing the 75 mph trains in Southeastern’s fleet.

There are three sub-fleets of 75 mph trains.

Note.

  1. The Class 465 and 466 trains generally work in ten-car formations of 2 x Class 465 and 1 x Class 466 trains.
  2. The Class 465 and 466 trains have toilets, but the Class 376 trains don’t.
  3. The Class 465 and 466 trains work both Main Line and Metro services.
  4. Surely, 75 mph trains will slow up Main Line services.
  5. I doubt that Class 707 trains can run Main Line services, unless they were updated with toilets.

It should also be noted that the trailer cars of Class 465 trains may be needed to lengthen Class 165 and 166 trains, as I wrote about in Shuffling The Class 165 Trains, where I estimated that sixty trailer cars would be needed from the Class 465 fleet.

I can see an intricate strategy being developed with the following objectives.

  • Introduce the Class 707 trains on Southeastern’s Metro services.
  • Withdraw sixty Class 465 trains so they can donate trailer cars to lengthen Class 165/166 trains.
  • Reorganise some services, so Main Line services can be all 100 mph trains.

Southeastern may need to acquire some additional rolling stock.

The first two fleets are 75 mph trains, but the Class 379 trains are 100 mph units, that could be ideal to support Southeastern’s Main Line services.

Conclusion

The Class 707 trains look like a good replacement for the Class 376 trains.

But because there appears to be a need for trailer cars to strengthen GWR’s Class 165 and Cass 166 trains, there also appears to be a need to withdraw some Class 465 trains, which creates the need for some detailed planning.

April 20, 2020 Posted by | Transport/Travel | , , , , , , , | 4 Comments

The Space In A Class 707 Train

This morning I got into an empty Class 707 train at Waterloo station and took these pictures.

They do show the wide aisle and the spacious lobbies by the wide double doors.

I think all suburban trains should be given lots of space like this.

  • It allows for a lot of standees.
  • A high proportion of passengers get a seat.
  • Passengers can circulate from car-to-car to find a seat or perhaps people they know.
  • The space helps quick exit and entry to the train.

Unfortunately, not all suburban trains have such spacious interiors.

These are a selection.

Note these pictures show London Overground’s Class 710 and Class 378 trains and Crossrail’s Class 345 trains.

Seating along the side may not be to everybody’s taste, but it does get a large number of passengers into a train.

Siemans and Bomnardier use very different philosophies, but achieve the same result.

 

October 28, 2019 Posted by | Transport/Travel | , , | 2 Comments

Were South Western Railway’s Class 707 Trains Designed By An Accountant With A Red Pen?

I’ve just travelled between Syon Lane and Dalston Junction stations.

For the first part of the journey, I was in a South Western Railway Class 707 train, until I changed to the Overground and a Class 378 train.

The Class 707 train is better noted for what it doesn’t have.

  • Air-conditioning
  • Two door opening buttons
  • Toilets
  • Padding in the seats

But it does have wi-fi!

Was it designed by an accountant with a red pen?

As they were lumbered with these uncomfortable trains by the previous franchise holders; Stagecoach, I can understand why they are being replaced with Class 701 trains.

I am actually typing this in one of London Overground’s Class 378 trains, which have air-conditioning, better seats and more door buttons!

Conclusion

I can’t say I’m sorry to see Stagecoach abandon train operating!

August 2, 2019 Posted by | Transport/Travel | , , , | 5 Comments

The Coolest Trains In London

It was hot in London today, so I thought I’d investigate how well the New Class 710 trains on the Gospel Oak to Barking Line.

I did the following journeys.

  • A 141 bus from my house to Harringay Green Lanes station.
  • A Class 710 train between Harringay Green Lanes and Gospel Oak stations.
  • A Class 710 train between Gospel Oak and Blackhorse Road stations.
  • A Victoria Line train between Blackhorse Road and Highbury & Islington stations.
  • A Class 707 train between Highbury & Islington and Moorgate stations.
  • After doing some shopping, I took a 141 bus to my home.

I took these pictures on the route.

Some observations.

Passengers Towards Gospel Oak Weren’t Numerous

The train going to Gospel Oak station wasn’t very full, wil only about half the seats taken.

The Train From Gospel Oak Was Packed

It was rather different going back, as every seat on the train was taken and there were passengers standing.

The Seats And Air In The Train Were Comfortable

I would certainly recommend a trip in a Class 710 train on a hot day, as a means to cool off.

Let’s hope that all the other classes of Aventras have the same quality of air-conditioning.

The Victoria Line Wasn’t Busy

The air and temperature ion the Victoria Line wasn’t bad, but it wasn’t of the same quality as the Class 710 train.

But the trip made me think that passengers avoid the deep tube in hot weather.

Class 707 Train To Moorgate

I used the cross-platform interchange at Highbury & Islington station to switch to a Class 707 train, running a Great Northern service to Moorgate station.

The air-conditioning was working well and the two other passengers remarked that it was good in this hot weather.

It’s a pity that these trains have ironing-board seats.

Will These Trains Cut Crime?

When I moved to Dalston in 2010, the service along the North London Line was just being launched and wasn’t fully running until May 2011.

Dalston was the haunt of aimless youth and it wasn’t the best place to live.

Nine years on and it has all changed.

The youths have disappeared and the perceived threat of crime seems down. So where have they all gone?

From stories I have heard, public transport has improved so much, that a large proportion of the youths, have discovered something better to do! It’s called work.

  • New Class 378 trains
  • North London Line trains have gone from four trains per hour (tph) to eight.
  • East London Line trains didn’t exist in 2010 and are now sixteen tph.
  • There are several fleets of new buses.
  • Increases in train frequencies are planned.

Dalston is now a much better place to live.

The new Class 710 trains will soon be running on the following routes.

  • Gospel Oak to Barking Line
  • Liverpool Street to Cheshunt
  • Liverpool Street to Chingford
  • Liverpool Street to Enfield Town

And the new Class 707 trains will soon be running on the following routes.

  • Moorgate to Hertford East
  • Moorgate to Stevenage
  • Moorgate to Welwyn Garden City

Most new trains will be in service by the end of this year.

The following will be delivered.

  • More capacity
  • Increased frequencies
  • Better comfort
  • Wi-fi and power sockets
  • On-train CCTV

A lot of the previous ancient trains will be scrapped.

Will the new trains cut crime and the perception of crime in the areas of North-East London, that they serve.

It is too early to tell, but good public transport has had a remarkable affect on Dalston.

So will the same thing happen in Enfield, Hasringey and Wathamstow?

 

Conclusion

I wonder how many people with a Freedom Pass like me are cooling off in this weather by using these and other trains.

July 25, 2019 Posted by | Transport/Travel | , , , , , | 2 Comments