The Anonymous Widower

Green Light For Orkney Transmission Link

The title of this post, is the same as that of this news item from SSE.

These three paragraphs outline the project.

SSE’s Transmission business, SSEN Transmission, has welcomed today’s publication by Ofgem in which the energy regulator has provisionally approved long awaited and much needed plans to provide a subsea electricity transmission link to Orkney.

The Orkney Islands are home to some of the world’s greatest resources of renewable electricity, from established onshore wind, to emerging marine technologies, where Orkney is at the forefront of global developments in marine energy generation.

Following significant growth in small-scale renewable electricity generation in Orkney, the local electricity network has long been at full capacity and no new electricity generation can connect without significant reinforcements.

This paragraph describes the scope of the project.

SSEN Transmission’s proposed solution would enable the connection of up to 220MW of new renewable electricity and consists of a new substation at Finstown in Orkney, and around 57km of subsea cable, connecting to a new substation at Dounreay in Caithness.

200 MW seems a good return for a substation and forty miles of cable.

March 5, 2023 Posted by | Energy | , , , , | Leave a comment

Rolls-Royce And easyJet Set New World First

The title of this post, is the same as that of this press release from Rolls-Royce.

These three paragraphs explain what the two companies have done and are planning to do.

Rolls-Royce and easyJet today confirmed they have set a new aviation milestone with the world’s first run of a modern aero engine on hydrogen.

The ground test was conducted on an early concept demonstrator using green hydrogen created by wind and tidal power. It marks a major step towards proving that hydrogen could be a zero carbon aviation fuel of the future and is a key proof point in the decarbonisation strategies of both Rolls-Royce and easyJet.

Both companies have set out to prove that hydrogen can safely and efficiently deliver power for civil aero engines and are already planning a second set of tests, with a longer-term ambition to carry out flight tests.

The test today was carried out at Boscombe Down and are shown in this picture from Rolls-Royce.

Rolls-Royce AE2100 Hydrogen Demonstrator engine preparing for test at RAF Boscombe Down

Note that the green hydrogen produced using Orcadian winds and tides.

We live in desperate times and I predict that a hydrogen-fuelled and Rolls-Royce-powered easyJet plane, will fly sooner than anybody thinks.

As with athletes, engineers love to be first!

November 28, 2022 Posted by | Transport/Travel | , , , , | 1 Comment

Orbital Marine Power Awarded Two CfDs As Part Of UK Government Renewable Energy Auction

The title of this post, is the same as that of this news item on the Orbital Marine Power web site.

This is the heart of the news item.

Orbital, the renewable energy company focused on the development and global deployment of its pioneering floating tidal stream turbine technology, has been awarded two contracts for difference (CfDs) in the UK Allocation Round 4 (AR4) process.

This is a significant milestone in the company’s growth, with these CfDs underpinning the delivery of multi-turbine projects in Eday, Orkney.

Capable of delivering 7.2MW of predictable clean energy to the grid once completed, these Orbital tidal stream energy projects can power to up to 7,200 homes, supporting the UK’s security of supply, energy transition and broader climate change objectives.

This positive outcome also means Orbital can make a transformative investment in its UK supply chain, with around 150 jobs expected to be created through the manufacture and installation phase alone. On a jobs per MW installed basis, this would represent an unprecedented level of UK role creation for the construction phase of a renewable energy project.

It is good to see tidal power taken seriously.

The Strike Price For Tidal Stream Energy

Consider.

  • Four contracts have been awarded for tidal stream energy.
  • All have strike price of £178.54 per MWh of electricity.
  • This may seem high, as all large wind farms have a strike price of only £37.35 per MWh of electricity.

On the other hand, there is a level playing field for all tidal stream energy developers. Just as there is for large wind farm developers, who have to live with £37.35 per MWh of electricity.

I think it will incentivise the developers and give them a reward for their technology.

All these strike prices are also mapped out for fifteen years, when trying to raise money for your tidal stream gubbins, you will know exactly where you stand.

I’ll give the Department of Business, Energy and Industrial Strategy, at least four out of five for their strike price regime!

July 8, 2022 Posted by | Energy | , , | Leave a comment

The Concept Of Remote Island Wind

This document from the Department of Business, Industry and Industrial Strategy lists all the Contracts for Difference Allocation Round 4 results for the supply of zero-carbon electricity that were announced yesterday.

The contracts have also introduced a concept that is new to me, called Remote Island Wind. All have got the same strike price of £46.39 per MWh.

Two of the projects on Orkney are community projects of around 30 MW, run by local trusts. This is surely, a model that will work in many places.

There is more on Orkney’s Community Wind Farm Project on this page of the Orkney Islands Council web site.

It could even have an electrolyser to provide hydrogen for zero-carbon fuel, when there is more electricity than is needed. Companies like ITM Power and others already build filling stations with an electrolyser, that can be powered by wind-generated electricity.

The other Remote Island Wind projects are larger with two wind farms of over 200 MW.

It does look to me, that the Department of BEIS is nudging wind farm developers in remote places to a model, that all stakeholders will embrace.

The Viking Wind Farm

I wrote about this wind farm in Shetland’s Viking Wind Farm.

There are more details in this press release from SSE enewables, which is entitled CfD Contract Secured For Viking Energy Wind Farm.

These introductory paragraphs, give a good explanation of the finances of this farm.

SSE Renewables has been successful in the UK’s fourth Contract for Difference (CfD) Allocation Round, announced today, and has secured a low-carbon power contract for 220MW for its wholly-owned Viking Energy Wind Farm (Viking) project, currently being constructed in Shetland.

Viking’s success in securing a contract follows a competitive auction process in Allocation Round 4 (AR4) where it competed within Pot 2 of the allocation round set aside for ‘less established’ technologies including Remote Island Wind.

The 443MW Viking project, which SSE Renewables is currently building in the Shetland Islands, has secured a CfD for 220MW (50% of its total capacity) at a strike price of £46.39/MWh for the 2026/27 delivery year.

The successful project will receive its guaranteed strike price, set on 2012 prices but annually indexed for CPI inflation, for the contracted low carbon electricity it will generate for a 15-year period. Securing a CfD for Viking stabilises the revenue from the project whilst also delivering price security for bill payers.

It’s very professional and open to explain the capacity, the contract and the finances in detail.

The press release also has this paragraph, which details progress.

Viking is progressing through construction with over 50 per cent of turbine foundation bases poured. When complete in 2024, Viking Energy Wind Farm will be the UK’s most productive onshore wind farm in terms of annual electricity output, with the project also contributing to Shetland’s security of supply by underpinning the HVDC transmission link that will connect the islands to the mainland for the first time.

SSE also released this press release, which is entitled Major Milestone Reached As First Subsea Cable Installation Begins On Shetland HVDC Link, where this is the first paragraph.

The first phase of cable laying as part of the SSEN Transmission Shetland High-Voltage Direct Current (HVDC) Link began this week off the coast of Caithness, marking a major milestone in the £660M project.

SSE seem to be advancing on all fronts on the two projects!

The Stornoway Wind Farm

This press release from EDF Renewables is entitled EDF Renewables UK Welcomes Contract for Difference Success, where these are the first two paragraphs.

Two EDF Renewables UK projects bid into the Contract for Difference (CfD) auction round held by the UK Government’s BEIS department have been successful.

The projects are the Stornoway wind farm on the Isle of Lewis and Stranoch wind farm in Dumfries and Galloway. Together these onshore wind farms will provide 300 MW of low carbon electricity which is an important contribution to reaching net zero.

The press release also gives this information about the contract and completion of the Stornoway wind farm.

Stornoway Wind Farm on the Isle of Lewis is a joint venture with Wood. The project has won a CfD for 200 MW capacity, the strike price was £46.39, the target commissioning date is 31 March 2027.

This page on the Lewis Wind Power web site, gives these details of the Stornoway Wind Farm.

The Stornoway Wind Farm would be located to the west of the town of Stornoway in an area close to the three existing wind farm sites.

The project has planning consent for up to 36 turbines and is sited on land owned by the Stornoway Trust, a publicly elected body which manages the Stornoway Trust Estate on behalf of the local community.

The local community stands to benefit as follows:

  • Community benefit payments currently estimated at £900,000 per annum, which would go to an independent trust to distribute to local projects and organisations
  • Annual rental payments to local crofters and the Stornoway Trust – which we estimate could total more than £1.3m, depending on the CfD Strike Price secured and the wind farm’s energy output
  • Stornoway Wind Farm is the largest of the three consented wind farm projects with a grid connection in place and is therefore key to the needs case for a new grid connection with the mainland.  Indeed, the UK energy regulator Ofgem has stated that it will support the delivery of a new 450MW cable if the Stornoway and Uisenis projects are successful in this year’s Contract for Difference allocation round.

Note the last point, where only the Stornoway wind farm was successful.

The Uisenis Wind Farm

This press release from EDF Energy is entitled Lewis Wind Power Buys Uisenis Wind Farm, gives these details of the sale.

Lewis Wind Power (LWP), a joint venture between Amec Foster Wheeler and EDF Energy Renewables has bought the Uisenis Wind Farm project on the Isle of Lewis. The wind farm has planning consent for the development of 45 turbines with a maximum capacity of 162 MW. This would be enough to power 124,000 homes and would be the biggest renewable energy development on the Western Isles.

LWP owns the Stornoway Wind Farm project located around 20km to the north of Uisenis which has planning consent to develop 36 turbines to a maximum capacity of 180 MW – enough to power 135,000 homes.

This would bring Stornoway and Uisenis wind farms under the similar ownership structures.

This is a significant paragraph in the press release.

On behalf of Eishken Limited, the owner of the site where the Uisenis Wind Farm will be located, Nick Oppenheim said: “I am delighted that LWP are taking forward the wind farm. The resources available on the Eishken estate, and the Western Isles in general, means that it is an excellent location for renewable energy projects and, as such, the company is also developing a 300MW pumped storage hydro project immediately adjacent to the Uisenis wind farm. With such potential for renewables and the positive effect they will have on the local community, economy, and the UK as a whole I am are looking forward to positive news on both support for remote island projects and the interconnector.”

Note the mention of pumped storage.

This article on the BBC is entitled Pumped Storage Hydro Scheme Planned For Lewis, where this paragraph introduces the scheme.

A pumped storage hydro scheme using sea water rather than the usual method of drawing on freshwater from inland lochs has been proposed for Lewis.

The only other information is that it will provide 300 MW of power, but nothing is said about the storage capacity.

It looks like Lewis will have a world-class power system.

Mossy Hill And Beaw Field Wind Farms

Mossy Hill near Lerwick and Beaw Field in Yell are two Shetland wind farms being developed by Peel L & P.

This press release from Peel L & P is entitled Government Support For Two Shetland Wind Farms, where these are the first two paragraphs.

Plans for two onshore wind farms on the Shetland Islands which would help meet Scotland’s targets for renewable energy production are a step closer to being delivered after receiving long-term Government support.

Clean energy specialists Peel NRE has been successful in two bids in the Department for Business, Energy and Industrial Strategy’s (BEIS) Contracts for Difference (CfD) scheme; one for its Mossy Hill wind farm near Lerwick and the other for Beaw Field wind farm in Yell.

It looks like the two wind farms will power 130,000 houses and are planned to be operational in 2027.

Conclusion

I must admit that I like the concept. Especially, when like some of the schemes, when it is linked to community involvement and improvement.

Only time will tell, if the concept of Remote Island Wind works well.

July 8, 2022 Posted by | Energy, Hydrogen | , , , , , , , , , , , , | 10 Comments

Could Fortescue Future Industries’ Green Hydrogen Help Europe Ditch Russian Energy?

The title of this post, is the same as that of this article on Motley Fool Australia.

This is the first paragraph.

Green hydrogen may help interrupt the Kremlin’s ability to conduct “war games”, says Fortescue chief Andrew Forrest.

I very much think that Andrew ‘Twiggy’ Forrest is right.

My last three hydrogen articles were.

If the projects in these articles don’t blow the bottom out of the market for Russia’s bloodstained gas, with a little bit of help from Twiggy’s hydrogen kanganaut, then I’ll be very surprised. Especially, as countries like Argentina, Australia, Brazil, Canada, Chile, Denmark, Iceland, Ireland, Jordan, Japan, Kenya, Namibia, Morocco, Norway, Papua New Guinea, Portugal, South Korea, Spain, Sweden and the United States are all planning to produce green hydrogen in large quantities.

May 9, 2022 Posted by | Energy, Hydrogen | , , , , , , , | Leave a comment

Will Orkney Become A Major Green Hydrogen Production Centre?

Two projects seem to be coming together to the West of and on Orkney.

The West Of Orkney Wind Farm

This map shows the awarded leases in the latest ScotWind round, which I analysed in ScotWind Offshore Wind Leasing Delivers Major Boost To Scotland’s Net Zero Aspirations.

Note the wind farm numbered 13 to the West of Orkney.

  • It is now called the West of Orkney wind farm.
  • It has its own web site.

This page on the web site describes the project.

The West of Orkney Windfarm is being developed around 30km off the west coast of Orkney and around 25km from the north Caithness coast. With an expected capacity of 2GW, and first power scheduled for 2029, the project will be capable of powering the equivalent of more than two million homes.

The West of Orkney Windfarm lies wholly within the “N1” Plan Option, which is one of 15 areas around Scotland which the Scottish Government considered suitable for the development of commercial scale offshore windfarms. The Scottish Government published the Sectoral Marine Plan for Offshore Wind Energy in October 2020 following over two years of extensive analysis, consideration and engagement with a wide range of stakeholders.

In January 2022 OWPL were successful in securing an Option Agreement from Crown Estate Scotland for the project in the ScotWind leasing process.

The West of Orkney Windfarm has a grid connection agreement with National Grid for a connection in Caithness. Additionally, the project partners are exploring an option to power the Flotta Hydrogen Hub. There is the potential for both power export options to be utilised.

The project is currently considering both fixed-bottom foundations and floating substructures for the wind turbines.

The West of Orkney wind farm will be one of the largest offshore wind farms in Scotland.

The Flotta Hydrogen Hub

The Flotta Hydrogen Hub is described on its web site.

This section describes the low carbon ambition of the Flotta Hydrogen Hub.

This potential £multi-billion project would utilise a repurposed area of the existing Flotta Terminal to create a green hydrogen hub powered by offshore wind projects in the seas to the west of Orkney.

If successful, this ambitious plan – which could be realised in the later years of this decade – would deliver a new wave of renewable employment alongside significant quantities of green hydrogen.

This hydrogen could be exported to Europe or other destinations, blended into the gas grid at St Fergus and drive forward an international maritime green hydrogen refueling hub.

If realised, the Flotta Hydrogen Hub would contribute significantly to the UK’s low carbon ambitions, sustain and create long-term skilled jobs and place Scotland at the front of the global hydrogen revolution.

The proposal is supported locally by EMEC Hydrogen which has spearheaded Orkney’s leading position in green hydrogen production.

It is certainly a comprehensive vision.

I have my thoughts.

Will The West Of Orkney Wind Farm Have Fixed Foundations Or Floating Substructures?

If you look on the map earlier in this post, you will notice a cluster of wind farms at the North of Scotland.

  • 7 – DEME Concessions Wind – 200 km² – 1.0 GW – Floating
  • 8 – Falck Renewables Wind – 256 km² – 1.0 GW – Floating
  • 9 – Ocean Winds – 429 km² – 1.0 GW – Fixed
  • 13 – Offshore Wind Power – 657 km² – 2.0 GW – Fixed or Floating
  • 14 – Northland Power – 390 km² – 1.5 GW – Floating
  • 15 – Magnora – 103 km² – 0.5 GW – Floating

Given that floating wind farms outnumber those on fixed foundations, I wouldn’t be surprised to see the West of Orkney wind farm, built as a floating wind farm.

Where Is Flotta?

This Google Map shows the North of Scotland and the Southern part of Orkney.

Note.

  1. Flotta and its Oil Terminal in the North-East corner of the map.
  2. John o’Groats in the South-East corner of the map.
  3. The ferry between Scrabster and Orkney.
  4. Dounreay in the South-West corner of the map.

The West of Orkney Windfarm web site says that the wind farm is being developed around 30km off the west coast of Orkney and around 25km from the north Caithness coast.

This Google Map shows the island of Flotta.

Note.

  1. The oil terminal is clearly visible.
  2. Will it get tight for space on the island of Flotta, if they need a tank farm for all the hydrogen?
  3. I suspect that a pipeline to deliver hydrogen elsewhere, would have a high priority!

This Google Map shows the Caithness coast in more detail.

Note.

  1. Thurso and Scrabster are at the East of the map.
  2. The former nuclear research at Dounreay, is in the South-West corner of the map.

This article on the Stornaway Gazette is entitled SSE Plan To Bypass Isles Condemned and has this sub-title.

The Western Isles could be massively disadvantaged for decades to come if Scottish and Southern Energy are allowed to take power from offshore windfarms direct to a hub at Dounreay in Caithness.

This appears to indicate that West of Orkney wind farm and others in the area could be connected to the National Grid using a sub-station at Dounreay.

What Will Be The Capacity Of The Flotta Hydrogen Hub?

As I said previously, if the Flotta Hydrogen Hub is well-designed, possibly with a pipeline to take hydrogen out, that the Flotta Hydrogen Hub will have limitations on how much hydrogen it can produce due to the site size.

So the limitation of the capacity of the Flotta Hydrogen Hub will depend on the size of the electrolyser and how much electricity can be fed from the West of Orkney wind farm and possibly other wind farms to the site.

The West of Orkney wind farm has a capacity of 2 GW.

The other site that could possibly be connected would be Northland’s 1.5 GW wind farm in ScotWind N2.

Note that the combined area of these two wind-farms would be a 33 km square.

This Google Map shows the North of Scotland, Orkney, Shetland and the Faroe Islands.

Note.

  1. The distance between Cape Wrath and John o’Groats is just over 100 km.
  2. There is nothing to the West of Orkney, except a few rocky stacks, sea, fish and sea-birds.
  3. I could see the West of Orkney wind farm and the one Northland are building in the ScotWind N2 being extended further out.

A 100 km square would hold about 13.5 GW of floating turbines, so lets say that a round 10 GW could be cabled to Orkney.

Could The West of Orkney Wind Farm And ScotWind N2 Use Identical Technology?

I wouldn’t be surprised if this happened and a massive floating wind farm expanded to the North and West.

The capacity of the wind farm could be upwards of 10 GW.

How Much Hydrogen Could Be Produced In The Flotta Hydrogen Hub?

In Can The UK Have A Capacity To Create Five GW Of Green Hydrogen?, I said the following.

Ryze Hydrogen are building the Herne Bay electrolyser.

  • It will consume 23 MW of solar and wind power.
  • It will produce ten tonnes of hydrogen per day.

The electrolyser will consume 552 MWh to produce ten tonnes of hydrogen, so creating one tonne of hydrogen needs 55.2 MWh of electricity.

A GW of electricity for a year is 8760 GWh, which would produce over 150,000 tonnes of hydrogen.

Conclusion

This plan could generate huge amounts of green hydrogen on Orkney.

 

 

May 9, 2022 Posted by | Energy, Hydrogen | , , , , , | 5 Comments

Ukraine: Anger Over Russian Oil Tanker Due In Orkney

The title of this post, is the same as that of this article on the BBC.

This is the first two paragraphs.

Russian ships could have their access to UK ports restricted, under plans being considered at Westminster.

It follows concerns that a Russian-owned tanker is due at an Orkney oil terminal within days.

The tanker is going to pick up oil.

I can understand the anger, but as we are led to believe that the Russians have plenty of oil and gas does it matter that we sell them a tanker full, provided the cheque or transfer doesn’t bounce?

We should sell the Russians anything that has nothing to do with the war, but things like luxury goods will not help them in their takeover of Ukraine.

The list would include goods like expensive cars, but not trucks or 4 x 4’s, Scotch whisky, jewellery, chocolates and expensive clothes.

February 27, 2022 Posted by | Transport/Travel | , , , , | 2 Comments

Do BP And The Germans Have A Cunning Plan For European Energy Domination?

The headline of this post may be slightly tongue in cheek, but I believe that a plan is being hatched.

Preamble

I’ll start with a preamble, where I’ll outline some of the factors behind what may be happening.

Decarbonisation

It is generally accepted by most people that there is a need to decarbonise everything we do.

And large oil companies like Shell, BP and others are starting to move in the same direction.

Hydrogen

Using hydrogen instead of fossil fuels is becoming one of the major routes to decarbonisation.

Hydrogen can be used for the following.

  • Provide power for cars, buses, trucks, trains, locomotives and ships.
  • Hydrogen can be used in steelmaking instead of coking coal.
  • As a chemical feedstock to make ammonia, fertiliser and a large range of petrochemicals.
  • I believe that hydrogen could be a viable fuel to power aircraft over thousands of miles.

Hydrogen will become the most common zero-carbon fuel.

Hydrogen  And Natural Gas

In many applications hydrogen can replace natural gas, so for large users of natural gas, hydrogen offers a route to decarbonisation.

But hydrogen can also be mixed up to a level of around twenty percent in natural gas for partial decarbonisation of applications like space heating. Most industrial uses, boilers and appliances can be made to work very successfully with this mixture.

I grew up in the 1950s with coal gas, which according to Wikipedia had this composition.

  • hydrogen 50%
  • methane 35%
  • carbon monoxide 10%
  • ethylene 5%
  • When we changed over in the 1970s, all my appliances were converted.

This is the UK government description of natural gas.

It contains primarily methane, along with small amounts of ethane, butane, pentane, and propane. Natural gas does not contain carbon monoxide. The by-products of burning natural gas are primarily carbon dioxide and water vapour. Natural gas is colourless, tasteless and odourless.

As with the conversion from coal-gas to natural gas, conversion from Natural gas to a hydrogen/natural  gas mixture and eventually to hydrogen, will be a relatively painless process.

Note that carbon monoxide is a nasty poison and is not contained in either natural gas or hydrogen.

Green Hydrogen And Electrolysis Of Water

Green hydrogen is hydrogen produced exclusively from renewable energy sources.

Typically green hydrogen is produced by electrolysis of water using electricity produced by hydro, solar, tidal or wind.

The largest factory building electrolysers is owned by ITM Power.

  • It is located in Rotherham.
  • The factory has the capacity to build 1 GW of electrolysers in a year.
  • Typical electrolysers have a capacity of several MW.

Ryze Hydrogen are building an electrolyser at Herne Bay, that  will consume 23 MW of solar and wind power and produce ten tonnes of hydrogen per day.

Blue Hydrogen

‘Blue hydrogen is produced through a production process where carbon dioxide is also produced then subsequently captured via carbon capture and storage. In many cases the carbon dioxide is stored in depleted gas fields, of which we have plenty in the North Sea. Over the last few years, research has been ongoing into using the carbon dioxide. Applications in horticulture and agriculture, carbon structures and sustainable aviation fuel are being developed.

Shell have also developed the Shell Blue Hydrogen Process, where the carbon is extracted from methane as carbon dioxide and then stored or used.

CO2 In Greenhouse Horticulture

This paper from The Netherlands is called CO2 In Greenhouse Horticulture.

Read it and you might believe me, when I say, we’ll eat a lot of carbon in the form of tomatoes, salads and soft fruit. We’ll also buy flowers grown in a carbon-dioxide rich atmosphere.

Hydrogen As An Energy Transfer Medium

Every kilogram of natural gas when it burns releases energy, as it does in your boiler or gas hob. So it transfers energy in the form of gas from the gas well or storage tank to your house.

Electricity can also be transferred from the power station to your house using wires instead of pipes.

Hydrogen is being put forward as a means of transferring energy over hundreds of miles.

  • Electricity is converted to hydrogen, probably using an electrolyser, which would be powered by zero-carbon electricity.
  • The hydrogen is transferred using a steel pipe.
  • At the destination, the hydrogen is either distributed to end-users, stored or used in a gas-fired power station, that has been modified to run on hydrogen, to generate electricity.

It sounds inefficient, but it has advantages.

  • Long underwater cables have energy losses.
  • Electrical connections use a lot of expensive copper.
  • Re-use of existing gas pipes is possible.
  • Oil and gas companies like BP and their contractors have been laying gas pipes on land and under water for decades.

If hydrogen has a problem as an energy transfer medium, it is that it us difficult to liquify, as this statement from Air Liquide illustrates.

Hydrogen turns into a liquid when it is cooled to a temperature below -252,87 °C. At -252.87°C and 1.013 bar, liquid hydrogen has a density of close to 71 kg/m3. At this pressure, 5 kg of hydrogen can be stored in a 75-liter tank.

To transport, larger quantities of hydrogen by ship, it is probably better to convert the hydrogen into ammonia, which is much easier to handle.

The Germans and others are experimenting with using liquid ammonia to power large ships.

Hydrogen As An Energy Storage Medium

The UK has a comprehensive National Transmission System for natural gas with large amounts of different types of storage.

This section of the Wikipedia entry is entitled Natural Gas Storage and lists ten large storage facilities in salt caverns and depleted onshore gas fields. In addition, several depleted offshore gas fields have been proposed for the storage of natural gas. Rough was used successfully for some years.

I can certainly see a network of hydrogen storage sites being developed both onshore and offshore around the UK.

Iceland

With its large amount of hydro-electric and geothermal energy, Iceland can generate much more electricity, than it needs and has been looking to export it.

The UK is probably the only country close enough to be connected to Iceland to buy some of the country’s surplus electricity.

There has been a proposal called Icelink, that would build an electrical interconnector with a capacity of around a GW between Iceland at the UK.

But the project seems to have stalled since I first heard about it on my trip to Iceland in 2014.

Could the engineering problems just be too difficult?

The Waters Around The Northern Parts Of Great Britain

Look at a map of the UK and particularly Great Britain and there is a massive area of water, which is not short of wind.

Between Norway, Denmark, Germany, The Netherlands, the East Coast of England, the Northern Coasts of Scotland and Iceland, there are only a few islands.

  • Faroes
  • Orkney
  • Shetlands

To be complete we probably must include hundreds of oil and gas rigs and platforms and the Dogger Bank.

  • Oil and gas companies probably know most there is to know about these waters.
  • Gas pipelines connect the production platforms to terminals at Sullom Voe and along the East Coast from St. Fergus near Aberdeen to Bacton in Norfolk.
  • Many of the oil and gas fields are coming to the end of their working lives.

I believe that all this infrastructure could be repurposed to support the offshore wind industry.

The Dutch Are Invading The Dogger Bank

The Dogger Bank sits in the middle of the North Sea.

  • It is roughly equidistant from Norway, Denmark, the Netherlands and the UK.
  • The Western part is in UK territorial waters.
  • The Eastern part is mainly in Dutch territorial waters.

On the UK part, the Dogger Bank Wind Farm is being developed.

  • The turbines will be between 78 and 180 miles from the shore.
  • It could have a capacity of up to 5 GW.
  • It would be connected to East Yorkshire or Teesside.

On their side of the Dogger Bank, the Dutch are proposing the North Sea Wind Power Hub.

  • It is a collaboration between the Dutch, Germans, and Danes.
  • There have been reports, that up to 110 GW of turbines could be installed.
  • It will be connected to the Dogger Bank Wind Farm, as well as The Netherlands.

It is also planned that the connections to the Dogger Bank will create another interconnector between the UK and the Continent.

The Shetland Islands

The Shetland Islands are the only natural islands with a large oil and gas infrastructure in the waters to the North of Great Britain.

They have a large gas and oil terminal at Sullom Voe.

  • Oil is transported to the terminal by pipelines and tanker.
  • Oil is exported by tanker.
  • Gas is imported from oil and gas fields to the West of the islands through the West of Shetland Pipeline.
  • The gas-fired Sullom Voe power station provide about 80 MW of power to the islands.

This document on the APSE web site is entitled Future Hydrogen Production In Shetland.

It describes how the Shetland Islands can decarbonise and reposition themselves in the energy industry to be a major producer of hydrogen.

It gives these two facts about carbon emissions in the Shetlands Islands and Scotland.

  • Annual per capita CO2 emissions in the Shetland Islands are 17 tonnes.
  • In Scotland they are just 5.3 tonnes.

By comparison, the UK average is 5.55 and Qatar is 37.29.

Currently, the annual local market for road, marine and domestic fuel calculated
at around £50 million.

These are the objectives of the Shetland’s plan for future hydrogen production.

  • Supply 32TWh of low carbon hydrogen annually, 12% of the expected UK total requirement, by 2050
  • Provide more than 3GW of wind generated electrical power to Shetland, the UK grid, generating green hydrogen and electrification of the offshore oil and gas sector
  • Enable all West of Shetland hydrocarbon assets to be net zero by 2030 and abate 8Mt/year CO2 by 2050
  • Generate £5bn in annual revenue by 2050 and contribute significantly to the UK Exchequer.

They also envisage removing the topsides of platforms, during decommissioning of mature East of Shetland
oil fields and repurposing them for hydrogen production using offshore wind.

That is certainly a powerful set of ambitions.

This diagram from the report shows the flow of electricity and hydrogen around the islands, terminals and platforms.

Note these points about what the Shetlanders call the Orion Project.

  1. Offshore installations are electrified.
  2. There are wind turbines on the islands
  3. Hydrogen is provided for local energy uses like transport and shipping.
  4. Oxygen is provided for the fish farms and a future space centre.
  5. There is tidal power between the islands.
  6. There are armadas of floating wind turbines to the East of the islands.
  7. Repurposed oil platforms are used to generate hydrogen.
  8. Hydrogen can be exported by pipeline to St. Fergus near Aberdeen, which is a distance of about 200 miles.
  9. Hydrogen can be exported by pipeline to Rotterdam, which is a distance of about 600 miles.
  10. Hydrogen can be exported by tanker to Rotterdam and other parts of Europe.

It looks a very comprehensive plan!

The German Problem

Germany has an energy problem.

  • It is a large energy user.
  • It has the largest production of steel in Europe.
  • It prematurely shut some nuclear power stations.
  • About a quarter of electricity in Germany comes from coal. In the UK it’s just 1.2 %.
  • It is very reliant on Russian natural gas.
  • The country also has a strong Green Party.
  • Germany needs a lot more energy to replace coal and the remaining nuclear.
  • It also needs a lot of hydrogen to decarbonise the steel and other industries.

Over the last few months, I’ve written these articles.

Germany seems to have these main objectives.

  • Increase their supply of energy.
  • Ensure a plentiful supply of hydrogen.

They appear to be going about them with a degree of enthusiasm.

BP’s Ambition To Be Net Zero By 2050

This press release from BP is entitled BP Sets Ambition For Net Zero By 2050, Fundamentally Changing Organisation To Deliver.

This is the introductory paragraph.

BP today set a new ambition to become a net zero company by 2050 or sooner, and to help the world get to net zero. The ambition is supported by ten aims

The ten aims are divided into two groups.

Five Aims To Get BP To Net Zero

These are.

  1. Net zero across BP’s operations on an absolute basis by 2050 or sooner.
  2. Net zero on carbon in BP’s oil and gas production on an absolute basis by 2050 or sooner.
  3. 50% cut in the carbon intensity of products BP sells by 2050 or sooner.
  4. Install methane measurement at all BP’s major oil and gas processing sites by 2023 and reduce methane intensity of operations by 50%.
  5. Increase the proportion of investment into non-oil and gas businesses over time.

I would assume that by gas, they mean natural gas.

Five Aims To Help The World Get To Net Zero

These are.

  1. More active advocacy for policies that support net zero, including carbon pricing.
  2. Further incentivise BP’s workforce to deliver aims and mobilise them to advocate for net zero.
  3. Set new expectations for relationships with trade associations.
  4. Aim to be recognised as a leader for transparency of reporting, including supporting the recommendations of the TCFD.
  5. Launch a new team to help countries, cities and large companies decarbonise.

This all does sound like a very sensible policy.

BP’s Partnership With EnBW

BP seemed to have formed a partnership with EnBW to develop offshore wind farms in the UK

Their first investment is described in this press release from BP, which is entitled BP Advances Offshore Wind Growth Strategy; Enters World-Class UK Sector With 3GW Of Advantaged Leases In Irish Sea.

This is the first five paragraphs.

bp and partner EnBW selected as preferred bidder for two highly-advantaged 60-year leases in UK’s first offshore wind leasing round in a decade.

Advantaged leases due to distance from shore, lower grid cost, synergies from scale, and faster cycle time.

Projects expected to meet bp’s 8-10% returns aim, delivering attractive and stable returns and integrating with trading, mobility, and other opportunities.

Annual payments expected for four years before final investment decisions and assets planned to be operational in seven years.

In the past six months bp has entered offshore wind in the UK – the world’s largest market – and the US – the world’s fastest-growing market.

Note.

  1. EnBW are Energie Baden-Wuerttemberg AG, who, according to Wikipedia, are the third largest utilities company in Germany.
  2. It also appears, that EnBW have developed wind farms.

BP have issued this infographic with the press release.

Note.

  1. The lease areas don’t appear to be far from the Morecambe Bay gas field.
  2. The Morecambe Bay gas field is coming to the end of its life.
  3. The Morecambe Bay gas field is connected to the Rampside gas terminal at Barrow-in-Furness.
  4. At peak production 15 % of the UK’s natural gas came from Morecambe Bay.

I just wonder, if there is a cunning plan.

Could the platforms be repurposed to act as electrical hubs for the wind turbines?

  • 3GW of electricity would produce 55 tonnes of hydrogen per day.
  • The hydrogen would be exported to the Rampside gas terminal using the existing pipelines.
  • There may be savings to be made, as HVDC links are expensive.
  • BP either has the engineering to convert the platforms or they know someone who does.
  • Would the industrial complex at Barrow-in-Furnace and the nearby Sellafield complex have a use for all that hydrogen?
  • Or would the hydrogen be used to fuel Lancashire’s buses and trucks on the M6.

It certainly looks to me, that it could be a possibility, to bring the energy ashore as hydrogen.

BP Seeking Second Wind Off Scotland

The title of this section, is the same as that of this article in The Times.

These are the first two paragraphs.

BP is preparing to bid for the rights to build wind farms off Scotland as it signals no let-up in expansion after a £900 million splurge on leases in the Irish Sea.

The London-based oil giant caused waves in February by offering record prices to enter the UK offshore wind market through a Crown Estate auction of seabed leases off England and Wales.

As I said earlier.

  • The Shetland Islands are developing themselves as a giant hydrogen factory.
  • There are pipelines connecting platforms to the Sullom Voe Terminal.
  • There are plans to convert some of the redundant platforms into hydrogen production platforms.
  • The islands will be developing ways to export the hydrogen to the South and Europe.

BP also operates the Schiehallion oil and gas field to the West of the Shetlands, which is connected to the Sullom Voe Terminal by the West of Shetland pipeline.

Could BP and EnBW be coming to the party?

They certainly won’t be arriving empty-handed.

Does BP Have Access To Storage Technology?

I ask this question because both the Morecambe Bay and Shetland leases could be built with co-located depleted gas fields and offshore electrolysers.

So could hydrogen gas be stored in the gas fields?

I think it could be a possibility and would mean that hydrogen would always be available.

Could Iceland Be Connected To Schiehallion Via A Gas Pipeline?

I estimate that Iceland and Schiehallion would be about six hundred miles.

This wouldn’t be the longest undersea gas pipeline in the world as these two are longer.

The Langeled pipeline cost £1.7 billion.

Conclusion

I think there’s more to the link-up between BP and EnBW.

I am fairly certain, that BP are thinking about converting some redundant gas platforms into hubs for wind turbines, which use the electricity to create hydrogen, which is then exported to the shore using existing gas pipelines and onshore terminals.

Could it be said, that BP will be recycling oil and gas platforms?

I feel that the answer is yes! Or at least maybe!

The answer my friend is blowing in the wind!

May 6, 2021 Posted by | Energy, Energy Storage, Hydrogen | , , , , , , , , , , , , , , , , , , , , , , | 4 Comments

If Scotland Votes For Independence, Where Do Orkney And Shetland Go?

Only now, with the referendum on Scottish Independence now being seen on the horizon, do people start to think about the real problems of the vote and what happens afterwards.

This article in the Guardian lays out the problems of the northern islands. This quote is given.

All the Shetland ever got from Scotland was dear meal and greedy ministers.

It may be true and I have heard something similar all over Suffolk, as people always feel that other areas of the UK get better treatment. In Suffolk’s case that usually means Norfolk.

Somehow, we must find a better way to spend taxes all over the UK.

August 25, 2012 Posted by | News | , , , , , , | 2 Comments