The Anonymous Widower

Universal Hydrogen And Railway Locomotives

On the product page of the Universal Hydrogen web site, there is a section, which is entitled Other Transportation Applications, where this is said.

Our lightweight, aviation-grade modular hydrogen capsules can be used in a wide range of transportation applications where weight, safety, and speed of refueling are important. We are working with partners in automotive, heavy equipment, maritime, and railroad domains. If you have an application that can benefit from our global modular green hydrogen distribution network, please get in touch!

I believe that the railway locomotive of the future will be hydrogen-electric. And so do some of the UK’s rail freight companies, judging, by some of their press releases.

  • It would have an electric transmission. like most locomotives today, such as the UK’s Class 66, Class 68, Class 70, Class 88, Class 93 and the upcoming Class 99 locomotives.
  • It will be able to use 25 KVAC overhead electrification, where it exists.
  • Hydrogen-power will be used, where there is no electrification.

The lowest-carbon of the locomotives, that I listed, will probably be the Class 99 locomotive.

  • Thirty have been ordered by GB Railfreight, from Swiss company; Stadler.
  • The locomotives will be built at Valencia in Spain.
  • It will have up to 6 MW, when running using electrification.
  • It will have up to 1.6 MW, when running using a Cummins diesel, with a rating of 2,150 hp.
  • Because a proportion of UK freight routes are electrified, it is likely that these locomotives will substantially reduce carbon emissions for many locomotive-hauled operations.

It should be noted that Cummins are heavily into hydrogen and their philosophy seems to embrace families of engines, which are identical below the cylinder head gasket, but with appropriate cylinder heads and fuel systems, they can run on diesel, natural gas or hydrogen.

I wouldn’t be surprised to find out that the Class 99 locomotive will have a diesel engine, that has a hydrogen-powered sibling under development at Cummins.

With perhaps a power on hydrogen of about 2.5 MW, these zero-carbon locomotives would be able to handle upwards of ninety percent of all heavy freight trains in the UK.

These are further thoughts.

Alternatives To Cummins Hydrogen Internal Combustion Engines

There are two main alternatives, in addition to similar engines from companies like Caterpillar, JCB, Rolls-Royce mtu and others.

  • Fuel cells
  • Gas-turbine engines.

Note.

  1. Universal Hydrogen and others have fuel cells, that can probably deliver 2.5 MW.
  2. Universal Hydrogen use Plug Power fuel cells.
  3. Rolls-Royce have developed a 2.5 MW electrical generator, based on the engine in a Super Hercules, that is about the size of a typical beer-keg. I wrote about this generator in What Does 2.5 MW Look Like?.

Cummins may be in the pole position with Stadler, but there are interesting ideas out there!

Cummins have also indicated, they will build hydrogen internal combustion engines at Darlington in the UK.

Would One Of Universal Hydrogen’s Hydrogen Capsules Fit In A Railway Locomotive?

These are various widths.

  • Class 66 locomotive – 2.63 metres.
  • ATR72 airliner – 2.57 metres.
  • DHC Dash-8 airliner – 2.52 metres
  • Class 43 power car – 2.74 metres

I suspect that even if it was a bit smaller a hydrogen capsule could be made for a UK locomotive.

How Big Is The Market?

The UK has around five hundred diesel railway locomotives.

 

March 5, 2023 Posted by | Transport/Travel | , , , , , , , , , , , , , , , , , , | 8 Comments

A Heavy Load From Felixstowe To Manchester

As I waited for my train at Canonbury station this morning, this very long train went through.

After I got home, I found that it was going from the Port of Felixstowe to Trafford Park Freightliner Terminal.

The journey will take around nine-and-a-half hours.

  • This time includes a sixty-five minute stop at Ipswich to change the diesel locomotive or locomotives used to haul the train out of the Port of Felixstowe for the pair of Class 90 electric locomotives for the rest of the journey to the North-West.
  • The two locomotives together have a power output of about 7.5 MW.
  • The train will pick up the West Coast Main Line at Primrose Hill and then take the Trent Valley Line between Rugby and Stafford before approaching Trafford Park, using the Castlefield Corridor through Manchester Piccadilly and Oxford Road stations.
  • As I write this, the train is on time as it approaches Tamworth.

The train has done well as at Watford, it was running twenty minutes late. The train crew have used the 7.5 MW well to claw back the time.

Did it help the crew to regain the schedule, that they had 7.5 MW on hand, as opposed to the less than 3 MW from the UK’s largest diesel locomotive?

To my mind, this illustrates one of the reasons, why long distance trains are best run by powerful electric locomotives.

In Do Cummins And Stadler Have a Cunning Plan?, I describe the new Class 99 locomotive.

  • It is an electro-diesel locomotive.
  • It has 6 MW available on 25 KVAC overhead electrification.
  • It has a 1.8 MW Cummins diesel engine, which may be powerful enough to haul the largest trains in and out of the Port of Felixstowe, where the route is not electrified.

Thirty of these locomotives have been ordered by GB Railfreight.

I believe that one of these locomotives could handle a very heavy freight train between the Port of Felixstowe and Trafford Park Freightliner Terminal.

  • The locomotive working alone could handle the train on the unelectrified line between Felixstowe and Ipswich.
  • There would be no need to electrify the lines in the Port of Felixstowe.
  • There would be no need for a prolonged stop in Ipswich.
  • An hour on the journey could be saved.
  • There might be a saving in the number of crew.

The Class 99 locomotive seems to be well-designed for handling freight trains out of Felixstowe.

Were Freightliner experimenting with what they needed from an electro-diesel locomotive, when I took this picture at Shenfield?

Note.

  1. The Class 90 electric locomotive has 3.7 MW of power.
  2. The Class 66 diesel locomotive has 2.4 MW of power.

Was what I saw an affordable electro-diesel locomotive?

January 17, 2023 Posted by | Transport/Travel | , , , , , , , , , | 4 Comments

Do Cummins And Stadler Have a Cunning Plan?

Roger Ford in the December 2022 Edition of Modern Railways has written an article called Traction à la mode.

The article is a series of small sections, with the last section but one, labelled Monster.

Roger says this.

Finally, we come to the mighty Class 99, which is not at all flakey. In the past I have often commented on the UK railways’ prejudice against Co-Co bogies.

But with the ’99’ six axles will give 6MW (8,000 hp) at the rail, with contact patches to use all its 113 tonnes. Plus the extra axles mean it can accommodate the weight of a 2,400 hp Cummins diesel.

At the recent Rail Freight Group conference, Ross Shepherd, Chief Technical Officer of Beacon Rail, which has 30 locomotives on order for GB Railfreight, revealed a computer simulation which showed a Class 99 would save 36 minutes on a run timed for 1 hr 40 minutes for diesel traction. To quote Mr Shepherd:’It’s a monster and it’s coming.’

I have been doing some digging around the Internet and have found this bulletin from Cummins, which is entitled QSK60 For Rail.

The bulletin describes a Stadler locomotive with a Cummins QSK60 engine, which Stadler are delivering to Bolivia.

This paragraph introduces the locomotives.

Stadler and the Bolivian Ferroviaria Andina (Andean
Railway) FCA have signed a contract for the supply of the first three state-of-the art South American Light
Loco (SALi) locomotives, which will feature the
Cummins QSK60 engine.

The bulletin gives these details.

  • Locomotive type – diesel-electric
  • Track gauge – one metre
  • Axle load – 18 ton/axle
  • Power – 1865 kW – 2500 hp
  • Diesel engine – QSK60
  • Maximum Speed – 100 km/h
  • Starting Tractive Effort – 415 kN
  • Coupling – AAR
  • Fuel Tank – Up to 6000 litres

The bulletin is marked as Printed in UK, so does that mean that the engines will come from Darlington.

The weight of this locomotive is 98 tonnes and Roger says that the Class 99 locomotive is 113 tonnes. But the Class 99 locomotive is an electro-diesel locomotive with 6 MW available when running on 25 KVAC overhead electrification.

It looks to me that Stadler have arranged the substantial electrical gubbins around the Cummins QSK60 diesel engine to create Beacon Rail’s monster.

Cummins And Hydrogen

Cummins is a company, that is big in hydrogen.

  • They own hydrogen fuel cell and electrolysis company; Hydrogenics.
  • They supply the fuel cells for Alstom’s hydrogen-powered Coradia iLint.

In Werner Enterprises Signs Letter Of Intent Planning To Secure 500 X15H Engines From Cummins, I said this.

More details of the X15H engine are given in this earlier press release, which is entitled Cummins Inc. Debuts 15-Litre Hydrogen Engine At ACT Expo, which has this first paragraph.

Today, Cummins Inc. debuted its 15-liter hydrogen engine at ACT Expo in Long Beach, California. This engine is built on Cummins’ new fuel-agnostic platform, where below the head gasket each fuel type’s engine has largely similar components, and above the head gasket, each has different components for different fuel types. This version, with expected full production in 2027, pairs with clean, zero-carbon hydrogen fuel, a key enabler of Cummins’ strategy to go further faster to help customers reduce greenhouse gas (GHG) emissions.

I certainly like the concept of a fuel-agnostic platform, where below the head gasket, everything is similar, and above the head gasket, there are appropriate components.

It looks to me that if Stadler use the Cummins QSK60 diesel engine in their locomotives, then if Cummins develop a hydrogen version of the QSK60, Stadler can convert the locomotives to hydrogen, if Cummins follow their philosophy of a fuel-agnostic platform, with everything identical below the cylinder head gasket.

Over twenty years ago, I did a small data analysis task for Cummins in Darlington. One of their engineers explained to me how they would rearrange the components of diesel engines, so they fitted with the customer’s application. It looks to me that they have taken this philosophy a step further, so that the customer can have diesel or hydrogen engines in the same application, depending on what the end user wants.

In the case of the order from Beacon Rail for thirty Class 99 locomotives, they will be delivered as electro-diesel locomotives, but at some point in the future, when Cummins has developed the hydrogen engine, they will be able to be converted to electro-hydrogen locomotives.

These locomotives could be in front-line service for over forty years!

November 23, 2022 Posted by | Hydrogen, Transport/Travel | , , , , , , | 4 Comments

A Hydrogen-Electric Class 99 Locomotive

In GB Railfreight Plans Order For Future-Proofed Bi-Mode Locomotives, I introduced the Class 99 locomotive, for which the first order was announced by Stadler and GB Railfreight yesterday.

This was the start of that post, which I wrote in early March 2022.

The title of this post, is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

GB Railfreight is planning to order a fleet of main line electro-diesel locomotives with a modular design which would facilitate future replacement of the diesel engine with a battery or hydrogen fuel cell module.

In this post, I will look at the design of a Class 99 locomotive running on hydrogen.

These are my thoughts.

Using Hydrogen Fuel Cells

The Railway Gazette article suggests that hydrogen fuel-cells will be used to create a hydrogen-electric Class 99 locomotive.

A typical hydrogen fuel-cell transmission will have the following elements, which will replace the diesel-electric generator.

  • A hydrogen fuel tank
  • A appropriately-sized hydrogen fuel-cell which generates electricity from hydrogen.
  • A battery to store electricity.
  • Regenerative braking will also be used to charge the battery.
  • The locomotive will have an electric transmission.

The various components will be fitted into the space, that was occupied by the diesel engine.

This Alstom video promotes the Alstom Coradia iLint and explains how it works.

Most hydrogen fuel-cell trains and trucks , work as the train does in this video.

Using A Reciprocating Engine Running On Hydrogen

This press release from Caterpillar is entitled Caterpillar to Expand Hydrogen-Powered Solutions to Customers.

It describes how Caterpillar will develop versions of their reciprocating engines, that will run on 100 % hydrogen.

This would be an alternative way of developing a zero-carbon Class 99 locomotive.

Note that Cummins, JCB and Rolls-Royce mtu have also converted diesel engines to run on hydrogen.

This method of conversion has advantages.

April 30, 2022 Posted by | Hydrogen, Transport/Travel | , , , , , | 5 Comments

A Battery-Electric Class 99 Locomotive

In GB Railfreight Plans Order For Future-Proofed Bi-Mode Locomotives, I introduced the Class 99 locomotive, for which the first order was announced by Stadler and GB Railfreight today.

This was the start of that post, which I wrote in early March 2022.

The title of this post, is the same as that of this article on Railway Gazette.

This is the introductory paragraph.

GB Railfreight is planning to order a fleet of main line electro-diesel locomotives with a modular design which would facilitate future replacement of the diesel engine with a battery or hydrogen fuel cell module.

The rest of the article gives clues to the deal and the specification of the locomotives.

  • Negotiations appear to have started with Stadler for locomotives to be built at their Valencia plant.
  • Twenty locomotives could be ordered initially, with options for thirty.
  • The locomotive will be Co-Co bi-modes.
  • The diesel engine will be for heavy main line freight and not just last-mile operations.
  • They would be capable of hauling freight trains between Ipswich and Felixstowe, within two minutes of the times of a Class 66 locomotive.
  • They will be of a modular design, so that in the future, the diesel engine might be replaced by a battery or fuel cells as required and possible.

They have provisionally been called Class 99 locomotives.

Note the introductory paragraph of the Railway Gazette article.

GB Railfreight is planning to order a fleet of main line electro-diesel locomotives with a modular design which would facilitate future replacement of the diesel engine with a battery or hydrogen fuel cell module.

What sort of range and performance will this give to a Class 99 locomotive?

In Class 99 Electro-Diesel Locomotive Order Confirmed, I came to this conclusion.

It does appear that a design based around the latest version of a Caterpillar C175-16 diesel engine will be possible.

The easiest way to create a battery-electric Class 99 locomotive would be to replace the Caterpillar C175-16 diesel engine with the largest and most efficient batteries possible, add regenerative braking to battery and the best control system for the locomotive and the batteries, that engineers can devise.

These are my thoughts.

Range Of A Euro Dual On Diesel

Consider.

  • A Euro Dual locomotive has a 3,500 litre fuel tank.
  • A Euro Dual locomotive has a fuel consumption of 1039.3 L/hr.

This should allow the locomotive to run for about three hours and twenty minutes or about 250 miles.

Obviously, any electrification on the route, will increase the range.

Weight Of The Diesel Engine

This data sheet for the Caterpillar C175-16 diesel engine gives a weight of over twenty tonnes, which is certainly a lot of weight.

You’ve also got the weight of the fuel tank, which could also contain in the Euro Dual hold nearly three tonnes of diesel.

I will assume that the weight of a Caterpillar C175-16 diesel engine and the associated gubbins could be as high as 25 tonnes.

How Much Energy Could A Twenty Tonne Battery Hold?

In Innolith Claims It’s On Path To 1,000 Wh/kg Battery Energy Density, which was written two years ago.

This was my conclusion of that post.

I am led to believe these statements are true.

  • Tesla already has an energy density of 250 Wh/Kg.
  • Tesla will increase this figure.
  • By 2025, the energy density of lithium-ion batteries will be much closer to 1 KWh/Kg.
  • Innolith might achieve this figure. But they are only one of several companies aiming to meet this magic figure.

These figures will revolutionise the use of lithium-ion batteries.

I feel it is reasonable to go along with Tesla’s figure of 250 Wh/Kg, which gives a 5 MWh battery could replace the C175-16 diesel engine, if it had a total weight of 20 tonnes.

If the battery could have a total weight of 25 tonnes, the battery would have a capacity of 6.25 MWh.

It does look like the Caterpillar C175-16 diesel engine and the associated gubbins could be replaced by a substantial battery.

As the years go by, the capacity of the batteries will only grow.

Will Battery-Electric Class 99 Locomotives Have Regenerative Braking?

According to Wikipedia, Stadler Euro Dual locomotives do have regenerative braking, so it would seem likely, that this could be used to recharge the batteries, in addition to 25 KVAC overhead electrification, where it is available.

I will assume that battery-electric Class 99 locomotives will have regenerative braking.

How Long Could A Battery-Electric Class 99 Locomotive Run On Batteries?

Consider.

  • To have the performance of a Class 99 locomotive on diesel, the locomotive would need to output 2,800 kW.

Without regenerative braking this would give these figures.

  • A 5 MWh battery would run for at least one hours and 47 minutes.
  • A 6.25 MWh battery would run for at least two hours and 13 minutes.

Add in regenerative braking and short strategic lengths of electrification and large parts of the UK network would be opened up to electrified trains.

Conclusion

Stadler have probably done extensive simulations of the UK network with battery-electric Class 99 locomotives, so they would know the true potential of these locomotives.

April 29, 2022 Posted by | Transport/Travel | , , , , | 6 Comments

GB Railfreight Names Locomotive For Ukraine

The title of this post is the same as that of this article on Railnews.

This is the first paragraph.

GB Railfreight has unveiled a Class 66 locomotive bearing the nameplates ‘Glory to Ukraine’, and painted in a special livery using the Ukrainan colours. GBRf said it ‘stands with Ukraine, and this newly painted locomotive honours the people affected by the conflict as they continue to courageously defend their homeland’.

Perhaps not in the same class as this article from the Guardian, which is entitled Lithuania Names Road Leading To Russian Embassy ‘Ukrainian Heroes’ Street’.

But every little bit helps!

April 8, 2022 Posted by | Transport/Travel | , , , , , , , | Leave a comment

Dual-Fuel Class 37 And 66 Locomotive Concepts Unveiled

The title of this post, is the same as that of this article on Railway Gazette.

This is the first paragraph.

G-volution and SBL-Rail have produced design concepts for dual-fuel versions of Class 37 and 66 locomotives, which would be able to run on diesel with biomethane, biopropane or hydrogen.

Note.

  1. There are about sixty Class 37 locomotives in service or stored.
  2. 480 Class 66 locomotives were originally produced and over 300 must still be in service.
  3. Both locomotives have electric transmissions.
  4. G-volution are developing a dual-fuel Class 180 train, that I wrote about in Grand Central DMU To Be Used For Dual-Fuel Trial.
  5. Two of the design concepts involve replacing the current diesel engines with modern Cummins engines, that meet current emission regulations.
  6. Fuel savings of ten percent are mentioned for one engine conversion.

This is said about the dual-fuel conversions.

Biomethane and biopropane dual fuel engines would offer significant carbon and cost savings verses diesel. Hydrogen has the potential to do so if produced from renewable sources, but would need to be ‘much cheaper’ than it is today.

The article then gives a table, which shows the various savings.

The article comes to these conclusions.

  • Biomethane and biopropane prices are expected to fall, as production increases.
  • Green hydrogen is too expensive, but costs will come down.
  • More rises in the price of diesel, will tilt costs towards alternative fuels.

I feel that to get the emissions and costs down, there would need to be a bit of cheating.

Look at this picture of a Class 66 locomotive under 25 KVAC electrification.

I wonder, if a pantograph and all the electrical gubbins could be fitted to a Class 66 locomotive to create a genuine electro-diesel locomotive.

  • It would use electrification, where it exists.
  • It would use the existing electric transmission.
  • I do suspect though that the Class 37 locomotive may be more difficult to convert because of its age.

It should be noted that in GB Railfreight Plans Order For Future-Proofed Bi-Mode Locomotives, I talk about how GB Railfreight are proposing to purchase a fleet of new electro-diesel freight locomotives, that appears will have Class 66 locomotive performance on both electrification and diesel.

The Involvement Of Cummins

Cummins, who are one of the world’s largest manufacturers of diesel engines, could have a lot to lose from the move to zero-carbon.

  • But they have adopted an if-you-can’t-them-join-them philosophy to hydrogen.
  • They have bought up hydrogen companies like Hydrogenics.
  • They are developing internal combustion engines that can run on hydrogen.
  • Cummins have claimed to me, that they will try to fill any niche market with their engines, so it would be likely, they would apply that philosohy to hydrogen.

I believe that Cummins will not give up their market share without a fight.

I would expect, Cummins will actively support G-volution’s plans, if it would sell upwards of fifty large engines.

Conclusion

I have four main conclusions.

  • I believe that this study could lead to a very significant and worthwhile updating of a Class 66 locomotive.
  • The locomotive would need to be modified so it could use electrification.
  • But I am more dubious, that this could be done with the Class 37 locomotive.
  • I also believe that Cummins will be part of the solution.

In the wider world, I also believe that to retain their turnover and market share, Cummins and the other big diesel engine manufacturers will come up with increasingly innovative solutions.

Caterpillar, Cummins, Deutz, JCB, MTU and others will not give up multi-billion businesses without a fight.

March 30, 2022 Posted by | Hydrogen, Transport/Travel | , , , , , , , , , | 4 Comments

Wagons Ordered For Growing Freight Traffic

The title of this post, is the same as that of this article on Railway Gazette.

This is the first paragraph.

GB Railfreight and leasing company Porterbrook have placed an order for Greenbrier Europe to supply 50 JNA 60 m3 capacity four-axle box wagons for transporting construction materials.

Other points from the article.

  • The wagons will be built in Romania.
  • They will be delivered in the Autumn.
  • Porterbrook research is indicating a possible increase of 35 % in construction sector traffic between now and 2034.

Certainly, judging by the number of posts about freight, the sector seems to be innovating and running more trains.

 

March 19, 2022 Posted by | Transport/Travel | , , | Leave a comment

Freightliner’s New Livery

.As I passed through Ipswich yesterday, I took these images of Freightliner’s locomotives in their new livery.

Note.

  1. Freightliner’s new depot on the town side of the Great Eastern Main Line appears to be fully open.
  2. Freightliner’s Class 90 locomotives, which they received from Greater Anglia now seem to be in the new livery.
  3. Freightliner’s Class 08 shunter is also shown in the new livery.

It also looked like up to four Class 90 locomotives were parked by Ipswich station.

This Google Map shows the tracks at the Western end of Ipswich station.

Note.

  1. The Greater Anglia Class 755 train in Platform 1 of Ipswich station.
  2. The two Freightliner Class 90 locomotives in the old green livery in the locomotive parking.
  3. I wonder, if freight trains are now changing to electric haulage after being hauled out of Felixstowe into Ipswich Yard, before continuing their onward journey.

Yesterday, by the use of Real Time Trains, I found these trains changed to electric haulage at Ipswich.

  • 0250 – 436K – Felixstowe North to Garston – Changed back to diesel at Crewe.
  • 0912 – 496K – Felixstowe North to Trafford Park – Changed back to diesel at Crewe.
  • 0932 – 497K – Felixstowe North to Ditton
  • 1113 – 412L – Felixstowe North to Trafford Park
  • 2046 – 410M – Felixstowe North to Trafford Park
  • 2152 – 412M – Felixstowe North to Garston – Changed back to diesel at Crewe.

These are my thoughts.

Changing Locomotives At Ipswich

It seems to take about 25 minutes to change a locomotive from diesel to electric.

At Ipswich, this seems to fairly easy.

  • The freight train from Felixstowe stops in Ipswich Yard to the West of the station.
  • The diesel locomotive is detached and probably moved to the yard to the South of the station.
  • The electric locomotive is moved from by the station and attached to the train.
  • The train goes on its way using electric traction.

All locomotive movements don’t seem to be too challenging.

Could More Electric Services Be Run?

I found these paths yesterday, where services left Felixstowe and went South to London.

  • Coatbridge – 1
  • Ditton – 2
  • East Midlands Gateway – 1
  • Garston – 2
  • Hams Hall – 2
  • Lawley Street – 3
  • Trafford Park – 5
  • Wentloog – 3

This is a total of nineteen trains and currently only six are electrified between Ipswich and London.

Would Bi-Mode Locomotives Be More Efficient?

In GB Railfreight Plans Order For Future-Proofed Bi-Mode Locomotives, I wrote about how GB Railfreight were planning to acquire a fleet of bi-mode locomotives.

In the related post, I said this.

I feel that, as the locomotive must fit current routes and schedules, so I wouldn’t be surprised to see the following specification.

  • UK loading gauge.
  • Co-Co
  • Class 90 locomotive power and operating speed on electricity of 3.7 MW and 110 mph.
  • Class 66 locomotive power and operating speed on diesel of 2.5 MW and 75 mph.
  • Ability to change between electric and diesel power at speed.
  • Ability to haul a heavy freight train out of Felixstowe.
  • Ability to haul passenger trains.

Stadler will have one eye on the fact, that if they get this design right, this order for up to fifty locomotives could be just the start.

These locomotives would be ideal for Felixstowe to Ditton, Garston and Trafford Park.

  • They would eliminate changing locomotives on these routes.
  • They would reduce carbon emissions and fuel usage.
  • They would be able to run at at least 100 mph on the Great Eastern and West Coast Main Lines.

They might also open up other partially electrified routes from Felixstowe via London.

Felixstowe And Wentloog

Wentloog freight terminal in South Wales.

In Movable Overhead Electrification To Decarbonise Freight, I used the Ipswich and Wentloog route to show how a long route could be decarbonised by the use of moveable electrification.

Conclusion

It looks like a philosophy is emerging to decarbonise a large proportion of freight services out of the Port of Felixstowe.

 

 

 

March 19, 2022 Posted by | Transport/Travel | , , , , , , , | Leave a comment

DB Cargo UK Successfully Trials The Use Of ‘Combi-Consists’

The title of this post, is the same as that of this press release on DB Cargo UK.

This is the first paragraph.

DB Cargo UK is trialling the use of ‘combi-consists’ to increase capacity, improve customer service and improve its efficiency.

The next four paragraphs describe the trial.

This month the UK’s largest rail freight operator ran a unique jumbo train from Belmont Yard in Doncaster to Barking, East London, carrying a mix of wagons for two altogether different types of customers.

The train consisted of two sets of empty wagons – 21 x MBA wagons for Ward Recycling and 18 x JNA wagons for FCC Environment – with an isolated DIT (dead-in-train) locomotive – in the middle.

The MBA wagons had previously been discharged at Immingham in North Lincolnshire and the JNA wagons discharged at FCC Environment’s new waste transfer facility at Tinsley in South Yorkshire.

Both sets of wagons were then taken to DB Cargo UK’s Belmont Yard depot in Doncaster where the jumbo train was assembled. The train travelled from Belmont Yard to Barking via Lincoln Central, Spalding, The East Coast Mainline, Hertford North and Canonbury Tunnel.

There is also a video embedded in the press release, which shows the formation of the train in detail.

This train is certainly efficient, as it uses less train paths, crew and fuel.

DB Cargo UK now intend to trial the concept on a greater portion of the East Coast Main Line and the Midland Main Line.

I have a few thoughts.

Could The Concept Work With Loaded Trains?

This trial was with empty trains, but would it be possible to use the concept with two shorter loaded trains?

Would there be advantages in terms of efficiency, if the following were done?

  • Two container trains leave Felixstowe as a pair, with one going to Plymouth and the other going to Cardiff.
  • They split at say Swindon and then proceed independently.

Obviously, all the weights would have to be in order and the locomotive would need to be able to pull the combined train.

Other possibilities might be.

  • Stone trains running from the Mendips and the Peak District to London.
  • Biomass trains running from import terminals to power stations in the Midlands.
  • Trains delivering new cars.
  • Trains delivering goods for supermarkets. Tesco are certainly increasing their use of trains.

I would suspect that DB Cargo UK have several ideas.

Could An Electric Locomotive Go In The Middle?

A Class 90 locomotive weighs 84.5 tonnes, as against the 129.6 tonnes of the Class 66 locomotive used in the trial.

So if the electric locomotive can be run dead-in-train, the weight would be slightly less.

But this might give a big advantage, if they ever wanted to run a pair of trains from Felixstowe to Plymouth and Cardiff, as per my earlier example.

  • The trains would split anywhere on the electrified section of the Great Western Main Line.
  • The lead train would go to Plymouth.
  • The second train would go to Cardiff, which is now fully electrified.

There would appear to be possibilities to save carbon emissions.

Could An Electric Locomotive Go On The Front?

Some routes out of Felixstowe are fully-electrified from the Great Eastern Main Line.

It could be possible for the following.

  • Two diesel-hauled trains to leave Felixstowe with ubiquitous Class 66 locomotives and form up as a combi-consist train in Ipswich yard.
  • The Class 66 locomotive on the front is replaced by an electric locomotive.
  • Both Class 90 and Class 92 electric locomotives have twice the power of a Class 66 locomotive, so both should be able to haul the combi-consist train.

The trains would split en-route with the electric locomotive hauling a train to an electrified destination.

This picture shows, what could be an experiment by Freightliner at Shenfield.

 

Unfortunately, I didn’t have a chance to ask the driver, if the Class 66 locomotive was running dead-in-train or helping the Class 90 locomotive with a very heavy load.

The picture shows, that the electric and diesel locomotives can work together, at the front of a train.

Since I took this picture, I’ve never seen a similar consist again.

Could A Bi-Mode Locomotive Go On The Front?

In GB Railfreight Plans Order For Future-Proofed Bi-Mode Locomotives, I talked about how GB Railfreight had started negotiations to purchase a fleet of powerful bi-mode locomotives from Stadler.

  • Provisionally, they have been called Class 99 locomotives.
  • The locomotives will be Co-Co bi-modes.
  • The diesel engine will be for heavy main line freight and not just last-mile operations.
  • I suspect that on diesel the power will be at least 2.5 MW to match a Class 66 locomotive.

These locomotives could be ideal for hauling combi-consist trains.

Would Combi-Consist Trains Save Energy?

This could be a big driver of the use of combi-consist trains and may push DB Cargo UK to acquire some powerful bi-mode locomotives.

Conclusion

Combi-consist trains seem to be an excellent idea.

 

March 16, 2022 Posted by | Transport/Travel | , , , , , , , , , , , | Leave a comment