Did This Get Lost In The Covids?
In October 2019, I wrote Asthma Carbon Footprint ‘As Big As Eating Meat’ and it made me think, when I just read it.
I would normally follow up a post like this, but I don’t remember doing anything like that.
The Wikipedia entry for the COVID-19 pandemic in England, starts with this paragraph.
The COVID-19 pandemic was first confirmed to have spread to England with two cases among Chinese nationals staying in a hotel in York on 31 January 2020.
It looks to me, that like everybody else in England, I had the Covids on my mind.
Is Respimat A Zero-Carbon Inhaler?
Just to be sure, I asked Google AI, the question in the title of this section and received this reply.
The Respimat soft mist inhaler is considered to have virtually no associated carbon emissions from its operation because it does not contain the high global warming potential (GWP) hydrofluorocarbon (HFC) propellants found in metered-dose inhalers (pMDIs).
While it has a substantially lower carbon footprint than traditional pMDIs, it is not strictly “zero-carbon” when considering its entire life cycle, which includes manufacturing, materials (stainless steel, aluminium, polymers), and end-of-life disposal. These factors contribute a small product carbon footprint (PCF).
According to Google AI, a reusable version is available.
A reusable Respimat device has been introduced, which further reduces the carbon footprint by up to 71% over six months compared to the disposable version because the device itself is kept longer, reducing manufacturing impacts.
Google AI says this about NHS guidance.
Health bodies like the NHS encourage the use of lower-carbon inhalers like the Respimat or dry powder inhalers (DPIs) as part of their net-zero targets, provided they are clinically appropriate for the patient.
But it does seem that Respimat devices are helping to cut global warming.
What Is The Patient Experience Of Respimat?
Google AI gave this answer to my question.
Patient experience with the Respimat inhaler is generally very positive, with high satisfaction for its ease of use, handling, and the “soft mist” it produces, leading to high continuation rates in studies; patients find it easier than many older devices and report good effectiveness, though common side effects like dry mouth, cough, and sore throat can occur.
Key Aspects of Patient Experience
- High Satisfaction: Over 85-90% of patients report being satisfied or very satisfied with the Respimat’s handling and the ease of inhaling the mist.
- Preference Over Other Devices: Many patients prefer Respimat over traditional metered-dose inhalers (pMDIs) or dry powder inhalers (DPIs), finding it easier to use and more effective.
- Soft Mist Technology: Patients appreciate the gentle, slow-moving mist, which helps deliver medication effectively and feels different from a typical puff.
- Good Adherence: High satisfaction often translates to continued use, with physicians reporting high patient adherence and continuation rates after studies end.
- Improved Technique: While initial use might need guidance, pharmacist-led interventions show significant improvements in patients’ inhalation technique over time.
That doesn’t look bad to me!
Could Immunotherapy Drugs Be Delivered By An Inhaler?
We always felt the device could deliver other drugs.
Google AI gave this answer to my question.
Yes, immunotherapy drugs could potentially be delivered by an inhaler, and this approach is a promising area of active research and development, particularly for treating lung cancer and respiratory diseases like asthma.
Rationale and Research
- Targeted Treatment: Inhaled delivery allows for high concentrations of the drug to be delivered directly to the lungs, which is particularly beneficial for treating lung-specific conditions like lung cancer or severe asthma. This localized approach aims to maximize the therapeutic effect where needed.
- Reduced Side Effects: By concentrating the medication in the lungs and minimizing its systemic absorption into the bloodstream, researchers hope to significantly reduce the severe side effects (e.g., systemic toxicity, autoimmune reactions) commonly associated with traditional intravenous or oral administration of some immunotherapies and chemotherapies.
- Patient Convenience: Inhalation is a non-invasive administration route, which is more convenient and comfortable for patients compared to injections or intravenous infusions, potentially allowing for self-administration and improving patient compliance.
The Soft Mist Technology could surely be a help!
Was Osborne Reynolds The Greatest Fluid Dynamicist?
I have to ask Google AI this question, as some of the discussions that led to creation of Respimat, took place in my house at Debach, where Osborne Reynolds had lived.
Google AI gave this answer to my question.
Osborne Reynolds is considered one of the most influential and foundational contributors to the field of fluid dynamics, though naming a single person the “greatest” is subjective. His work fundamentally shaped modern engineering and physics and remains central to the study of fluid flow today.
Key Contributions to Fluid Dynamics
Reynolds’ most significant achievements include:
- The Reynolds Number: He identified a crucial dimensionless parameter (now named the Reynolds number) that determines whether fluid flow is laminar (smooth and orderly) or turbulent (chaotic and eddying). This number is a foundational concept used across all engineering and physical sciences.
- The Theory of Turbulence: In an 1895 paper, he established the standard mathematical framework used in the study of turbulence, introducing what is known as the Reynolds-averaged Navier–Stokes equations.
- Experimental Validation: His elegant, yet simple, dye experiments visually demonstrated the transition between flow regimes, providing clear empirical evidence for his theories.
- Theory of Lubrication: He developed the Reynolds equation in 1886, which still underpins the analysis of hydrodynamic lubrication in modern bearings.
- Heat Transfer and Similitude: His research into heat transfer between solids and fluids led to significant improvements in boiler and condenser designs, and his work on hydraulic similitude enables engineers to use scaled-down models (e.g., in wind tunnels for aircraft design) to predict the performance of full-scale machines.
How Many Good Ideas Did The Covids Delay?
It could be that the roll-out of Respimat for was delayed by the Covids!
But it wouldn’t have been the only idea to have been delayed in that way!
Disused Oil Wells Could Enhance Compressed Air Storage
The title of this post, is the same as that of this article on The Engineer.
This is the sub-heading.
A new study has shown how geothermal energy in abandoned oil and gas wells can boost the efficiency of compressed air energy storage by nearly 10 per cent.
These are the first two paragraphs.
Developed by researchers at Penn State University, the geothermal-assisted compressed air energy storage (GA-CAES) system harnesses the existing infrastructure of abandoned oil and gas wells (AOGWs). Compressed air is pumped into the wells, where geothermal heat raises its temperature and compresses it further. Published in the Journal of Energy Storage, the study showed how geothermal energy could increase round-trip efficiency by 9.5 per cent.
“This improvement in efficiency can be a game changer to justify the economics of compressed-air energy storage projects,” said corresponding author Arash Dahi Taleghani, Professor of Petroleum and Natural Gas Engineering at Penn State.
The Professor also says it could be a “win win situation!”
Trump must have nightmares about stories like this, especially, when the scientists have a name, that labels them as an immigrant.
The Aerosol Tales
When I left Liverpool University in 1968, I was very familiar with the use of products distributed in aerosol cans.
- I had used aerosol shaving cream, although about that time, I acquired my beard.
- I certainly used aerosol deodorant, as did most in the 1960s.
- Aerosol paints were common for covering scuffs and scratches in your car.
- Aerosols were often used to apply sun protection.
- Aerosols containing cream or a non-dairy alternative for culinary use were not unknown.
- Aweosol lubricants were starting to appear.
Although, I went to work for the chemical giant; ICI, at that time, I had no idea how an aerosol and its can worked.
As ICI at the time, ICI were major manufacturers of aerosol propellants, I quickly learned how they worked.
The Wikipedia entry for Aerosol Spray Dispenser gives a lot of history about aerosol cans and their propellants.
The Wikipedia entry for Propellant has this paragraph describing propellants of the last century.
Chlorofluorocarbons (CFCs) were once often used as propellants, but since the Montreal Protocol came into force in 1989, they have been replaced in nearly every country due to the negative effects CFCs have on Earth’s ozone layer. The most common replacements of CFCs are mixtures of volatile hydrocarbons, typically propane, n-butane and isobutane. Dimethyl ether (DME) and methyl ethyl ether are also used. All these have the disadvantage of being flammable. Nitrous oxide and carbon dioxide are also used as propellants to deliver foodstuffs (for example, whipped cream and cooking spray). Medicinal aerosols such as asthma inhalers use hydrofluoroalkanes (HFA): either HFA 134a (1,1,1,2,-tetrafluoroethane) or HFA 227 (1,1,1,2,3,3,3-heptafluoropropane) or combinations of the two. More recently, liquid hydrofluoroolefin (HFO) propellants have become more widely adopted in aerosol systems due to their relatively low vapor pressure, low global warming potential (GWP), and nonflammability.
Note that the whole range of these chemicals, effect the ozone layer.
Rocksavage Works
ICI’s Rocksavage Works, was an integrated chemical plant by the Mersey,.
- It made all types of CFCs for aerosols and other purposes.
- It also made the fire suppressant and extinguisher; Bromochlorodifluoromethane or BCF.
- Alongside BCF, it made the anaesthetic Halothane or as ICI called it Fluothane.
- The plant was a poisonous place with all those bromine, chlorine and fluorine compounds.
- Despite this, the plant had a remarkable safety record.
I had the pleasure of working at the plant and it was where, I had most of my excellent Health and Safety training, from the amazing site foreman; Charlie Akers.
Some of the wisdom he distributed has proved invaluable in aiding my stroke recovery.
I suspect that since the signing of the Montreal Protocol, the plant has changed greatly or has even been closed.
All that appears to be left is the 800 MW gas-fired Rocksavage power station and a Facebook page.
Aerosol Baked Beans
In those days, I worked most of the time in a lab at Runcorn Heath.
One of the labs near to where I generally worked, in the large research complex, was a lab, where new aerosol products were developed and tested.
One of the standard jokes about that lab, was that they were working on aerosol baked beans. They said, they would develop the product, even of they had to eject them from the can one at a time.
Gift Time
One afternoon, the boss of the aerosol development lab came through with a tray of goodies.
On the tray, which was much like a cinema usherette’s ice cream tray of the sixties was a whole host of partly-labeled aerosol cans. Only clues to what the product might be were written on the outside in felt-tip pen.
I grabbed two, one of which was marked something like lubricating oil and the other was just marked hand cream, which I of course gave to my new wife; C.
We were married for nearly forty years and often, when she bought hand cream, she would remark, that it wasn’t of the same standard as the little can I brought home from work.
It appears to me, that one of the world’s top cosmetic companies and ICI were trying to create the world’s best and probably most expensive hand creams.
DMW
Fast-forward nearly twenty years and I was approached by Lloyds Bank about two individuals, who had developed an aerosol valve, that instead of using CFCs or other ozone-depleting chemicals.
- By the exploitation of the nether end of fluid dynamics, the propellant of the aerosol was nothing more harmless than pure nitrogen.
- I formed a company called DMW with the two inventors.
- John Gummer, who at the time was my MP and Environment Minister, knew of the aerosol valve and he took the details to Montreal.
So did a device developed in Suffolk help push through the Montreal Protocol?
Osbourne Reynolds
I also wonder, if we had some supernatural help. At the time, I lived in the family home of Osbourne Reynolds.
- He did a lot of the early work on fluid dynamics.
- He was the first UK Professor of Engineering.
- He was professor of Engineering at Manchester University for nearly forty years.
- The Reynolds number is named after him.
- Remarkably, students are sill taught on the equipment Reynolds designed.
- Reynolds was certainly one of our great Victorian scientists.
This Wikipedia entry gives more details of his remarkable life and work.
After Montreal the aerosol valve was sold to Johnson & Johnson.
DMW continued to develop other products and we had one, who no-one had any idea about how it worked.
So I discussed it with the Reynolds’s expert at Manchester University and he said he had no idea either.
But he was absolutely certain, that Reynolds would have known.
Do Thunderstorms Cause Strokes?
On Saturday evening, we had a severe thunderstorm in North London.
All day long, I’d been drinking heavily, but as it was only tea and low-alcohol Adnams Ghost Ship 0.5 %, the worst that could happen is an accident on an extra visit to the toilet.
I came to the conclusion though, that most of the fluids was leaving my body through my skin.
Does this lower my INR? I do know that in hot and humid weather, I have difficulty raising it. In the last week or so, it has been hovering around 2.2, but yesterday, it was a very safe 2.7.
But as I test regularly, this may well help to protect me from another stroke.
Typing “Thunderstorms and Strokes” into Google, I found this paper on the National Library of Medicine, which is entitled Relationship Between Weather Conditions And Admissions For Ischemic Stroke And Subarachnoid Hemorrhage.
It is an interesting read.
This was the aim of the study.
To assess impacts of different weather conditions on hospitalizations of patients with ischemic strokes and subarachnoid hemorrhages (SAH) in South Florida.
And this was the conclusion.
Higher number of ischemic stroke and SAH cases can be expected with the daily lowest and highest air pressure, highest air temperature. Presence of hurricanes or tropical storms increased the risk of ischemic stroke but not the SAH. These findings can help to develop preventive health plans for cerebrovascular diseases.
From my own observations on INR for nearly ten years, I certainly believe that INR moves up and down with the weather because of the laws of physics.
Next time a severe thunderstorm is forecast, I will track my INR throughout the day.
Vineyard Wind To Deploy US-Based Supplier’s Bubble Curtain During Foundation Installation
The title of this post, is the same as that of this article on offshoreWIND.biz.
This is the sub-heading.
Vineyard Wind, a joint venture between Copenhagen Infrastructure Partners (CIP) and Avangrid building the first large-scale offshore wind farm in the US, has signed an agreement with the US company ThayerMahan for a pilot programme to deploy and test a secondary bubble curtain during the installation of foundations
This is the first paragraph.
A bubble curtain mitigates noise created during foundation installation by absorbing and dampening sound. First, the curtain’s large, perforated hoses are placed on the seafloor around the monopile. Then, the hoses are filled with compressed air which, once the hoses are inflated, escapes through the perforations and creates a barrier of bubbles that reduce noise.
Nothing is said, as to how the bubbles cut the noise.
I’m fairly certain that I know why.
- The speed of sound in air on a standard day at sea level static conditions, is about 340 metres/second.
- In water it’s about 1500 metres/second.
So what would the speed of sound in a bubbly mixture of air and water be?
I asked this question of Google and got this answer.
Surprisingly, in a two- fluid mixture, the measured speed of sound can be one order of magnitude smaller than that of its constituents. For example for water and air in normal conditions the speed of sound in the mixture can be about 23m/s while it is 1500m/s in water and 330m/s in air.
I even made money out of this phenomena, by backing two guys, who used it to develop an aerosol valve that used nitrogen as a propellant.
This research indirectly led to the development of the Respimat inhaler for asthma drugs.
So how does it cut the noise?
I’m not sure of this, but we do know the noise of the piling will have to go through areas of water with different speeds of sound. So is the sound attenuated as it passes through the bubble curtain by the slow speed?
I have other ideas for this interesting phenomenon and if anybody is interested please contact me. One use may have applications in mixing dissimilar fluids.
Utility Completes Testing Of Revolutionary Zero-Electricity Hydrogen Reactor
The title of this post, is the same as that of this article on Hydrogen Central.
These two paragraphs introduce the article.
Utility completes testing of revolutionary zero-electricity hydrogen reactor.
Utility announced at its 3rd annual technology day event, the successful completion of their pilot plant testing program for the H2Gen™ reactor product line. Utility is the only decarbonization technology company pioneering the eXEROTM technology platform optimized for hard to abate industry sectors.
Am I right in thinking, that Utility have developed a way of splitting hydrogen out of hydrocarbons by cleverly exploiting physics and chemistry?
This is the first paragraph on their Learn More page.
The Electroless Coupled Exchange Reduction Oxidation technology platform (eXERO™) capitalizes on both the advantages of electrochemical processes (which yield high product purity without the need for expensive purification steps) and chemical processes (which have comparatively low capital and operating costs, especially avoiding the losses of electricity generation and transmission). The eXERO™ technology platform is achieved by removing the external electrical circuit from an electrolyzer and instead driving the electrolysis reaction with the overpotential (voltage) that exists between different gas compositions. Similar to a conventional solid oxide electrolyzer, oxygen ions are transferred from the cathode to the anode through an oxygen ion conducting electrolyte. However, unlike a conventional electrochemical reactor, electrons are transferred from the anode to the cathode through an electronically conducting phase within the electrolyte, also known as a mixed conducting electrolyte.
In a section on the page, with a heading of Principles, this is said.
The eXERO™ technology platform is based on two streams which are separated by an impermeable electrolyte, and counter-exchange of oxygen ions and electrons. Thus, one of the streams undergoes reduction while the other stream simultaneously undergoes oxidation. Unlike traditional fuel cells or electrolyzers, no current is extracted or delivered to the reactor to drive the process. Rather, an overpotential can be induced by introducing gases of different composition at the anode and cathode the cell. Examples of gases introduced at the anode to induce an overpotential, relative to steam (water) are shown below:
This is interesting. Very interesting!
UK Space Agency And NNL Work On World’s First Space Battery Powered By British Fuel
The title of this post, is the same as that of this press release from the UK Government.
This is the sub-title.
The UK Space Agency and the National Nuclear Laboratory (NNL) are to collaborate on the world’s first space battery powered by Americium-241.
And these three paragraphs outline the project.
This work, commissioned and funded by the UK Space Agency from NNL, will be delivered in a new £19 million laboratory in Cumbria equipped with next-generation equipment and technology. It will deliver a sovereign supply of fuel for space batteries in the context of a global shortage, enabling the UK and its partners to pursue new space science and exploration missions.
Creating new highly-skilled jobs in the North West of England, it will drive innovation in radiochemistry and separations science and open a new market for the UK space sector.
Atomic space batteries, also known as Radioisotope Power Systems (RPSs), release heat as the radioactivity within them decays. The heat can be used directly to prevent spacecraft from freezing and it can be converted into electricity to power onboard systems. The batteries go on working for decades, without need for maintenance over the many years in which a spacecraft could be travelling.
These two paragraphs explain, why there is a need for a new type of atomic space batteries.
Considered ‘mission critical technologies’ by space agencies in the UK and around the world, all the Apollo missions had an atomic battery in tow, as has every rover that has gone to Mars. Until now, these have been powered by Plutonium-238, a radioisotope produced only in the US, where supply is limited, and Russia, so an alternative is urgently needed.
NNL, the UK’s national laboratory for nuclear fission, has been working on this endeavor since 2009, when its researchers first discovered that Americium-241, an alternative to Plutonium-238, is produced during the radioactive decay of used fuel from nuclear reactors and that it emits power for over 400 years.
With the supply plentiful – the new laboratory is being opened at NNL’s flagship Central Laboratory on the Sellafield site, home to the largest resource of Americium-241 available for extraction in the world – the new collaboration will turn a proven scientific concept into a fully-realised technology. It will be operational within the next four years and is expected to be first used on the European Space Agency’s Argonaut mission to the Moon and for future missions into deep space.
It would appear that Americium-241 has several advantages over Plutonium-238.
- Plutonium-238 has supply problems
- Who in their right mind, would buy a product like this from Russia or China?
- The batteries have a life of 400 years.
- There is plenty of suitable nuclear waste at Sellafield, from which Americium-241 can be extracted.
It looks like the first batteries could also be available in four years.
Aunt Margery
My late wife; C’s Aunt Margery was a lady, who needed a pacemaker. I seem to remember that after several of her pacemakers had run out of power and were replaced, and eventually she was fitted with a nuclear-powered pacemaker in the 1970s or 1980s.
This page on the Stanford University web site is entitled The History Of Nuclear Powered Pacemakers. It was written by Matthew DeGraw.
Many of these pacemakers in the 1960s and 1970s, were powered by Plutonium-238.
The last paragraph is entitled The Rise Of Lithium Battery Pacemakers And Fall Of Nuclear Pacemakers, where this is said.
Despite the often longer life-expectancies, nuclear pacemakers quickly became a part of the past when lithium batteries were developed. Not only did the technology improve, allowing for lighter, smaller, and programmable pacemakers, but doctors began to realize that this excessive longevity of nuclear pacemakers was excessive. Lithium pacemakers often last 10-15 years allowing for doctors to check in on their patients and replace either the batteries or the pacemakers themselves with new and improved technology as it is develops in those 10-15 year spans. While there are still several remaining patients with nuclear-powered pacemakers functioning in their bodies, it is likely that in the next few decades as these patients pass away, so will the once promising nuclear pacemakers.
Would the use of Americium-241 to power a nuclear pacemaker transform the economics of these devices?
I wonder, if there’s a cardiologist out there, who by chance reads this blog, who could answer my question!
Energy Scavenging Nanogenerator Finds Power All Around Us
The title of this post, is the same as that of this article on Phys.org.
These are the opening two paragraphs.
Imagine a mobile phone charger that doesn’t need a wireless or mains power source. Or a pacemaker with inbuilt organic energy sources within the human body.
Australian researchers led by Flinders University are picking up the challenge of “scavenging” invisible power from low-frequency vibrations in the surrounding environment, including wind, air or even contact-separation energy (static electricity).
I’ve known people with pacemakers, including someone with a nuclear-powered one. But surely this would be better, as the power source would be everlasting.
I don’t think I know anyone with one now! Are they less common?
Conclusion
If this can be commercialised, it is a very interesting development.
Neutrino Energy And Renewable Energy Decisions
The title of this post, is the same as that pn this article from Cision.
This is the introductory paragraph.
While Fossil fuels pose serious dangers to the future of human civilization, the Neutrino Energy Group proposes safe, clean solutions to the modern energy crisis that will help humanity take genuine leaps forward in development.
I’ve read the whole article and it is interesting.
It could be the biggest development in energy since our ancestors discovered fire or the largest load of hype since ZETA was built at Harwell in 1957. The latter was supposed to provide electricity too cheap to meter.
Every ten years or so, something like this pops up. The only thing different about this one, is that it has come from the Germans! Although in the 1930s. it was in Germany, where people like Otto Hahn and Lise Meitner were leading the world in nuclear research. They discovered nuclear fission for which Hahn won the Nobel Prize.
Meitner spent her last years in Cambridge and I’ve always wondered, if she ever met Rosalind Franklin, the other great female scientist of the time, who many believe should have also received a Nobel Prize. If they did or even if they didn’t, it would surely make a wonderful drama, in the style of Copenhagen.
Luckily for the world, these German nuclear scientists were often Jewish, so they left, probably robbing the Nazis of an atomic bomb. Many ended up on the Manhattan Project.
