SSE Thermal Outlines Its Vision For The UK’s Net Zero Transition
The title of this post is the same as that of this news item from SSE Thermal.
This is the opening statement.
SSE Thermal, part of SSE plc, is calling on government to turbocharge the delivery of low-carbon technologies to help deliver a net zero power system by 2035.
Two paragraphs then outline what the company is doing.
The low-carbon developer is bringing forward multiple low-carbon projects across the UK. This includes Keadby 3 Carbon Capture Power Station in the Humber – which is being developed in collaboration with Equinor and recently became the first power CCS project in the country to receive planning permission – and Aldbrough Hydrogen Pathfinder, which would unite hydrogen production, storage and power generation in one location by the middle of this decade.
These projects would form part of SSE’s £24bn investment programme in the UK, and in addition to supporting the decarbonisation of industrial heartlands and powering a low-carbon future, they would also help to secure a just transition for workers and communities.
The news item then talks about the future.
Now, SSE Thermal has published ‘A vision for the UK’s net zero transition’ which outlines the need for these low-carbon technologies and the potential of carbon capture and hydrogen in providing flexible back-up to renewables.
It also outlines the steps Government should take to facilitate this:
- Progress the deployment of carbon capture and storage (CCS) and hydrogen infrastructure in a minimum of four industrial areas by 2030.
- Support first-of-a-kind carbon capture and storage and hydrogen projects to investment decisions before the end of next year.
- Increase its ambition for power CCS to 7-9GW by 2030, with regular auctions for Dispatchable Power Agreements.
- Set out a policy ambition for hydrogen in the power sector and a strategy for delivering at least 8GW of hydrogen-capable power stations by 2030.
- Accelerate the delivery of business models for hydrogen transport and storage infrastructure, to kickstart the hydrogen economy.
These are my thoughts.
Carbon Capture And Use
There is no mention of Carbon Capture And Use, which in my view, should go hand in hand with Carbon Capture And Storage.
- Sensible uses for carbon dioxide include.
- Feeding it to plants like tomatoes, flowers, salad vegetables, soft fruit and herbs in greenhouses.
- Mineral Carbonation International can convert a dirty carbon dioxide stream into building products like blocks and plasterboard.
- Deep Branch, which is a spin-out from Nottingham University, can use the carbon dioxide to make animal feed.
- Companies like CarbonCure add controlled amounts of carbon dioxide to ready-mixed concrete to make better concrete and bury carbon dioxide for ever.
Surely, the more carbon dioxide that can be used, the less that needs to be moved to expensive storage.
Note.
- There is a lot of carbon dioxide produced in Lincolnshire, where there are a lot of greenhouses.
- At least three of these ideas have been developed by quality research in Universities, in the UK, Australia and Canada.
- I believe that in the future more uses for carbon dioxide will be developed.
The Government should do the following.
- Support research on carbon capture.
- Support Research on finding more uses for carbon dioxide.
Should there be a disposal premium or tax credit paid to companies, for every tonne of carbon dioxide used in their processes? It might accelerate some innovative ideas!
Can We Increase Power CCS to 7-9GW by 2030?
That figure of 7-9 GW, means that around a GW of CCS must be added to power stations every year.
Consider.
- It is probably easier to add CCS to a new-build power station, than one that is a couple of decades old.
- Better and more affordable methods of CCS would probably help.
- In Drax To Pilot More Pioneering New Carbon Capture Technology, I wrote about a promising spin-out from Nottingham University
- In Drax Secures £500,000 For Innovative Fuel Cell Carbon Capture Study, I wrote about another system at Drax, that captures carbon dioxide from the flue gases at Drax.
If we develop more ways of using the carbon dioxide, this will at least cut the cost of storage.
Can We Deliver At Least 8GW Of Hydrogen-Capable Power Stations By 2030?
Do SSE Thermal mean that these power stations will always run on hydrogen, or that they are gas-fired power stations, that can run on either natural gas of hydrogen?
In ‘A vision for the UK’s net zero transition’, this is said about the hydrogen power stations.
Using low-carbon hydrogen with zero carbon emissions at point of combustion, or blending hydrogen into existing stations.
So if these power stations were fitted with carbon capture and could run on any blend of fuel composed of hydrogen and/or natural gas, they would satisfy our needs for baseload gas-fired power generation.
Hydrogen Production And Storage
SSE’s vision document says this about Hydrogen Production.
Using excess renewables to create carbon-free hydrogen, alongside other forms of low-carbon hydrogen, which can then be stored and used to provide energy when needed.
SSE’s vision document also says this about Hydrogen Storage.
Converting existing underground salt caverns or creating new purpose-built caverns to store hydrogen and underpin the hydrogen economy.
This page on the SSE Thermal web site is entitled Aldbrough Has Storage, where this is said about storing hydrogen at Aldbrough.
In July 2021, SSE Thermal and Equinor announced plans to develop one of the world’s largest hydrogen storage facilities at the Aldbrough site. The facility could be storing low-carbon hydrogen as early as 2028.
With an initial expected capacity of at least 320GWh, Aldbrough Hydrogen Storage would be significantly larger than any hydrogen storage facility in operation in the world today. The Aldbrough site is ideally located to store the low-carbon hydrogen set to be produced and used in the Humber region.
From my own experience, I know there is a similar salt structure in Cheshire, which has also been used to store gas.
Earlier, I said, that one of the things, that SSE would like the Government to do is.
Progress the deployment of carbon capture and storage (CCS) and hydrogen infrastructure in a minimum of four industrial areas by 2030.
If Cheshire and Humberside are two sites, where are the other two?
Deciding What Fuel To Use
If you take the Humberside site, it can provide electricity to the grid in three ways.
- Direct from the offshore and onshore wind farms.
- Using natural gas in the gas-fired power stations.
- Using hydrogen in the gas-fired power stations.
SSE might even add a battery to give them a fourth source of power.
In the 1970s, I used dynamic programming with Allied Mills to get the flour mix right in their bread, with respect to quality, cost and what flour was available.
Finance For SSE Thermal Plans
The news item says this.
These projects would form part of SSE’s £24bn investment programme in the UK.
£24bn is not the sort of money you can realise solely from profits or in sock drawers or down sofas, but provided the numbers add up, these sorts of sums can be raised from City institutions.
Conclusion
I like SSE Thermal’s plans.
Making Carbon Dioxide Into Protein For Innovative Animal Feed
The title of this post, is the same as that of this article on Horizon.
These are the first three paragraphs.
It’s common knowledge that proteins, a key component of human nutrition, are also essential for making animal feeds. Less well known is the uncomfortable fact that much of the protein we feed animals in Europe leads to deforestation and overfishing worldwide.
Biotechnology start-up Deep Branch have designed a biochemical transformation process that turns carbon dioxide (CO2) into a protein-rich powder for animals to eat.
The Deep Branch process converts carbon dioxide into a powder, called Proton, which has around 70% protein content. This is much higher than natural soy, which has around 40%.
Note.
- The technology is the brainchild of Peter Rowe, a PhD graduate in molecular biology of Nottingham University in the UK.
- Deep Branch appears to be a well-backed Anglo-Dutch company.
- Their backers are European and British household names and institutions.
- Drax, who have plenty of carbon dioxide, are also backers.
I believe that even if Deep Branch doesn’t succeed, then someone else will, with this technology.
Is Twelve The Answer To Carbon Emissions?
Everybody knows that The Answer to the Ultimate Question of Life, the Universe, and Everything is 42.
I’ve just been digging around the Internet, where I started in the Wikipedia entry for the Electrochemical Reduction Of Carbon Dioxide, which says this about the process.
The electrochemical reduction of carbon dioxide, also known as electrolysis of carbon dioxide, is the conversion of carbon dioxide (CO2) to more reduced chemical species using electrical energy. It is one possible step in the broad scheme of carbon capture and utilization, nevertheless it is deemed to be one of the most promising approaches.
This led me to the Wikipedia entry for a company called Twelve.
I then looked at the Twelve web site.
The Mission Statement
Most companies have them and their’s is.
We Are The Carbon Transformation Company
Which is backed up by the following.
We make the world’s most critical chemicals, materials and fuels from air, not oil with our revolutionary carbon transformation technology.
We’re reinventing what it means to be a chemical company in the climate era, on a mission to eliminate global emissions and build a fossil-free future.
I have explored the web site and it looks good for me.
See what you think!
Equinor Is Counting On Tax Breaks With Plans For North Sea Oilfield
The title of this post, is the same as that, of this article in The Times.
These paragraphs outline the project.
Norway’s state-owned oil company is pushing ahead with plans to develop Britain’s biggest untapped oilfield after confirming that it stands to benefit from “helpful” tax breaks introduced alongside the windfall levy.
Equinor could lower its windfall tax bill by as much as £800 million in the years to come thanks to investment relief if it develops the Rosebank field, according to Uplift, a campaign group.
Rosebank, to the west of Shetland, could cost £4.1 billion to develop and may account for about 8 per cent of British oil output in the second half of this decade, producing 300 million barrels of oil by 2050.
Equinor said yesterday that it hoped to take a final investment decision on the field by next year and to start production by 2026. It has applied for environmental approval from the government.
Needless to say Greenpeace are not amused.
We Have Both Long Term And Short Term Energy Problems
In the UK, energy is generally used as electricity or gas and to power industry and transport.
Electricity
In the long term, we need to decarbonise our electricity production, so that all our electricity is produced from zero-carbon sources like nuclear, solar, tidal, wave and wind.
- As I write this, our electricity production is around 26.8 GW of which 62 % is coming from renewable sources.
- Surprisingly around 45 % of the renewables is coming from solar. Who’d have ever thought that in an predominantly-grey UK?
- As we have committed to around 50 GW of wind power by 2030 and the 3.26 GW Hinckley Point C will be on stream by the end of the decade, the long term future of electricity production looks to be fairly secure.
- It would be even more secure, if we added around 600 GWh of storage, as proposed in Highview Power’s Plan To Add Energy Storage To The UK Power Network, which would be used as backup when the sun doesn’t shine and the wind doesn’t blow.
It looks to me, that our long term electricity problem is capable of being solved.
For the next few years, we will need to rely on our existing gas-fired power stations until the renewables come on stream.
Gas
Gas could be more of a problem.
- I wouldn’t be surprised to see a lot of resistance to the replacement of natural gas for heating, cooking and industrial processes.
- Natural gas is becoming increasingly difficult to source.
- As I said in the previous section, we will still need some gas for electricity generation, until the massive wind farms are completed.
On the other hand, there is HyDeploy.
I like the HyDeploy concept, where up to 20 % of hydrogen is blended with natural gas.
- Using a blend of hydrogen and natural gas doesn’t require any changes to boilers, appliances or industrial processes.
- The hydrogen blend would make the most of our existing world class gas network.
- Customers do not require disruptive and expensive changes in their homes.
- Enormous environmental benefits can be realised through blending low carbon hydrogen with fossil gas.
- The hydrogen blending could happen, where the natural gas enters the network at terminals which receive gas from the UK continental shelf or where liquified natural gas is imported.
- Alternatively, it may be possible to surround a gas production platform with an offshore wind farm. This could enable hydrogen production and blending to be performed offshore.
The amount of gas we need would drop by twenty percent.
In The Mathematics Of Blending Twenty Percent Of Hydrogen Into The UK Gas Grid, I calculated that 148.2 tonnes per hour of hydrogen would be needed, to blend twenty per cent of hydrogen into UK natural gas supplies.
I also said this about the electricity needed.
To create 148.2 tonnes per hour of hydrogen would need 8,180.64 MW of electricity or just under 8.2 GW.
I also calculated the effect of the hydrogen on carbon dioxide emissions.
As twenty percent will be replaced by hydrogen, carbon dioxide emission savings will be 24,120,569.99 tonnes.
I believe that generating the 8.2 GW of electricity and delivering the 148.2 tonnes per hour of hydrogen is feasible.
I also believe that HyDeploy could be a valuable way to reduce our demand for natural gas by twenty per cent.
Transport
Not every vehicle, ship, aircraft and train can be powered by electricity, although batteries will help.
Hydrogen will help, but we must also develop our capability for sustainable fuels made from rubbish diverted from landfill and biologically-derived ingredients like used cooking oil.
Summing Up Our Long Term And Short Term Energy Problems
We obviously have got the problem of creating enough renewable energy for the future, but there is also the problem of how we keep everything going in the interim.
We will need gas, diesel, petrol and other fossil fuel derived products for the next few years.
Is Rosebank Our Short Term Solution?
This page on the Equinor web site is entitled Rosebank Oil And Gas Field.
This introductory paragraph described the field.
Rosebank is an oil and gas field 130 kilometres off the coast of the Shetland Islands. Equinor acquired the operatorship in 2019 and has since then been working to optimise and mature a development solution for the field together with our partners.
Could the field with its resources of oil and gas, be just the sort of field to tide us over in the next few difficult years.
But given the position, it will surely not be an easy field to develop.
These two paragraphs set out Equinor’s strategy in developing the field.
Equinor believes the field can be developed as part of the UK Government North Sea Transition deal, bringing much needed energy security and investment in the UK while supporting the UKs net zero target. According to a socioeconomic study (see link below) based on data and analysis by Wood Mackenzie and Voar Energy, if sanctioned Rosebank is estimated to create GBP 8.1 billion of direct investment, of which GBP 6.3 billion is likely to be invested in UK-based businesses. Over the lifetime of the project, Rosebank will generate a total of GBP 24.1 billion of gross value add (GVA), comprised of direct, indirect and induced economic impacts.
Equinor together with our partners are working with the supply chain to ensure that a substantial part of investment comes to Scotland and the UK. A supplier day was held in Aberdeen in partnership with EIC in order to increase the number of local suppliers to tender.
Note.
- The sums that could accrue to the UK economy are worthwhile.
- The Government North Sea Transition Deal is worth a read.
- A lot of the deal is about converting oil and gas skills to those of a renewable energy economy.
Planned properly, we should get all the oil and gas we need to get through difficult years.
I particularly like these two paragraphs, which are towards the end of the Government North Sea Transition Deal.
Through the Deal, the UK’s oil and gas sector and the government will work together to deliver
the skills, innovation and new infrastructure required to decarbonise North Sea oil and gas
production as well as other carbon intensive industries. Not only will it transform the sector in
preparation for a net zero future, but it will also catalyse growth throughout the UK economy.
Delivering large-scale decarbonisation solutions will strengthen the position of the existing UK
energy sector supply chain in a net zero world, securing new high-value jobs in the UK,
supporting the development of regional economies and competing in clean energy export
markets.
By creating the North Sea Transition Deal, the government and the UK’s oil and gas sector are
ambitiously seeking to tackle the challenges of reaching net zero, while repositioning the UK’s
capabilities to serve the global energy industry. The Deal will take the UKCS through to
maturity and help the sector pivot towards new opportunities to keep the UK at the forefront of
the changing 21st century energy landscape.
I believe that developing Rosebank could enable the following.
- The oil and gas we need in the next few years would be obtained.
- The economic situation of the UK would be improved.
- The skills and techniques we need to decarbonise the UK would be delivered.
- Net-zero would be reached in the required time.
- Jobs will be created.
- The export of surplus oil and gas.
I strongly believe that developing the Rosebank field would be worthwhile to the UK.
I have some other thoughts.
Electrification Of Platforms
This page on the Equinor web site is entitled Electrification Of Platforms.
This paragraph explains what that means.
Electrification means replacing a fossil-based power supply with renewable energy, enabling a reduction in greenhouse gas emissions. Equinor is fully committed to reducing emissions from our offshore oil & gas production.
Note.
- Typically, platforms use gas turbine engines running on natural gas to provide the electricity needed on the platform.
- Platforms in the future will get their electricity from renewable sources like wind and will have an electricity cable to the shore.
- Rosebank will be powered in this way.
This document on the Equinor web site is entitled Rosebank: Investing In Energy Security And Powering A Just Transition, which has a section called How Is Rosebank Different?, where this is said.
The key difference of Rosebank compared to other oil fields is that it
aims to draw on new technology applications to help reduce carbon
emissions from its production, through FPSO electrification.Building offshore installations that can be powered by electricity reduces
reliance on gas powered generators which are the biggest source
of production emissions. The electrification of UKCS assets is vital to
meeting the North Sea Transition Deal’s target of reducing production
emissions by 50% by 2030, with a view to being net zero by 2050.Electrification of Rosebank is a long-term investment that will drastically
cut the carbon emissions caused by using the FPSO’s gas turbines for
power. Using electricity as a power source on Rosebank results in a
reduction in emissions equivalent to taking over 650,000 cars off the
road for a year compared with importing 300 million barrels of oil from
international sources.
Note.
- An FPSO is a Floating Production Storage And Offloading Unit, which is the method of production, that Equinor have chosen for the Rosebank field.
- If we are going to extract fossil fuels then we must extract them in a manner, that doesn’t add to the problem by emitting extra carbon dioxide.
- We will probably extract fossil fuels for some years yet, as they are the easiest route to some important chemicals.
- I also believe that we will increasingly find uses for any carbon dioxide captured in combustion and chemical processes.
I already know of a farmer, who heats greenhouses using a gas-powered combined heat and power unit, who pipes the carbon dioxide to the tomatoes in the greenhouses.
Despite what Greenpeace and others say, carbon dioxide is not all bad.
Energy Security
The last page of this document on the Equinor web site is entitled Rosebank: Investing In Energy Security And Powering A Just Transition, is entitled Energy Security.
Look at the numbers.
- £8.1 billion – Total field investment with 78% of this being spent in the UK
- 1600 – Estimated peak number of direct FTE jobs
- £24.1 billion – Estimated gross value add
- 8 % – Of UK oil production from Rosebank to 2030
- 39 million cubic feet per day – Average daily gas production over the first 10 years of field life, equivalent to almost twice Aberdeen’s daily gas consumption
- 250kt CO2 – Carbon avoided by reusing existing FPSO
And if you have time read it fully.
Could The Rosebank FPSO Be Powered By Floating Offshore Wind?
Floating wind turbines are now being installed around the world.
- They can use the largest turbines.
- Some designs perform in the roughest of seas.
- They have a high capacity factor.
- They are generally brought into a suitable port for servicing and updating.
- Floating wind farms can be connected to floating substations
There is at least 20 GW of floating wind turbines planned for UK waters.
So could an appropriately-sized floating wind farm be placed near the Rosebank FPSO to provide it with electricity?
I don’t see why not, if there were some energy storage in the system, for when the wind wasn’t blowing.
Floating Offshore Wind Close To The Rosebank FPSO Would Be Challenging
Rosebank is an oil and gas field 130 kilometres off the West coast of the Shetland Islands.
That would be a challenging location for floating wind turbines.
But solving the installation problems would set precedents for floating wind farms all over the world.
Could The Rosebank FPSO Handle Hydrogen From Floating Offshore Wind?
It would surely be possible to put an electrolyser in the system somewhere, so that hydrogen was also stored in the tanks of the FPSO.
I also don’t think it unfeasible, that twenty percent of hydrogen could be blended into the natural gas to create the low-carbon natural gas, that has been proposed by the HyDeploy project.
New Proton Ceramic Reactor Stack For Highly Efficient Hydrogen Production And Carbon Capture In A Single Step
The title of this post, is the same as that of this article on Green Car Congress.
This is the opening paragraph.
A team of researchers from CoorsTek Membrane Sciences and SINTEF in Norway, and Universitat Politècnica de València in Spain, has demonstrated a 36-cell well-balanced proton ceramic reactor stack enabled by a new interconnect that achieves complete conversion of methane with more than 99% recovery to pressurized hydrogen, leaving a concentrated stream of carbon dioxide. The team has also demonstrated that the process can be scaled up for commercial application.
A paper has been published in the journal; Science.
I find this concept interesting for a number of reasons.
- I’ve believed for some time, that applications, that need a good supply of pure carbon dioxide will be developed. One obvious use is feeding it to plants in large greenhouses, so we can have our CO2 and eat it!
- 99 % is a very high efficiency.
- Ammonia, natural gas or biogas can be used as a feedstock.
Coors were an Artemis user for project management and I had an enjoyable few days Golden, Colorado and at the Coors brewery, sometime in the 1980s.
- It was then that I first heard of CoorsTek, who used to make ceramics for the US defence industry.
- In those days, the beer was made to German brewing rules and was unpasteurised.
- The beer had to be delivered to customers within a certain time, so long distance deliveries used trains.
- Coors Brewing Company has since merged with Molson, but CoorsTek appears to be still owned by the Coors family.
- I had taken a few small bottles of Adnams Broadside with me and one of their managers analysed one before drinking the rest of the bottle. He informed me that it was a felony to be in possession of such a strong beer in Colorado.
Coors were and probably still are in some ways not your average brewing company.
Coors News Item On Proton Ceramic Membranes For Hydrogen Production
This page on the CoorsTek web site, which is entitled Proton Ceramic Membranes For Hydrogen Production Published In ‘Science’, gives more details.
Conclusion
This technology could be massive.
Rolls-Royce Secures Funding To Build Direct Air Capture Demonstrator
The title of this post, is the same as that of this press release from Rolls-Royce.
These are the two introductory paragraphs.
Rolls-Royce has secured £3m from the UK Government to build a demonstrator Direct Air Capture (DAC) system, which could play a vital role in keeping global temperature rises to below 1.5C by removing CO2 from the atmosphere.
The demonstrator funding comes from the Net Zero Innovation Portfolio (NZIP) through the Department for Business, Energy and Industrial Strategy (BEIS) and helps deliver on the UK Government’s 10 Point Plan for a Green Industrial Revolution. It follows initial Phase 1 funding of £250,000 awarded in 2021, that allowed Rolls-Royce to design the demonstrator in partnership with the Commonwealth Scientific and Industrial Research Organisation (CSIRO).
These two paragraphs, give a few clues to the technology.
Jess Poole, Direct Air Capture Lead for Rolls-Royce, said: “Every credible climate change model requires us to decarbonise today’s emissions, as well as removing CO2 already in the atmosphere via carbon negative technologies such as DAC. Our system combines our expertise in moving large quantities of air efficiently and integrating complex systems, which have been gained from designing world-leading jet engines, with novel DAC technology developed by CSIRO.
“Together the system works like a giant lung, sucking in air, absorbing the CO2, and releasing what is not wanted. We use a water-based liquid to wash around 50% of the CO2 from the captured air. Our technology is distinctive because very little water is used, and the liquid is recycled at low temperatures, making it energy efficient. Other technologies consume a lot of water and require substantial amounts of energy to generate heat for the separation of the CO2.
I was unaware of CSIRO, but that is not surprising, as they are Australian. They are introduced like this in their Wikipedia entry.
The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is an Australian Government agency responsible for scientific research.
CSIRO works with leading organisations around the world. From its headquarters in Canberra, CSIRO maintains more than 50 sites across Australia and in France, Chile and the United States, employing about 5,500 people.
Their motto is “We imagine. We collaborate. We innovate.”
There’s certainly been several brilliant ideas and projects from the country in the last few years.
Is this another?
Another Problem With Carbon Dioxide
When I’m in an optimistic mood, I feel that scientists and engineers may develop so many ideas for the use of carbon dioxide, that we may need to burn natural gas in power stations, so we have the carbon dioxide for industrial or agricultural uses.
I know of one tomato grower, who uses a gas-powered combined heat and power boiler to heat his greenhouses. The carbon dioxide is fed to the tomatoes and any spare electricity is sold to the grid.
Direct Air Capture (DAC) systems might be needed to provide a carbon dioxide feedstock for some processes. Suppose in the tomato example, the grower is heating his greenhouses with an energy source, that doesn’t generate carbon dioxide, he might want to obtain his carbon dioxide from the air.
Rolls-Royce Lists Sites For New Reactor
The title of this post, is the same as that of this article on The Times.
The headline is a bit misleading, as the site is for a factory to build the reactors.
These paragraphs list the sites.
Rolls-Royce, the engineering company, has shortlisted six sites for a factory that will build its proposed small nuclear reactors.
The constituency of Rishi Sunak, the chancellor, in Richmond, North Yorkshire, is among the locations, which have been whittled down from more than 100 proposals.
The other sites are Sunderland, Deeside in Wales, Ferrybridge in West Yorkshire, Stallingborough in Lincolnshire, and Carlisle.
As Rishi Sunak resigned last night, does that rule out Richmond?
I feel that Rolls-Royce will choose this location with care, as any good company would.
I have a few thoughts.
Will Rolls-Royce Go For Zero-Carbon Manufacture?
If you intend to build large numbers of small modular nuclear reactors, it is not a good idea from a marketing or public relations point of view to release tonnes of carbon in their manufacture.
This page on the Rolls-Royce web site has a title of Destination Net Zero, where this is said.
We have already pledged to reduce emissions from our own operations to net zero by 2030, and to play a leading role in enabling the sectors in which we operate to reach net zero by 2050. Now, we are now laying out our technology pathway and setting clear short-term targets to show how we will achieve those goals.
I am sure Rolls-Royce will go for zero-carbon manufacture.
This will probably mean the site will need to have access to the following.
- Renewable electricity from wind, solar or hydro.
- Hydrogen
- Zero-carbon steel, copper and other raw materials
An external supply of hydrogen may well be the least important, as they recently purchased a German electrolyser developer and manufacturer, that I wrote about in Rolls-Royce To Develop mtu Hydrogen Electrolyser And Invest In Hoeller Electrolyser.
Will The Factory Have A Rail Connection?
A rail connection could have four main purposes.
- Bringing in raw materials like steel.
- Delivering manufactured components to site.
- If the factory is a major source of employment, rail is the greenest way to bring in staff from further away.
- If large shipments are brought in and delivered by zero-carbon rail, it generally doesn’t annoy the locals.
Note.
- The huge Britishvolt gigafactory at Blyth will have a rail connection for the transport of lithium and finished batteries.
- Transport of nuclear fuel and waste around the UK is generally done by train, with perhaps the last few miles by truck.
I think it will be very unlikely, that the new factory will not have a rail connection.
Will Power Station Modules Be Transportable By Rail?
Given that in the UK, there will need to be a railhead at or near the power station for fuel and waste, I believe that if modules were transportable by rail, this could give big advantages to the roll-out of the reactors.
If a former Magnox nuclear site like Bradwell is to be home to a fleet of small modular reactors, the electrified railhead is already in place at Southminster station.
The crane and the track probably need a bit of a refurbishment, but overall, it looks in reasonable condition.
If you sell nuclear as zero-carbon, rail is the easiest way to ensure zero-carbon delivery of modules.
The standard loading gauge in the UK is W10, which is 2.9 metres high and 2.5 metres wide.
- A standard twenty-foot container is six metres long, which must help.
- W10 gauge allows the transport of standard Hi-Cube shipping containers, which are 9 ft 6 in. high, on flat rail wagons.
- If the modules can fit into Hi-Cube shipping containers, this would make transport easier everywhere, as all ports and railways can handle these containers.
Would it be possible to fit all components into this relatively small space?
It could be difficult, but I suspect it is possible to achieve, as it would make the reactors easier to sell.
- Sites would only need to be able to receive Hi-Cube shipping containers.
- These could be trucked in from a nearby railhead.
- Containers on a railway are a very secure way of transporting goods.
- Rolls-Royce has masses of experience in shipping large turbofan engines in standard shipping containers. Some are shipped in very carefully controlled air conditions to minimise damage.
- Hi-Cube shipping containers can go through the Channel Tunnel.
I am fairly sure, that Rolls-Royce are designing the power station, so that it fits into a number of Hi-Cube shipping containers. It would give other advantages.
- Smaller components would probably speed up assembly.
- Smaller components may also mean that smaller cranes could be used for assembly.
There may need to be some gauge enhancement to be able to access some sites in the UK.
- This article on Rail Engineer, is entitled Showing Your Gauge, and it details how gauge is being enhanced to W10 and W12 in the UK.
- Network Rail have also published a map, which shows where W10 gauge is possible. Click here to view.
I am fairly certain, that most railways in the world can handle Hi-Cube shipping containers.
Availability Of Staff
Rolls-Royce will obviously opt for a place, where there is good availability of staff.
Conclusion
I feel that any of the sites mentioned could be the ideal place for the factory.
If I had to have a bet, I’d put it the factory at Stallingborough in Lincolnshire.
- It is close to the Zero Carbon Humber energy and hydrogen hub.
- There is plenty of space.
- There is a rail connection.
- It is close to the Port of Immingham.
- It is close to British Steel at Scunthorpe.
It is also not that far from Derby by road or rail.
Affordable Blue Hydrogen Production
The title of this post, is the same as that of this page on the Shell Catalysts & Technologies web site.
This is said at the top of the page.
Natural gas producers are at a crossroads. They face a shifting regulatory landscape emphasising emissions reduction and an economic environment where cash preservation is critical. Shell Catalysts & Technologies offers resource holders a phased approach to diversifying their portfolios towards clean hydrogen fuels by leveraging proven and affordable capture technologies and catalysts.
My knowledge of advanced chemical catalysts is small, but I did work in the early 1970s on a project with one of ICI’s experts in the field and he told me some basics and how he believed that in the future some new catalysts would revolutionise chemical process engineering.
Wikipedia’s definition of catalysis, or the action of catalysts is as follows.
Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst.
When I heard that Velocys were going to develop a catalyst-based system to turn household waste into sustainable aviation fuel, I did make a small investment in the company, as I thought the project could have legs.
Shell’s process takes natural gas and converts one molecule of methane (CH4) into two molecules of hydrogen (H2) and one of carbon dioxide (CO2) using one molecule of oxygen (O2) from the air.
In the Shell Blue Hydrogen Process, does a clever catalyst extract the carbon atom from the methane and combine it with two oxygen atoms to create a molecule of carbon dioxide? If it does, then this would leave the four atoms of hydrogen to form two molecules of H2 and the catalyst to go and repeat its magic on another methane molecule.
The video on the Shell site claims to do the conversion 10-25 % cheaper than current carbon intensive methods like steam reforming.
For every two molecules of hydrogen produced, both the Shell Blue Hydrogen Process and steam reforming will produce one molecule of carbon dioxide.
If you look at steam reforming it is an endothermic process, which means heat has to be added. The classic endothermic process is dissolving ice cubes in a glass of water.
Shell don’t say, but does their process need less energy to be added, because their clever catalyst does a lot of the work?
I wouldn’t be surprised if the reaction takes place in a liquid, with hydrogen and carbon dioxide bubbling out.
- The two gases would be separated by using their different physical properties.
- Carbon dioxide is heavier for a start.
Whatever Shell have done, it is probably pretty impressive and has probably taken many years to develop.
If as I suspect, it produces pure carbon dioxide, that would be an added bonus, as some uses of carbon dioxide wouldn’t want impurities.
Uses of pure carbon dioxide include.
- Feeding it to soft fruits, flowers, salad vegetables and tomatoes growing in large greenhouses.
- Dry ice.
- Mineral Carbonation International can use carbon dioxide to make building products like blocks or plasterboard.
- It can be added to concrete.
The more of the carbon dioxide that can be used rather than stored the better.
The Mathematics Of Blending Twenty Percent Of Hydrogen Into The UK Gas Grid
HyDeploy is a project, that is investigating blending hydrogen into the UK’s natural gas supply to reduce the amount of carbon dioxide produced by the burning of natural gas in power stations, industrial processes and in our homes and other buildings.
To find out more about the project, visit the HyDeploy web site.
This is a paragraph from this page on the HyDeploy web site, which describes the current progress of the project.
HyDeploy is progressing well. The HSE gave the go ahead for a live demonstration, at Keele University, of blended hydrogen and natural gas which began in Autumn 2019 and completed in Spring 2021. The HSE are satisfied that the blend of gas will be as safe as the gas we all currently use. The hydrogen content will be up to 20% and has so far reached 15%.
Note that HSE is the Health and Safety Executive, who are closely involved.
HyDeploy has now moved on to Phase 2 in the North East.
For our North East demonstration, we have contacted everyone who will be involved in that demonstration – more than 650 homes – and arranged for our engineers to carry out Gas Safe checks on their gas appliances and gather information on the range of appliances in the demonstration area. The Gas Safe checks were free of charge. Almost 90% of those homes have engaged with us.
What would be the effects of 20 % of hydrogen blended into natural gas?
Will current boilers, cookers and other gas-powered devices work on a blend of hydrogen and natural gas?
This is one for the scientists and it is one of the objectives of the HyDeploy trial to understand how every use of gas performs if instead of natural gas, the fuel is a mixture of eighty percent natural gas and twenty percent hydrogen.
I will assume that these problems are solvable.
I am not just hoping, but I can remember in the early 1970s, when our elderly gas cooker was successfully converted from town gas, which was typically a mixture of hydrogen (50%), methane (35%),carbon monoxide (10 %) and ethylene (5%), to natural gas, as North Sea gas started to flow.
This document from the UK government is entitled Fuels: Natural Gas, which contains a section entitled Material Properties Relevant To Use, where this is said.
Natural gas is a combustible gas that is a mixture of simple hydrocarbon compounds. It contains primarily methane, along with small amounts of ethane, butane, pentane, and propane. Natural gas does not contain carbon monoxide. The by-products of burning natural gas are primarily carbon dioxide and water vapour. Natural gas is colourless, tasteless and odourless. Because it is odourless, an odorant (80% tertiarybutyl mercaptan, 20% dimethyl sulphide) is added to the gas, to give the gas a distinctive smell. Other beneficial properties of natural gas are a high ignition temperature and a
narrow flammability range, meaning natural gas will ignite at temperatures above 593°degrees and burn at a mix of 4 – 15% volume in air (St. Lawrence Gas, 2015)
As ethane (C2H6), butane (C4H10), pentane (C5H12) and propane (C3H8) are all similar simple hydrocarbons to methane, which burn to produce carbon dioxide and water, I will assume in this analysis, that natural gas is all methane (CH4).
It is reasonable to assume, that currently we use a fuel which is equivalent to 100 % methane and that in the future we could use 80 % methane and 20 % hydrogen. Also in the past, we used to use a fuel, that was 50 % hydrogen and 35 % methane. The carbon monoxide is a poison, so I’ll ignore it, but ethylene (C2H4) is another of those simple hydrocarbons, which burn to release just carbon dioxide and water.
So if we were able to go from town to natural gas fifty years ago, by just adjusting gas equipment, surely we can go partly the other way in the Twenty-First Century.
I can certainly see the UK gas supply containing twenty percent hydrogen, but wouldn’t be surprised to see a higher level of hydrogen in the future.
How Much Hydrogen Needs To Be Added?
This page on worldodometer says this about UK gas consumption.
The United Kingdom consumes 2,795,569 million cubic feet (MMcf) of natural gas per year as of the year 2017.
I will now calculate the weight of hydrogen needed to be added.
- 2,795,569 million cubic feet converts to 79161.69851 million cubic metres.
- I will round that to 79161.7 million cubic metres.
- Twenty percent is 15832.34 million cubic metres.
- A cubic metre of hydrogen weighs 0.082 Kg, which gives that in a year 1,298.25188 million kilograms will need to be added to the UK gas supply.
This is 1,298,251.88 tonnes per year, 3,556.85 tonnes per day or 148.2 tonnes per hour.
How Much Electricity Is Needed To Create This Amount Of Hydrogen?
In Can The UK Have A Capacity To Create Five GW Of Green Hydrogen?, I said the following.
Ryze Hydrogen are building the Herne Bay electrolyser.
- It will consume 23 MW of solar and wind power.
- It will produce ten tonnes of hydrogen per day.
The electrolyser will consume 552 MWh to produce ten tonnes of hydrogen, so creating one tonne of hydrogen needs 55.2 MWh of electricity.
To create 148.2 tonnes per hour of hydrogen would need 8,180.64 MW of electricity or just under 8.2 GW.
How Much Carbon Dioxide Would Be Saved?
This page on the Engineering Toolbox is entitled Combustion Of Fuels – Carbon Dioxide Emission and it gives a list of how much carbon dioxide is emitted, when a fuel is burned.
For each Kg of these fuels, the following Kg of carbon dioxide will be released on combustion.
- Methane – 2.75
- Gasoline – 3.30
- Kerosene – 3.00
- Diesel – 3.15
- Bituminous coal – 2.38
- Lignite 1.10
- Wood – 1.83
Engineering Toolbox seems a very useful web site.
I will now calculate how much carbon dioxide would be saved.
- In 2017, UK methane consumption was 79161.7 million cubic metres.
- One cubic metre of methane weighs 0.554 Kg.
- The total weight of methane used is 43,855,581.8 tonnes.
- Multiplying by 2.75 shows that 120,602,849.95 tonnes of carbon dioxide will be produced.
As twenty percent will be replaced by hydrogen, carbon dioxide emission savings will be 24,120,569.99 tonnes.
That seems a good saving, from a small country like the UK.
The UK would also reduce natural gas consumption by twenty percent or 15832.34 million cubic metres per year.
How many other countries with good renewable and zero-carbon electricity resources like Australia, Chile, Denmark, France, Iceland, Ireland, Jordan, Morocco, Norway, Sweden and the United States will take this route, as it seems a good way to save large amounts of carbon?
There is also the collateral benefit, that countries with a good supply of hydrogen can use hydrogen to decarbonise the heavy transport sectors of rail, road and sea freight transport.
The big winners would appear to be those companies like ITM Power, who manufacture electrolysers and those companies like Fortescue Future Industries, who are prospecting, developing and promoting the hydrogen resources of the planet.
The losers will be countries, who are reliant on importing large amounts of gas and other fossil fuels, who don’t have access to large amounts of renewable energy like geothermal, hydro, nuclear, solar and wind.
Germany’s energy policy of no nuclear, more coal and Russian gas seems to have been a mistake.
But I’m sure, if Olaf Sholz talked nicely to Boris, there is a deal to be made.
- German utilities have already arranged to fund BP’s move into wind farms in Morecambe Bay and the North Sea.
- Norfolk’s gas terminal at Bacton is less than three hundred miles from Germany’s new hydrogen terminal at Wilhelmshaven.
The biggest loser could be Vlad the Poisoner.